Effective Self-Training for Parsing

David McClosky, Eugene Charniak, and Mark Johnson
Brown Laboratory for Linguistic Information Processing (BLLIP)
Brown University
Providence, RI 02912
{dmcc|ec|mj}@cs.brown.edu

Abstract

We present a simple, but surprisingly ef-
fective, method of self-training a two-
phase parser-reranker system using read-
ily available unlabeled data. We show
that this type of bootstrapping is possible
for parsing when the bootstrapped parses
are processed by a discriminative reranker.
Our improved model achieves an f-score
of 92.1%, an absolute 1.1% improvement
(12% error reduction) over the previous
best result for Wall Street Journal parsing.
Finally, we provide some analysis to bet-
ter understand the phenomenon.

1 Introduction

In parsing, we attempt to uncover the syntactic struc-
ture from a string of words. Much of the challenge
of this lies in extracting the appropriate parsing
decisions from textual examples. Given sufficient
labelled data, there are several “supervised” tech-
niques of training high-performance parsers (Char-
niak and Johnson, 2005; Collins, 2000; Henderson,
2004). Other methods are “semi-supervised” where
they use some labelled data to annotate unlabeled
data. Examples of this include self-training (Char-
niak, 1997) and co-training (Blum and Mitchell,
1998; Steedman et al., 2003). Finally, there are “un-
supervised” strategies where no data is labeled and
all annotations (including the grammar itself) must
be discovered (Klein and Manning, 2002).
Semi-supervised and unsupervised methods are
important because good labeled data is expensive,

whereas there is no shortage of unlabeled data.
While some domain-language pairs have quite a bit
of labelled data (e.g. news text in English), many
other categories are not as fortunate. Less unsuper-
vised methods are more likely to be portable to these
new domains, since they do not rely as much on ex-
isting annotations.

2 Previous work

A simple method of incorporating unlabeled data
into a new model is self-training. In self-training,
the existing model first labels unlabeled data. The
newly labeled data is then treated as truth and com-
bined with the actual labeled data to train a new
model. This process can be iterated over different
sets of unlabeled data if desired. It is not surprising
that self-training is not normally effective: Charniak
(1997) and Steedman et al. (2003) report either mi-
nor improvements or significant damage from using
self-training for parsing. Clark et al. (2003) applies
self-training to POS-tagging and reports the same
outcomes. One would assume that errors in the orig-
inal model would be amplified in the new model.
Parser adaptation can be framed as a semi-
supervised or unsupervised learning problem. In
parser adaptation, one is given annotated training
data from a source domain and unannotated data
from a target. In some cases, some annotated data
from the target domain is available as well. The goal
is to use the various data sets to produce a model
that accurately parses the target domain data despite
seeing little or no annotated data from that domain.
Gildea (2001) and Bacchiani et al. (2006) show that
out-of-domain training data can improve parsing ac-

curacy. The unsupervised adaptation experiment by
Bacchiani et al. (2006) is the only successful in-
stance of parsing self-training that we have found.
Our work differs in that all our data is in-domain
while Bacchiani et al. uses the Brown corpus as la-
belled data. These correspond to different scenarios.
Additionally, we explore the use of a reranker.

Co-training is another way to train models from
unlabeled data (Blum and Mitchell, 1998). Unlike
self-training, co-training requires multiple learners,
each with a different “view” of the data. When one
learner is confident of its predictions about the data,
we apply the predicted label of the data to the train-
ing set of the other learners. A variation suggested
by Dasgupta et al. (2001) is to add data to the train-
ing set when multiple learners agree on the label. If
this is the case, we can be more confident that the
data was labelled correctly than if only one learner
had labelled it.

Sarkar (2001) and Steedman et al. (2003) inves-
tigated using co-training for parsing. These studies
suggest that this type of co-training is most effec-
tive when small amounts of labelled training data is
available. Additionally, co-training for parsing can
be helpful for parser adaptation.

