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Why statistical learning?

I Uncertainty is pervasive in learning
I the input does not contain enough information to

uniquely determine grammar and lexicon
I the input is noisy (misperceived, mispronounced)
I our scientific understanding is incomplete

I Statistical learning is compatible with linguistics
I we can define probabilistic versions of virtually any kind

of generative grammar (Abney 1997)

I Statistical learning is much more than conditional
probabilities!



Statistical learning and implicit negative evidence

I Logical approach to acquisition
no negative evidence ⇒ subset problem
guess L2 when true lg is L1

L1

L2

I statistical learning can use implicit negative evidence
I if L2 − L1 is expected to occur but doesn’t

⇒ L2 is probably wrong
I succeeds where logical learning fails (e.g., PCFGs)

I stronger input assumptions (follows distribution)
I weaker success criteria (probabilistic)

I Both logic and statistics are kinds of inference
I statistical inference uses more information from input
I children seem sensitive to distributional properties
I it would be strange if they didn’t use them for learning



Probabilistic models and statistical learning

I Decompose learning problem into three components:

1. class of possible models, e.g., certain type of
(probabilistic) grammars, from which learner chooses

2. objective function (of model and input) that learning
optimizes

I e.g., maximum likelihood: find model that makes input
as likely as possible

3. search algorithm that finds optimal model(s) for input

I Using explicit probabilistic models lets us:
I combine models for subtasks in an optimal way
I better understand our learning models
I diagnose problems with our learning models

I distinguish model errors from search errors



Bayesian learning

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

I Bayesian models integrate information from multiple
information sources

I Likelihood reflects how well grammar fits input data
I Prior encodes a priori preferences for particular grammars

I Priors can prefer smaller grammars (Occam’s razor, MDL)

I The prior is as much a linguistic issue as the grammar
I Priors can be sensitive to linguistic structure (e.g., words

should contain vowels)
I Priors can encode linguistic universals and markedness

preferences
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Probabilistic Context-Free Grammars

I The probability of a tree is the product of the
probabilities of the rules used to construct it

1.0 S → NP VP 1.0 VP → V
0.75 NP → George 0.25 NP → Al
0.6 V → barks 0.4 V → snores
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Learning PCFGs from trees (supervised)

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1
NP → rice 2 2/3
NP → corn 1 1/3
VP → grows 3 1

Rel freq is maximum likelihood estimator
(selects rule probabilities that
maximize probability of trees)
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Learning from words alone (unsupervised)

I Training data consists of strings of words w

I Maximum likelihood estimator (grammar that makes w as
likely as possible) no longer has closed form

I Expectation maximization is an iterative procedure for
building unsupervised learners out of supervised learners

I parse a bunch of sentences with current guess at
grammar

I weight each parse tree by its probability under current
grammar

I estimate grammar from these weighted parse trees as
before

I Each iteration is guaranteed not to decrease P(w) (but
can get trapped in local minima)

Dempster, Laird and Rubin (1977) “Maximum likelihood from incomplete data
via the EM algorithm”



Expectation Maximization with a toy grammar

Initial rule probs
rule prob
· · · · · ·
VP → V 0.2
VP → V NP 0.2
VP → NP V 0.2
VP → V NP NP 0.2
VP → NP NP V 0.2
· · · · · ·
Det → the 0.1
N → the 0.1
V → the 0.1

“English” input
the dog bites
the dog bites a man
a man gives the dog a bone
· · ·

“pseudo-Japanese” input
the dog bites
the dog a man bites
a man the dog a bone gives
· · ·



Probability of “English”

Iteration

Geometric
average

sentence

probability

543210
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0.001

1e-04

1e-05

1e-06



Rule probabilities from “English”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability

543210
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Probability of “Japanese”

Iteration

Geometric
average

sentence

probability

543210
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Rule probabilities from “Japanese”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability

543210
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Statistical grammar learning

I Simple algorithm: learn from your best guesses
I requires learner to parse the input

I “Glass box” models: learner’s prior knowledge and learnt
generalizations are explicitly represented

I Optimization of smooth function of rule weights ⇒
learning can involve small, incremental updates

I Learning structure (rules) is hard, but . . .

