## Stochastic Lexical-Functional Grammars

**Mark Johnson** 

**Brown University** 

LFG 2000 Conference July 2000

#### Overview

- What is a stochastic LFG?
- Estimating property weights from a corpus
- Experiments with a stochastic LFG
- Relationship between SLFG and OT-LFG.

# Motivation: why combine grammar and statistics?

- Statistics has nothing to do with grammar: *WRONG*
- Statistics  $\equiv$  inference from uncertain or incomplete data
  - $\Rightarrow$  Language acquisition is a statistical inference problem
  - $\Rightarrow$  Sentence interpretation is a statistical inference problem
- How can we do statistical inference over linguistically realistic representations?

#### What is a Stochastic LFG?

(stochastic  $\equiv$  incorporating a random component)

A Stochastic LFG consists of:

- A non-stochastic component: an LFG G, which defines  $\Omega$ , the universe of input-candidate pairs
- A stochastic component: An *exponential model* over  $\Omega$ 
  - A finite set of *properties* or features  $f_1, \ldots, f_n$ . Each property  $f_i$  maps  $x \in \Omega$  to a real number  $f_i(x)$
  - Each property  $f_i$  has a *property weight*  $w_i$ .  $w_i$  determines how  $f_i$  affects the distribution of candidate representations

## A simple SLFG

| Input-candidate pairs                                                            |             |                                                                 |               | Properties     |                 |  |
|----------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------|---------------|----------------|-----------------|--|
| Input                                                                            | c-structure | f-structure                                                     | $f_{\star 1}$ | $f_{\star SG}$ | $f_{\rm FAITH}$ |  |
| $\left[\begin{array}{c} \mathbf{BE}, 1, \mathbf{SG} \\ \dots \end{array}\right]$ | I am        | <b>BE</b> , <b>1</b> , <b>SG</b>                                | 1             | 1              | 0               |  |
| $\left[\begin{array}{c} \mathbf{BE}, 1, \mathbf{SG} \\ \dots \end{array}\right]$ | I be        | $\left[\begin{array}{c} \mathbf{BE}\\ \ldots\end{array}\right]$ | 0             | 0              | 1               |  |

• If  $w_{\text{FAITH}} < w_{\star 1} + w_{\star SG}$  then *I* am is preferred

• If  $w_{\star 1} + w_{\star SG} < w_{FAITH}$  then *I be* is preferred

(Apologies to Bresnan 1999)

#### **Exponential probability distributions**

$$\Pr(x) = \frac{1}{Z} e^{w_1 \cdot f_1(x) + w_2 \cdot f_2(x) + \dots + w_n \cdot f_n(x)}$$

where Z is a normalization constant.

The weights  $w_i$  can be negative, zero, or positive.

- Exponential distributions have lots of nice properties
  - *Maximum Entropy* distributions are exponential
- Many familiar distributions (e.g., PCFGs, HMMs, Harmony theory) are exponential or log linear

#### **Conditional distributions**

Conditional distributions tell us how likely a structure is given certain conditions.

- For *parsing*, we need to know how likely an input-candidate pair *x* is, *given a particular phonological string p*, i.e., Pr(*x*|*Phonology* = *p*)
- For *generation*, we need to know how likely an input-candidate pair x is, given a particular semantic input s, i.e., Pr(x|Input = s)

#### **Conditional distributions**



## **SLFG for parsing**

- We used the parses of a conventional LFG (supplied by Xerox PARC)
  - On average each ambiguous sentence has 8 parses
  - Our SLFG should identify the correct one
- We wrote our own property functions
- We estimated the property weights from a hand-corrected parsed training corpus
  - The weights are chosen to maximize the *conditional* probability (pseudo-likelihood) of the correct parses given the phonological strings (Johnson et. al. 1999)

#### Sample parses



## **Property functions**

- The property functions can be any (efficiently computable) function of the candidate representations
- If the grammar is a CFG then estimating property weights is simple if the property functions count rule use
- If the grammar is not a CFG, then the simple estimator that works for PCFGs is *inconsistent* (Abney 1998)
- OT constraints can be used as property functions
- c/f-str fragments can be used as property functions, yielding consistent LFG-DOP estimators (B. Cormons)

#### The property functions we used

- **Rule properties:** For every non-terminal N,  $f_N(x)$  is the number of times N occurs in c-structure of x
- Attribute value properties: For every attribute *a* and every atomic value *v*,  $f_{a=v}(x)$  is the number of times the pair a = v appears in *x*
- **Argument and adjunct properties:** For every grammatical function g,  $f_g(x)$  is the number of times g appears in x

#### **Additional property functions**

- Non-rightmost phrases:  $f_{NR}(x)$  is the number of c-structure phrasal nodes that have a right sibling. (Right association) Coordination parallelism:  $f_{C_i}(x), i = 1, ..., 4$  is the number of coordinate structures in *x* that are parallel to depth *i*
- **Consistency of dates, times, locations:**  $f_D(x)$  is the number of non-date subphrases in date phrases. Similarly for times and locations.

#### **Additional property functions**

**Lexical dependency properties:** For all predicates  $p_1, p_2$  and grammatical functions g,  $f_{\langle p_1, g, p_2 \rangle}(x)$  is the number of times the head of  $p_1$ 's g function is  $p_2$ .

For example, in Al ate George's pizza,  $f_{(eat,OBJ,pizza)} = 1$ .