3 Experimental Setup

Our parsing model consists of two phases. First, we
use a generative parser to produce a list of the top n
parses. Next, a discriminative reranker reorders the
n-best list. These components constitute two views
of the data, though the reranker’s view is restricted
to the parses suggested by the first-stage parser. The
reranker is not able to suggest new parses and, more-
over, uses the probability of each parse tree accord-
ing to the parser as a feature to perform the rerank-
ing. Nevertheless, the reranker’s value comes from
its ability to make use of more powerful features.

3.1 The first-stage 50-best parser

The first stage of our parser is the lexicalized proba-
bilistic context-free parser described in (Charniak,
2000) and (Charniak and Johnson, 2005). The
parser’s grammar is a smoothed third-order Markov
grammar, enhanced with lexical heads, their parts
of speech, and parent and grandparent informa-
tion. The parser uses five probability distributions,

one each for heads, their parts-of-speech, head-
constituent, left-of-head constituents, and right-of-
head constituents. As all distributions are condi-
tioned with five or more features, they are all heavily
backed off using Chen back-off (the average-count
method from Chen and Goodman (1996)). Also,
the statistics are lightly pruned to remove those that
are statistically less reliable/useful. As in (Char-
niak and Johnson, 2005) the parser has been mod-
ified to produce n-best parses. However, the n-best
parsing algorithm described in that paper has been
replaced by the much more efficient algorithm de-
scribed in (Jimenez and Marzal, 2000; Huang and
Chang, 2005).

3.2 The MaxEnt Reranker

The second stage of our parser is a Maximum En-
tropy reranker, as described in (Charniak and John-
son, 2005). The reranker takes the 50-best parses
for each sentence produced by the first-stage 50-
best parser and selects the best parse from those
50 parses. It does this using the reranking method-
ology described in Collins (2000), using a Maxi-
mum Entropy model with Gaussian regularization
as described in Johnson et al. (1999). Our reranker
classifies each parse with respect to 1,333,519 fea-
tures (most of which only occur on few parses).
The features consist of those described in (Char-
niak and Johnson, 2005), together with an additional
601,577 features. These features consist of the parts-
of-speech, possibly together with the words, that
surround (i.e., precede or follow) the left and right
edges of each constituent. The features actually used
in the parser consist of all singletons and pairs of
such features that have different values for at least
one of the best and non-best parses of at least 5 sen-
tences in the training data. There are 147,456 such
features involving only parts-of-speech and 454,101
features involving parts-of-speech and words. These
additional features are largely responsible for im-
proving the reranker’s performance on section 23
to 91.3% f-score (Charniak and Johnson (2005) re-
ported an f-score of 91.0% on section 23).

3.3 Corpora

Our labeled data comes from the Penn Treebank
(Marcus et al., 1993) and consists of about 40,000
sentences from Wall Street Journal (WSJ) articles

annotated with syntactic information. We use the
standard divisions: Sections 2 through 21 are used
for training, section 24 is held-out development, and
section 23 is used for final testing. Our unlabeled
data is the North American News Text corpus, NANC
(Graff, 1995), which is approximately 24 million un-
labeled sentences from various news sources. NANC
contains no syntactic information. Sentence bound-
aries in NANC are induced by a simple discrimina-
tive model. We also perform some basic cleanups on
NANC to ease parsing. NANC contains news articles
from various news sources including the Wall Street
Journal, though for this paper, we only use articles
from the LA Times. The two corpora are disjoint:
The wSJ data is from 1989 whereas the NANC data
originates from 1994-1998.

