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Goal and motivation

» Develop algorithms for Bayesian inference for Probabilistic
Context-Free Grammars (PCFGs)
» Bayesian inference combines likelihood with prior information
» bias learner toward sparse grammars
» The techniques presented here generalize to other generative
models with branching structure
» more complex parsing models (e.g., “Adaptor Grammars”, a
non-parametric extension of PCFGs)
» Hidden Markov Models (a sampler that resamples all labels at
once, cf. Neal 2006)



Probabilistic context-free grammars

» The probability of a tree t is the product of probabilities of rules used
to construct it

P(tje) = 6/
reR
where f,(t) is the number of times rule r appears in tree ¢.
» The probability of a string w is the sum of probabilities of all trees with
w as their yield

P(w)) = Y P(t0)

ty(t)=w

S—NP VP 95—>NP VP = 1.0
NP—Al, 9NP—>A1 = 05 /S\
R = NP—George o, 9NP—>George = 05, P|NP vP | =01
VP—bark: Ovp_, =02
arks VP—barks Al barks

VP—snores vaﬁsnores = 038



Unsupervised inference for PCFGs

» Given rules R and corpus of strings w, infer:
» rule probabilities 6
> trees t for w
» Maximum likelihood, e.g. Inside-Outside/EM (a point estimate)

6 = argmaxP(wl|0) (EM)
0

t = argmaxP(tjw,d)  (Viterbi)
t

» Bayesian inference incorporates prior P(6) and infers a posterior
distribution

P(Olw) o« P(w|f) P(0)
—— — =~
Posterior Likelihood Prior

P(tjw) o /A P(w, t0) P(6) d6
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Bayesian priors

P(Hypothesis|Data) o P(Data|Hypothesis) P(Hypothesis)

Posterior Likelihood Prior

» Hypothesis = rule probabilities 6, Data = strings w

» Prior can incorporate linguistic insights (“universal grammar”)

» Math/computation vastly simplified if prior is conjugate to likelihood
» posterior belongs to the same model family as prior

» PCFGs are products of multinomials, one for each nonterminal A
» model has a parameter 64 . for each rule A — B € R

= Conjugate prior is product of Dirichlets, one for each nonterminal A

> prior has a hyper-parameter a4 g for each rule A — g € R
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Dirichlet priors for multinomials

» Outcomes1,...,m

5 8= E&;g’;%gi ~— » Multinomial P(X = i) = 6,
s N = 0.1,1.0 _— 92(91,,9m)
» Dirichlet prior parameters
P(()l\rx)3 ) o= (ag,...,0n)
? Pp(6]a) L 1T
D pum— _— .
1 Z(a) i1
m
" T(w;
0 \\ L Z(a) = T2, T'(ai)

| I ; P

002z 04 06 08 1 (X i)
Binomial parameter 6,

As «q approaches 0, P(6;|a) concentrates around 0

PCFG prior is product of Dirichlets (one for each A € N)

Dirichlet for A in PCFG prior has hyper-parameter vector a 4

vV v vy

Dirichlet prior can prefer sparse grammars in which 8, = 0



Dirichlet priors for PCFGs

» Let R4 be the rules expanding A in R, and 64, a4 be the subvectors of
8, « corresponding to R4

» Conjugacy makes the posterior simple to compute given trees t:

PD(9|DC) = HPD(QAMA) x HG“T

AEN reR
POt a) o« P(t|8)Pp(6]a)

- <H Qf;r(t)) (H 95,—1)
reER reER
_ H Qj;,(t)-i-pc,—ll so

reR

POt a) = Pp(Olf(t) +a)

» So when trees t are observed, posterior is product of Dirichlets
» But what if trees t are hidden, and only strings w are observed?



Algorithms for Bayesian inference

v

Posterior is computationally intractable

P(t,0lw) o P(w,t6)P(6)

v

Maximum A Posteriori (MAP) estimation finds the posterior mode

6* = argmaxP(w|0)P(0)
0

v

Variational Bayes assumes posterior approximately factorizes

P(w,t,0) ~ Q(t)Q(0)

EM-like iterations using Inside-Outside (Kurihara and Sato 2006)

Markov Chain Monte Carlo methods construct a Markov chain
whose states are samples from P(t, 0|w)

v



Markov chain Monte Carlo

» MCMC algorithms define a Markov chain where:
> the states s are the objects we wish to sample; e.g., s = (t,60)
» the state space is astronomically large

» transition probabilities P(s’|s) are chosen so that chain
converges on desired distribution 77(s)
» many standard recipes for defining P(s'|s) from 7t(s)
(e.g., Gibbs, Metropolis-Hastings)
» “Run” the chain by:
» pick a start state s
» pick state s;41 by sampling from P(s'|s;)
» To estimate the expected value of any function f of state s
(e.g., rule probabilities 6):
» discard first few “burn-in” samples from chain
» average f(s) over the remaining samples from chain
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A Gibbs sampler for t and 6

» Gibbs samplers require states factor into components s = (t,0)
» Update each component in turn by resampling, conditioned on
values for other components
» Resample trees t given strings w and rule probabilities 0
» Resample rule probabilities 6 given trees t and priors «

n
rXAl “A, "‘A\N\ P(tlo,w,a) = HP(ti!wi,G)
. QA\N\ Q‘t w, 0( = PD(9|f( ) )
/ = J1Po(0fa(t) +as)
AeN
wl e wl v wﬂ

» There are standard algorithms for sampling from these distributions
» Trees t are independent given rule probabilities 0

= each t; can be sampled in parallel

= t; only influences ¢; via 6 (“mixes slowly”,

V/Ti

poor mobility”)
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Marginalizing out the rule probabilities 0

v

Define MCMC sampler whose states are the vectors of trees t
Integrate out the rule probabilities 6, collapsing dependencies and
coupling trees

Z(fA (t) + DCA)
Ptla) = [ P(O)Pel) o — [T 40t
(t]a) | P(HO)P(0]a) gv Z(aa)
» Components of state are the trees ¢; for strings w;
» resample t; given trees t_; for other strings w;

P(t‘(’é) _ Z(fA(t) +DCA)
P(Li|0c) AeEN Z(fA(tfi) +IXA)
(Sample 6 from P(8|t, «) if required).