I Parameter estimation can approximate rule learning
I start with “superset” grammar
I estimate rule probabilities
I discard low probability rules



Different grammars lead to different generalizations

I In a PCFG, rules are units of generalization
I Training data: 50%: N, 30%: N PP, 20%: N PP PP
I with flat rules NP → N, NP → N PP, NP → N PP PP

predicted probabilities replicate training data

50% NP

N

30% NP

N PP

20% NP

N PP PP

I but with adjunction rules NP → N, NP → NP PP

58%: NP

N

24%: NP

NP

N

PP

10%: NP

NP

NP

N

PP

PP

5%: NP

NP

NP

NP

N

PP

PP

PP



PCFG learning from real language

I ATIS treebank consists of 1,300 hand-constructed parse
trees

I ignore the words (in this experiment)

I about 1,000 PCFG rules are needed to build these trees
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Show

NP

PRP

me

NP

NP

PDT

all

DT

the

JJ

nonstop

NNS

flights

PP

PP

IN

from

NP

NNP

Dallas

PP

TO

to

NP

NNP

Denver

ADJP

JJ

early

PP

IN

in
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.

.



Training from real language

1. Extract productions from trees and estimate probabilities
probabilities from trees to produce PCFG.

2. Initialize EM with the treebank grammar and MLE
probabilities

3. Apply EM (to strings alone) to re-estimate production
probabilities.

4. At each iteration:
I Measure the likelihood of the training data and the

quality of the parses produced by each grammar.
I Test on training data (so poor performance is not due to

overlearning).



Probability of training strings

Iteration

log P
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Accuracy of parses produced using the learnt

grammar

Recall
Precision

Iteration

Parse
Accuracy

20151050

1
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0.9

0.85

0.8

0.75

0.7



Why doesn’t this work?

I Divergence between likelihood and parse accuracy
⇒ probabilistic model and/or objective function are
wrong

I Bayesian prior preferring smaller grammars doesn’t help

I What could be wrong?
I Wrong kind of grammar (Klein and Manning)

I Wrong training data (Yang)

I Predicting words is wrong objective
I Grammar ignores semantics (Zettlemoyer and Collins)

de Marken (1995) “Lexical heads, phrase structure and the induction of
grammar”
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Concatenative morphology as grammar

I Too many things could be going wrong in learning syntax
start with something simpler!

I Input data: regular verbs (in broad phonemic
representation)

I Learning goal: segment verbs into stems and inflectional
suffixes

Verb → Stem Suffix
Stem → w w ∈ Σ?

Suffix → w w ∈ Σ?

Data = t a l k i n g

Verb

Stem

t a l k

Suffix

i n g



Maximum likelihood estimation won’t work

I A saturated model has one parameter (i.e., rule) for each
datum (word)

I The grammar that analyses each word as a stem with a
null suffix is a saturated model

I Saturated models in general have highest likelihood

⇒ saturated model exactly replicates training data
⇒ doesn’t “waste probability” on any other strings
⇒ maximizes likelihood of training data

Verb

Stem

t a l k i n g

Suffix



Bayesian learning

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

I A statistical learning framework that integrates:
I likelihood of the data (prediction)
I bias or prior knowledge (e.g., innate constraints)

I markedness constraints (e.g., syllables have onsets)
I prefer “simple” or sparse grammars
I can be over-ridden by sufficient data



The Bayesian approach to learning

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

I The posterior probability quantifies how compatible a
hypothesis (grammar) is with the data and the prior

I In general many grammars will have non-neglible posterior
probability, especially at early stages of learning

I We lose information when we commit to a single grammar

⇒ Bayesians prefer to work with the full posterior
distribution



Bayesian computation and Monte Carlo methods

I A grammar is a finite object, but a probability distribution
over grammars need not be

I sometimes there may be an explicit formula for the
posterior

I but sometimes all we can do is approximate the posterior

I One way of approximating a distribution to produce a
large number of samples from it

I The more samples we collect, the closer they approximate
the posterior

I Monte Carlo methods can be used to produce samples
from a wide variety of posterior distributions



Markov Chain Monte Carlo

I Given inputs w = (w1, . . . , wn) and (guesses for) analyses
t = (t1, . . . , tn) and grammar g , repeat:

I Sample a new grammar g from posterior P(g |w, t)
I Using new g , sample new analyses t from P(t|g ,w)

g (1) ∼ P(g |w, t(0))

t(1) ∼ P(t|w, g (1))

g (2) ∼ P(g |w, t(1))

t(2) ∼ P(t|w, g (2))

. . .