4 Experimental Results

We use the reranking parser to produce 50-best
parses of unlabeled news articles from NANC. Next,
we produce two sets of one-best lists from these 50-
best lists. The parser-best and reranker-best lists
represent the best parse for each sentence accord-
ing to the parser and reranker, respectively. Fi-
nally, we mix a portion of parser-best or reranker-
best lists with the standard Wall Street Journal train-
ing data (sections 2-21) to retrain a new parser (but
not reranker!) model. The Wall Street Journal train-
ing data is combined with the NANC data in the
following way: The count of each parsing event is
the (optionally weighted) sum of the counts of that
event in Wall Street Journal and NANC. Bacchiani
et al. (2006) show that count merging is more effec-
tive than creating multiple models and calculating
weights for each model (model interpolation). Intu-
itively, this corresponds to concatenating our train-
ing sets, possibly with multiple copies of each to ac-
count for weighting.

Some notes regarding evaluations: All numbers
reported are f-scores?. In some cases, we evaluate
only the parser’s performance to isolate it from the
reranker. In other cases, we evaluate the reranking
parser as a whole. In these cases, we will use the
term reranking parser.

"We attempted to retrain the reranker using the self-trained
sentences, but found no significant improvement.
>The harmonic mean of labeled precision (P) and labeled

recall (R), i.e. f = 2?3%1?,

‘ Sentences added ‘ Parser-best | Reranker-best

0 (baseline) 90.3
50k 90.1 90.7
250k 90.1 90.7
500k 90.0 90.9
750k 89.9 91.0
1,000k 90.0 90.8
1,500k 90.0 90.8
2,000k - 91.0

Table 1: f-scores after adding different types of sen-
tences from NANC to WSJ training data. While the
reranker was used to produce the reranker-best sen-
tences, we performed this evaluation using only the
first-stage parser to parse all sentences from section
22. We did not train a model where we added 2,000k
parser-best sentences.

As seen in Table 1, we show the effects when
self-training from different types of sentences.
Adding parser-best sentences recreates previous
self-training experiments and confirms that it is not
beneficial. However, we see a large improvement
from adding reranker-best sentences. One may ex-
pect to see a monotonic improvement from this tech-
nique, but this is not quite the case, as seen when
we add 1,000k sentences. This may be due to some
sections of NANC being less similar to WSJ or con-
taining more noise. Another possibility is that these
sections contains harder sentences which we cannot
parse as accurately and thus are not as useful for self-
training. For our remaining experiments, we will
only use reranker-best lists.

We also attempt to discover the optimal number
of sentences to add from NANC. Much of the im-
provement comes from the addition of the initial
50,000 sentences, showing that even small amounts
of new data can have a significant effect. As we add
more data, it becomes clear that the maximum ben-
efit to parsing accuracy by strictly adding reranker-
best sentences is about 0.7% and that f-scores will
asymptote around 91.0%. We will return to this
when we consider the relative weightings of wSsJ and
NANC data.

One hypothesis we consider is that the reranked
NANC data incorporated some of the features from
the reranker. If this were the case, we would not see

‘ Sentences added ‘ 1 ‘ 22 ‘ 24 ‘

0 (baseline) 91.8 | 92.1 | 90.5

50k 91.8 | 92.4 | 90.8

250k 91.8 | 92.3 | 91.0

500k 92.0 | 92.4 | 90.9

750k 92.0 | 92.4 | 91.1

1,000k 92.1 | 92.2 | 91.3

1,500k 92.1 | 92.1 | 91.2

1,750k 92.1 | 92.0 | 91.3

2,000k 922 192.0 | 91.3
Table 2: f-scores from evaluating the rerank-

ing parser on three held-out sections after adding
reranked sentences from NANC to WSJ training.
These evaluations were performed on all sentences.

an improvement when evaluating a reranking parser
on the same models. In Table 2, we see that the new
NANC data contains some information orthogonal to
the reranker and improves parsing accuracy of the
reranking parser.