If we could sample from

v

P(ti|t_;, o)

vy

P(w;|t)P(t;|t_;, a)
P(wi]t,l-, DC)

we could build a Gibbs sampler whose states are trees t

P(ti|wi, t )



Why Metropolis-Hastings?

N - Z(fa(t) + ap)
P(ti|t_;,a) = Ig\]Z(fA(t,i)—F“A)

» What makes P(#|t_;, &) so hard to sample?
» Probability of choosing rule r used n, times before o n, + «,
» Previous occurences of r “prime” the rule r
» Rule probabilities can change on the fly inside a sentence
» Breaks dynamic programming sampling algorithms, which
require “context-freeness”
» Metropolis-Hastings algorithms don’t need samples from P(#;[t_;, x)
» sample from a user-specified proposal distribution Q
» use acceptance-rejection procedure to convert stream of samples
from Q into stream of samples from P(t)
» Proposal distribution Q can be any strictly positive distribution
» more efficient (fewer rejections) if Q close to P(t)
» our proposal distribution Q;(t;) is PCFG approximation E[0]t_;, a]
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Metropolis-Hastings collapsed PCFG sampler

» Sampler state: vector of trees t, t; is a parse of w;
» Repeat until convergence:
» randomly choose index i of tree to resample
compute PCFG probabilities to be used as proposal distribution

_ fa—p(toi) +aa_p
YA per, fap (toi) T aap

v

0a—p = E[0a_plt_ia]

v

sample a proposal tree t! from P(t;|w;, 0)
» compute acceptance probability A(t;, t}) for t;

Ptl t,‘, Pt ',g
At ) = min 1, DUl )P Uil 6)

(easy to compute since ¢/ is fixed)

v

choose a random number x € UJ[0, 1]
» if x < A(t, t}) then accept t, i.e., replace t; with f,
» if x > A(t, t}) then reject t}, i.e., keep t; unchanged
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Sesotho verbal morphology

>

Sesotho is a Bantu language with complex morphology, not “messed
up” much by phonology

re adi bona
SMTOMV M
“We see them”

Demuth’s Sesotho corpus contains morphological parses for 2,283
distinct verb types; can we learn them automatically?

Morphological structure reasonably well described by a CFG
Verb — V
Verb Verb — VM
sM T oM VvV M Verb — SMVM
e T P N Verb — SMTVM
readibomnoa Verb — SMTOMVM

We added 81,755 productions expanding each preterminal to each of
the 16,350 contiguous substrings of any verb in corpus
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Maximum likelihood finds trivial “saturated”
grammar

» Grammar has more productions (81,000) than training strings (2,283)

» Maximum likelihood (e.g., Inside/Outside, EM) tries to make
predicted probabilities match empirical probabilities

> “Saturated” grammar: every word type has its own production

Verb
I
\Y%
I
r e a d i b o n a

» exactly matches empirical probabilities
» this is what Inside-Outside EM finds
» none of these analyses are correct
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Bayesian estimates with sparse prior find nontrivial
structure

» Dirichlet prior for all rules

I P r};:sig%r? - set to same value «
I]{Eexcfg,{ ——  » Dirichlet prior prefers
0.75 sparse grammars when
a1
0.5 » Non-trivial structure
emerges when « < 0.01
0.25f » Exact word match accuracy
~054ata =107
ob— 11 v 11,1 )
1 0.01 0.0001 1e-06 1e-08 1e-10

Dirichlet prior parameter

N
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Conclusion and future work

v

Bayesian estimates incorporates prior as well as likelihood

» product of Dirichlets is conjugate prior for PCFGs
» can be used to prefer sparse grammars

v

Even though the full Bayesian posterior is mathematically and
computationally intractible, it can be approximated using MCMC
» Gibbs sampler alternates sampling from P(t|6) and P(6|t)
» Metropolis-Hastings collapsed sampler integrates out 6 and
samples P(;|t_;)
» C++ implementations available on my Brown web site

v

Need to compare these methods with Variational Bayes

v

MCMC methods are usually more flexible than other approaches
» should generalize well to more complex models

N
@



Bayesian MAP EM

» EM re-estimation of € uses ML estimate in M-step
0 o« E[f|w,00)]
» Use Bayesian MAP estimate for 6 instead of ML estimate
9r(t+l) x max(O,E[fr|W,9(t)]+D¢r —1)

» IfE[f,|lw,0()] ~ 0and &, < 1 then
PTG
» if 6, = 0 for sufficiently many rules r, then some input strings
may fail to parse
» this occurs in Sesotho example when &, is small enough to find
non-trivial structure

» Variational Bayes is the right way to do this!
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Variational Bayes for PCFGs

» Variational Bayes seeks a factorized representation Q

QHQ(0) =~ P(w,t0la)
that maximizes a lower bound on the log likelihood w.r.t. Q

» With Dirichlet prior, yields EM-like updates for variational
parameters 0

A+ exp ¥ ( Elfa—plw, 0] +aap)
AP exp¥( La_per, Elfa—p|w,00] +asp)
2 Y=x
y = exp ¥(x) —
y=x—3 —

> Y is the digamma function

1 » exp ¥(x) > 0 forall x > 0, so Bayesian
MAP estimator problem never arises with
Variational Bayes

N
3]
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