I This defines a Markov Chain known as the Gibbs sampler

I Theorem: under a wide range of conditions, this
converges to posterior distribution on g and t



Component-wise Markov Chain Monte Carlo

I Inputs w = (w1, . . . , wn), analyses t = (t1, . . . , tn) and
grammar g

I Sometimes it is possible to integrate out the grammar

P(ti |wi , t−i) =

∫

P(ti |wi , g)P(g |w
−i , t−i) dg

where t
−i is the set of analyses for all inputs except wi

I If you can integrate out the grammar, you can define a
component-wise Gibbs sampler by repeating the following:

I Pick an input wi at random
I Sample ti from P(t|wi , t−i )

I Remarkably similar to attractor networks, but has a a
sound probabilistic interpretation



Morphological segmentation experiment

I Bayesian estimator with Dirichlet prior with parameter α
I prefers sparser solutions (i.e., fewer stems and suffixes)

as α → 0

I Component-wise Gibbs sampler samples from posterior
distribution of parses

I reanalyses each word based on parses of the other words

I Trained on orthographic verbs from U Penn. Wall Street
Journal treebank

I behaves similarly with broad phonemic child-directed
input



Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5

α = 10−10
α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed
including including including including

add add add add
adds adds adds add s

added added add ed added
adding adding add ing add ing

continue continue continue continue
continues continues continue s continue s
continued continued continu ed continu ed
continuing continuing continu ing continu ing

report report report report
reports report s report s report s

reported reported reported reported
reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed
transporting transport ing transport ing transport ing

downsize downsiz e downsiz e downsiz e
downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted



Log posterior of models on token data

Posterior
True suffixes
Null suffixes

Dirichlet prior parameter α

logPα

11e-101e-20

-800000

-1e+06

-1.2e+06

I Correct solution is nowhere near as likely as posterior

⇒ no point trying to fix algorithm because model is wrong!



Independence assumptions in PCFG model

Verb

Stem

t a l k

Suffix

i n g

P(Word) = P(Stem)P(Suffix)

I Model expects relative frequency of each suffix to be the
same for all stems



Relative frequencies of inflected verb forms



Types and tokens

I A word type is a distinct word shape

I A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the” 2, “cat” 2, “chased” 1, “other” 1

Types = “the” 1, “cat” 1, “chased” 1, “other” 1

I Using word types instead of word tokens effectively
normalizes for frequency variations



Posterior samples from WSJ verb types

α = 0.1 α = 10−5
α = 10−10

α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted



Learning from types and tokens

I Overdispersion in suffix distribution can be ignored by
learning from types instead of tokens

I Some psycholinguistics claim that children learn
morphology from types (Pierrehumbert 2003)

I To identify word types the input must be segmented into
word tokens

I But the input doesn’t come neatly segmented into tokens!

I We have been developing two stage adaptor models to
deal with type-token mismatches



Two stage adaptor framework

I Generator produces structures

I Adaptor replicates them an
arbitrary number of times

I Generator learns structure from
“types”

I Adaptor learns (power law)
frequencies from tokens

Generator
(e.g., PCFG)

Analysis “types”
(parse trees)

Adaptor

Analysis “tokens”
(parse trees)

(Pitman-Yor process)



Chinese restaurant process sampler

...

I P(ti |w, t
−i) is given by a Chinese restaurant process

I The input tokens are “customers” seated at “tables”

I Each table is labeled with an analysis, which is the
analysis of all of the customers at that table

I If there are currently m tables occupied, with nk

customers sitting at table k

P(next table = k) ∝

{
nk − a for k ≤ m
ma + b if k = m + 1



Chinese restaurant process sampler (1)

...
ingbring

I P(ti |w, t
−i) is given by a Chinese restaurant process

I The input tokens are “customers” seated at “tables”

I Each table is labeled with an analysis, which is the
analysis of all of the customers at that table

I If there are currently m tables occupied, with nk

customers sitting at table k

P(next table = k) ∝

{
nk − a for k ≤ m
ma + b if k = m + 1



Chinese restaurant process sampler (2)

...
ingbring ingwalk

I P(ti |w, t
−i) is given by a Chinese restaurant process

I The input tokens are “customers” seated at “tables”