Up to this point, we have only considered giving
our true training data a relative weight of one. In-
creasing the weight of the Wall Street Journal data
should improve, or at least not hurt, parsing perfor-
mance. Indeed, this is the case for both the parser
(figure not shown due to space constraints) and
reranking parser (Figure 1). Adding more weight to
the Wall Street Journal data ensures that the counts
of our events will be closer to our more accurate
data source while still incorporating new data from
NANC. While it appears that the performance still
levels off after adding about one million sentences
from NANC, the curves corresponding to higher wWsJ
weights achieve a higher asymptote. Looking at the
performance of various weights across sections 1,
22, and 24, we decided that the best combination
of training data is to give WSJ a relative weight of 5
and use the first 1,750k reranker-best sentences from
NANC.

Finally, we evaluate our new model on the test
section of Wall Street Journal. In Table 3, we note
that baseline system (i.e. the parser and reranker
trained purely on Wall Street Journal) has improved
by 0.3% over Charniak and Johnson (2005). The
92.1% f-score is the 1.1% absolute improvement
mentioned in the abstract. The improvement from

92.4

- N
922 b o S

921

f-score

92

%
91.9 £

91.8 |}

WSJIx1 ——]
WSJ X3
WSJ x5 -
917
0 5 10 15 20 25 30 35 40
NANC sentences added (units of 50k sentences)
Figure 1: Effect of giving more relative weight

to WSJ training data on reranking parser f-score.
Higher wSJ weights generally improve parsing ac-
curacy. Evaluations were done from all sentences
from section 1.

self-training is significant in both macro and micro
tests (p < 107°).

‘ Model ‘ fparser ‘ freranker ‘
Charniak and Johnson (2005) - 91.0
Current baseline 89.7 91.3
WSJ + NANC 91.0 92.1

Table 3: f-scores on WSJ section 23. fpqrser and
[freranker are the evaluation of the parser and rerank-
ing parser on all sentences, respectively. “WSJ +
NANC” represents the system trained on WSJ train-
ing (with a relative weight of 5) and 1,750k sen-
tences from the reranker-best list of NANC.

5 Analysis

We performed several types of analysis to better un-
derstand why the new model performs better. We
first look at global changes, and then at changes at
the sentence level.

5.1 Global Changes

It is important to keep in mind that while the
reranker seems to be key to our performance im-
provement, the reranker per se never sees the extra
data. It only sees the 50-best lists produced by the

Model | 1-best | 10-best | 50-best

Baseline 89.0 94.0 959
wSIx1 + 250k 89.8 94.6 96.2
wsIx5 + 1,750k | 90.4 94.8 96.4

Table 4: Oracle f-scores of top n parses produced
by baseline, a small self-trained parser, and the
“best” parser

first-stage parser. Thus, the nature of the changes to
this output is important.

We have already noted that the first-stage parser’s
one-best has significantly improved (see Table 1). In
Table 4, we see that the 50-best oracle rate also im-
proves from 95.5% for the original first-stage parser,
t0 96.4% for our final model. We do not show it here,
but if we self-train using first-stage one-best, there is
no change in oracle rate.

It is also the case that the first stage becomes
more “decisive.” The average (geometric mean) of
log,(Pr(1-best) / Pr(50th-best)) (i.e. the ratios be-
tween the probabilities in log space) increases from
11.959 for the baseline parser, to 14.104 for the final
parser. We have seen earlier that this “confidence” is
deserved, as the first-stage one-best is so much bet-
ter.

5.2 Sentence-level Analysis

To this point we have looked at bulk properties of the
data fed to the reranker. It has higher one best and
50-best-oracle rates, and the probabilities are more
skewed (the higher probabilities get higher, the lows
get lower). We now look at sentence-level proper-
ties. In particular, we analyzed the parsers’ behav-
ior on 5,039 sentences in sections 1, 22 and 24 of
the Penn treebank. Specifically, we classified each
sentence into one of three classes: those where the
self-trained parser’s f-score increased relative to the
baseline parser’s f-score, those where the f-score
remained the same, and those where the self-trained
parser’s f-score decreased relative to the baseline
parser’s f-score. We analyzed the distribution of
sentences into these classes with respect to four fac-
tors: sentence length, the number of unknown words
(i.e., words not appearing in sections 2-21 of the
Penn treebank) in the sentence, the number of coor-
dinating conjunctions (CC) in the sentence, and the

- - - Better
—— No change
Worse

Number of sentences (smoothed)
20 40 60 80 100
|

Sentence length

Figure 2: How self-training improves performance
as a function of sentence length

number of prepositions (IN) in the sentence. The
distributions of classes with respect to each of these
factors individually are graphed in Figures 2 to 5.

Figure 2 shows how the self-training affects f-
score as a function of sentence length. The top line
shows that the f-score of most sentences remain un-
changed. The middle line is the number of sentences
that improved their f-score, and the bottom are those
which got worse. So, for example, for sentences of
length 30, about 80 were unchanged, 25 improved,
and 22 worsened. It seems clear that there is no
improvement for either very short sentences, or for
very long ones. (For long ones the graph is hard
to read. We show a regression analysis later in this
section that confirms this statement.) While we did
not predict this effect, in retrospect it seems reason-
able. The parser was already doing very well on
short sentences. The very long ones are hopeless,
and the middle ones are just right. We call this the
Goldilocks effect.

As for the other three of these graphs, their stories
are by no means clear. Figure 3 seems to indicate
that the number of unknown words in the sentence
does not predict that the reranker will help. Figure 4
might indicate that the self-training parser improves
prepositional-phrase attachment, but the graph looks
suspiciously like that for sentence length, so the im-
provements might just be due to the Goldilocks ef-
fect. Finally, the improvement in Figure 5 is hard to
judge.

S

S - - - - Better

a —— No change
o —— Worse

S

bt

Number of sentences
1000

500

Unknown words

Figure 3: How self-training improves performance
as a function of number of unknown words

‘ | Estimate | Pr(> 0) |

(Intercept) -0.25328 | 0.3649
BinnedLength(10,20] | 0.02901 | 0.9228
BinnedLength(20,30] | 0.45556 | 0.1201
BinnedLength(30,40] 0.40206 | 0.1808
BinnedLength(40,50] | 0.26585 | 0.4084
BinnedLength(50,200] | -0.06507 | 0.8671
CCs 0.12333 | 0.0541

Table 5: Factor analysis for the question: does the
self-trained parser improve the parse with the high-
est probability

To get a better handle on these effects we did a
factor analysis. The factors we consider are number
of CCs, INs, and unknowns, plus sentence length.
As Figure 2 makes clear, the relative performance
of the self-trained and baseline parsers does not
vary linearly with sentence length, so we introduced
binned sentence length (with each bin of length 10)
as a factor.

Because the self-trained and baseline parsers pro-
duced equivalent output on 3,346 (66%) of the sen-
tences, we restricted attention to the 1,693 sentences
on which the self-trained and baseline parsers’ f-
scores differ. We asked the program to consider the
following factors: binned sentence length, number
of PPs, number of unknown words, and number of
CCs. The results are shown in Table 5. The factor
analysis is trying to model the log odds as a sum of

- - - Better

- O —— No change
o S -
S —— Worse
Q
i)
5
=
B F
-
(]
E
s 8
Z

I I I I |

Number of INs

Figure 4: How self-training improves performance
as a function of number of prepositions

linearly weighted factors. lL.e,

m
log(P(1]z)/(1 = P(1|x))) = ao+_a;fi(x)
j=1
In Table 5 the first column gives the name of the fac-
tor. The second the change in the log-odds resulting
from this factor being present (in the case of CCs
and INs, multiplied by the number of them) and the
last column is the probability that this factor is really
non-zero.