I Each table is labeled with an analysis, which is the
analysis of all of the customers at that table

I If there are currently m tables occupied, with nk

customers sitting at table k

P(next table = k) ∝

{
nk − a for k ≤ m
ma + b if k = m + 1



Chinese restaurant process sampler (3)

...
ingbring ingwalk

I P(ti |w, t
−i) is given by a Chinese restaurant process

I The input tokens are “customers” seated at “tables”

I Each table is labeled with an analysis, which is the
analysis of all of the customers at that table

I If there are currently m tables occupied, with nk

customers sitting at table k

P(next table = k) ∝

{
nk − a for k ≤ m
ma + b if k = m + 1



Chinese restaurant process sampler (4)

...
ingbring ingwalk walk ed

I P(ti |w, t
−i) is given by a Chinese restaurant process

I The input tokens are “customers” seated at “tables”

I Each table is labeled with an analysis, which is the
analysis of all of the customers at that table

I If there are currently m tables occupied, with nk

customers sitting at table k

P(next table = k) ∝

{
nk − a for k ≤ m
ma + b if k = m + 1



Concatenative morphology confusion matrix
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Grammars for word segmentation
Utterance

Word

t h e

Utterance

Word

d o g

Utterance

Word

b a r k s
Sample input = t h e d o g b a r k s

Utterance → Word Utterance
Utterance → Word
Word → w w ∈ Σ?

I These are unigram models of sentences
(each word is conditionally independent of its neighbours)

I This assumption is standardly made in models of word
segmentation, but is it accurate?



Saturated grammar is maximum likelihood

grammar

Utterance

Word

t h e d o g b a r k s

I Grammar that generates each utterance as a single word
exactly matches input distribution

⇒ saturated grammar is maximum likelihood grammar

⇒ use Bayesian estimation with a sparse Dirichlet process
prior

I CRP used to construct Monte Carlo Sampler



Segmentations found by unigram model

yuwant tu si D6bUk lUk D*z 6b7 wIT hIz h&t
&nd 6dOgi yu wanttu lUk&tDIs
lUk&tDIs h&v6 drINk
oke nQ WAtsDIs
WAtsD&t WAtIzIt
lUk k&nyu tek ItQt tek D6dOgi Qt

I Trained on Brent broad phonemic child-directed corpus

I Tends to find multi-word expressions, e.g, yuwant

I Word finding accuracy is less than Brent’s accuracy

I These solutions are more likely under Brent’s model than
the solutions Brent found

⇒ Brent’s search procedure is not finding optimal solution



Contextual dependencies in word segmentation

I Unigram model assumes words are independently
distributed

I but words in multiword expressions are not independently
distributed

I if we train from a corpus in which the words are
randomly permuted, the unigram model finds correct
segmentations

I Bigram models capture word-word dependencies
P(wi+1|wi)

I straight-forward to build a Gibbs sampler,
even though we don’t have a fixed set of words

I Each step reanalyses a word or pair of words using the
analyses of the rest of the input



Segmentations found by bigram model

yu want tu si D6 bUk lUk D*z 6 b7 wIT hIz h&t
&nd 6 dOgi yu want tu lUk&t DIs
lUk&t DIs h&v 6 drINk
oke nQ WAts DIs
WAts D&t WAtIz It
lUk k&nyu tek It Qt tek D6 dOgi Qt

I Bigram model segments much more accurately than
unigram model and Brent’s model

⇒ conditional independence alone is not a good cue for word
segmentation
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Conclusion

I We have mathematical and computational tools to
connect learning theory and linguistic theory

I Studying learning via explicit probabilistic models
I is compatible with linguistic theory
I lets us better understand why a learning model succeeds

or fails

I Bayesian learning lets us combine statistical learning with
with prior information

I priors can encode “Occam’s razor” preferences for sparse
grammars, and

I universal grammar and markedness preferences
I evaluate usefulness of different types of linguistic

universals are for language acquisition



Future work

I Integrate the morphology and word segmentation systems
I Are their synergistic interactions between these

components?

I Include other linguistic phenomena
I Would a phonological component improve lexical and

morphological acquisition?

I Develop more realistic training data corpora
I Use forced alignment to identify pronunciation variants

and prosodic properties of words in child-directed speech

I Develop priors that encode linguistic universals and
markedness preferences

I quantitatively evaluate their usefulness for acquisition
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