Note that there is no row for either PPs or un-
known words. This is because we also asked the pro-
gram to do a model search using the Akaike Infor-
mation Criterion (AIC) over all single and pairwise
factors. The model it chooses predicts that the self-
trained parser is likely produce a better parse than
the baseline only for sentences of length 20—40 or
sentences containing several CCs. It did not include
the number of unknown words and the number of
INs as factors because they did not receive a weight
significantly different from zero, and the AIC model
search dropped them as factors from the model.

In other words, the self-trained parser is more
likely to be correct for sentences of length 20—
40 and as the number of CCs in the sentence in-
creases. The self-trained parser does not improve
prepositional-phrase attachment or the handling of
unknown words.

This result is mildly perplexing. It is fair to say
that neither we, nor anyone we talked to, thought

o
S
S
a - - - Better
= —— No change
g2 v —— Worse
Q
k=
2 o
5 S
B —
£
o
Z 2
< |
0 1 2 3 4 5
Number of CCs

Figure 5: How self-training improves performance
as a function of number of conjunctions

conjunction handling would be improved. Conjunc-
tions are about the hardest things in parsing, and we
have no grip on exactly what it takes to help parse
them. Conversely, everyone expected improvements
on unknown words, as the self-training should dras-
tically reduce the number of them. It is also the case
that we thought PP attachment might be improved
because of the increased coverage of preposition-
noun and preposition-verb combinations that work
such as (Hindle and Rooth, 1993) show to be so im-
portant.

Currently, our best conjecture is that unknowns
are not improved because the words that are un-
known in the WSJ are not significantly represented
in the LA Times we used for self-training. CCs
are difficult for parsers because each conjunct has
only one secure boundary. This is particularly the
case with longer conjunctions, those of VPs and Ss.
One thing we know is that self-training always im-
proves performance of the parsing model when used
as a language model. We think CC improvement is
connected with this fact and our earlier point that
the probabilities of the 50-best parses are becoming
more skewed. In essence the model is learning, in
general, what VPs and Ss look like so it is becom-
ing easier to pull them out of the stew surrounding
the conjunct. Conversely, language modeling has
comparatively less reason to help PP attachment. As
long as the parser is doing it consistently, attaching
the PP either way will work almost as well.

6 Conclusion

Contrary to received wisdom, self-training can im-
prove parsing. In particular we have achieved an ab-
solute improvement of 0.8% over the baseline per-
formance. Together with a 0.3% improvement due
to superior reranking features, this is a 1.1% im-
provement over the previous best parser results for
section 23 of the Penn Treebank (from 91.0% to
92.1%). This corresponds to a 12% error reduc-
tion assuming that a 100% performance is possible,
which it is not. The preponderance of evidence sug-
gests that it is somehow the reranking aspect of the
parser that makes this possible, but given no idea of
why this should be, so we reserve final judgement
on this matter.

Also contrary to expectations, the error analy-
sis suggests that there has been no improvement in
either the handing of unknown words, nor prepo-
sitional phrases. Rather, there is a general im-
provement in intermediate-length sentences (20-50
words), but no improvement at the extremes: a phe-
nomenon we call the Goldilocks effect. The only
specific syntactic phenomenon that seems to be af-
fected is conjunctions. However, this is good news
since conjunctions have long been considered the
hardest of parsing problems.

There are many ways in which this research
should be continued. First, the error analysis needs
to be improved. Our tentative guess for why sen-
tences with unknown words failed to improve should
be verified or disproven. Second, there are many
other ways to use self-trained information in pars-
ing. Indeed, the current research was undertaken
as the control experiment in a program to try much
more complicated methods. We still have them
to try: restricting consideration to more accurately
parsed sentences as training data (sentence selec-
tion), trying to learn grammatical generalizations di-
rectly rather than simply including the data for train-
ing, etc.

Next there is the question of practicality. In terms
of speed, once the data is loaded, the new parser is
pretty much the same speed as the old — just un-
der a second a sentence on average for treebank sen-
tences. However, the memory requirements are lar-
gish, about half a gigabyte just to store the data. We
are making our current best self-trained parser avail-

able? as machines with a gigabyte or more of RAM
are becoming commonplace. Nevertheless, it would
be interesting to know if the data can be pruned to
make the entire system less bulky.

Finally, there is also the nature of the self-trained
data themselves. The data we use are from the LA
Times. Those of us in parsing have learned to expect
significant decreases in parsing accuracy even when
moving the short distance from LA Times to Wall
Street Journal. This seemingly has not occurred.
Does this mean that the reranking parser somehow
overcomes at least small genre differences? On this
point, we have some pilot experiments that show
great promise.

References

Michiel Bacchiani, Michael Riley, Brian Roark, and
Richard Sproat. 2006. MAP adaptation of stochas-

tic grammars. Computer Speech and Language,
20(1):41-68.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Proceed-
ings of the 11th Annual Conference on Computational
Learning Theory (COLT-98).

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05),
pages 173—180, Ann Arbor, Michigan, June. Associa-
tion for Computational Linguistics.

Eugene Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. In Proceed-
ings of the Fourteenth National Conference on Artifi-
cial Intelligence, Menlo Park. AAAI Press/MIT Press.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Ist Annual Meeting of the NAACL.

Stanley F. Chen and Joshua Goodman. 1996. An empir-
ical study of smoothing techniques for language mod-
eling. In Arivind Joshi and Martha Palmer, editors,
Proceedings of the Thirty-Fourth Annual Meeting of
the Association for Computational Linguistics, pages
310-318, San Francisco. Morgan Kaufmann Publish-
ers.

Stephen Clark, James Curran, and Miles Osborne. 2003.
Bootstrapping POS-taggers using unlabelled data. In
Proceedings of CoNLL-2003.

3ftp://ftp.cs.brown.edu/pub/nlparser

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. In Machine Learning: Pro-
ceedings of the 17th International Conference (ICML
2000), pages 175-182, Stanford, California.

Sanjoy Dasgupta, M.L. Littman, and D. McAllester.
2001. PAC generalization bounds for co-training. In

Advances in Neural Information Processing Systems
(NIPS), 2001.

Daniel Gildea. 2001. Corpus variation and parser perfor-
mance. In Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP).

David Graff. 1995. North American News Text Corpus.
Linguistic Data Consortium. LDC95T21.

James Henderson. 2004. Discriminative training of a
neural network statistical parser. In Proc. 42nd Meet-
ing of Association for Computational Linguistics (ACL
2004), Barcelona, Spain.

Donald Hindle and Mats Rooth. 1993. Structural ambi-
guity and lexical relations. Computational Linguistics,
19(1):103-120.

Liang Huang and David Chang. 2005. Better k-best pars-
ing. Technical Report MS-CIS-05-08, Department of
Computer Science, University of Pennsylvania.

Victor M. Jimenez and Andres Marzal. 2000. Computa-
tion of the n best parse trees for weighted and stochas-
tic context-free grammars. In Proceedings of the Joint
IAPR International Workshops on Advances in Pattern
Recognition. Springer LNCS 1876.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi,
and Stefan Riezler. 1999. Estimators for stochas-
tic “unification-based” grammars. In The Proceedings
of the 37th Annual Conference of the Association for
Computational Linguistics, pages 535-541, San Fran-
cisco. Morgan Kaufmann.

Dan Klein and Christopher Manning. 2002. A genera-
tive constituent-context model for improved grammar
induction. In Proceedings of the 40th Annual Meeting
of the ACL.

Michell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Anoop Sarkar. 2001. Applying cotraining methods to
statistical parsing. In Proceedings of the 2001 NAACL
Conference.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen
Clark, Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen,
Steven Baker, and Jeremiah Crim. 2003. Bootstrap-
ping statistical parsers from small datasets. In Pro-
ceedings of EACL 03.