- Our LFG training corpus was too small to estimate the lexical dependency property weights
- We developed a method for incorporating property weights that are estimated in other ways (Johnson et. al. 2000)
- Lexical properties were not very useful with English data, but they were useful with German data

#### **Stochastic LFG experiment**

- Two parsed LFG corpora provided by Xerox PARC
- Grammars unavailable, but corpus contains all parses and hand-identified correct parse

|                            | Verbmobil corpus | <b>Homecentre corpus</b> |
|----------------------------|------------------|--------------------------|
| # of sentences             | 540              | 980                      |
| # of ambiguous sentences   | 324              | 424                      |
| Av. amb. sentence length   | 13.8             | 13.1                     |
| # of amb. parses           | 3245             | 2865                     |
| # of nonlexical properties | 191              | 227                      |
| # of rule properties       | 59               | 57                       |

• Properties chosen by inspecting Verbmobil corpus only

## **SLFG parsing performance evaluation**

|        | Verbmobil corpus |            | Homecentre corpus |            |
|--------|------------------|------------|-------------------|------------|
|        | 324 sentences    |            | 424 sentences     |            |
|        | С                | $-\log PL$ | С                 | $-\log PL$ |
| Random | 88.8             | 533.2      | 136.9             | 590.7      |
| SLFG   | 180.0            | 401.3      | 283.25            | 580.6      |

- Corpus only contains ambiguous sentences; 10-fold cross-validation scores
- *C* is the number of maximum likelihood parses of held-out test corpus that were the correct parses
- *PL* is the conditional probability of the correct parses
- Combined system performance: 75% of MAP parses are correct

#### **Further Extensions**

#### • Expectation maximization:

A technique for estimating property weights from corpora which *do not indicate which parse is correct* (Riezler et. al. 2000)

#### • Automatic property selection:

New property functions are constructed "on the fly" based on the most useful current properties, and incorporated into the SLFG only if they are useful.

Research question: can these two techniques be combined?

#### **Trading hard for soft constraints**

- Many linguistic dependencies can be expressed either as *a hard* grammatical constraint or as *a soft stochastic property*
- Advantages of using stochastic properties
  - greater robustness: more sentences can be interpreted
  - property weights can be automatically learnt but not the underlying LFG

#### **Generality of the approach**

- Approach extends to *virtually any theory of grammar* 
  - The universe of candidate representations is defined by a grammar (LFG, HPSG, P&P, Minimalist, etc.)
  - Property functions map candidate representations to numbers (OT constraints, parameters, etc.)
  - A learning algorithm estimates property weights from a corpus (parameter values)

#### **SLFG and OT-LFG are closely related**

OT constraints interact via strict domination, while SLFG properties do not.

- Let  $F = \{f_1, \dots, f_m\}$  be a set of OT constraints. F is *strictly bounded* iff  $f_j(x) < c$ , for all  $f_j \in F$  and  $x \in \Omega$
- Observation: If the OT constraints *F* are strictly bounded then for any constraint ordering *f*<sub>1</sub> ≫ ... ≫ *f<sub>m</sub>* there are property weights so that the exponential distribution on properties *f*<sub>1</sub>,...,*f<sub>m</sub>* satisfies:

x is more optimal than  $x' \Leftrightarrow \Pr(x) > \Pr(x')$ 

#### English auxiliaries (Bresnan 1999)

#### Input: [1 SG]

|    |        |        | *PL, *2 | Faith | *SG, *1, *3 |
|----|--------|--------|---------|-------|-------------|
| ey | 'am':  | [1 SG] |         |       | **          |
|    | 'art': | [2 SG] | *!      | *     | *           |
|    | 'is':  | [3 SG] |         | *!    | **          |
|    | ???:   | [1 PL] | *!      | *     | *           |
|    | ???:   | [2 PL] | *!*     | *     |             |
|    | ???:   | [3 PL] | *!      | *     | *           |
|    | 'are': | []     |         | *!    |             |

#### **Emergence of the unmarked**

#### Input: [2 SG]

|       |        |        | *PL, *2 | Faith | *SG, *1, *3 |
|-------|--------|--------|---------|-------|-------------|
|       | 'am':  | [1 SG] |         | *     | *!*         |
|       | 'art': | [2 SG] | *!      |       | *           |
|       | 'is':  | [3 SG] |         | *     | *!*         |
|       | ???:   | [1 PL] | *!      | *     | *           |
|       | ???:   | [2 PL] | *!*     | *     |             |
|       | ???:   | [3 PL] | *!      | *     | *           |
| (Jan) | 'are': | []     |         | *     |             |

#### **Input to OT and SLFG learners**

Constraints:  $[f_{\star 1}, f_{\star 2}, f_{\star 3}, f_{\star SG}, f_{\star PL}, f_{Faith}]$ 

| Optimal $x_i$                  | Suboptimal competitors $\Omega_i - \{x_i\}$                       |
|--------------------------------|-------------------------------------------------------------------|
| [1 SG] – 'am' : [1 0 0 1 0 0]  | [1 SG] – 'art' : [0 1 0 1 0 1], [1 SG] – 'are' : [0 0 0 0 0 1], . |
| [2 SG] – 'are' : [0 0 0 0 0 1] | [2 SG] – 'art' : [0 1 0 1 0 0], [2 SG] – 'is' : [0 0 1 1 0 1],    |
| [3 SG] – 'is' : [0 0 1 1 0 0]  | [3 SG] – 'am' : [1 0 0 1 0 1], [3 SG] – 'are' : [0 0 0 0 0 1], .  |
| •••                            |                                                                   |

- OT learner: find a constraint ordering so each x<sub>i</sub> is more optimal than its competitors Ω<sub>i</sub>
- SLFG learner: find weights that maximize the conditional probability of *x<sub>i</sub>* given its competitors Ω<sub>i</sub>

#### PL estimation of "Standard English"



#### "Standard English" property weights



#### **Somerset English property weights**



#### **Southern and East Midlands**



#### Effect of frequency on weights





#### Learning from inconsistent data



#### Learning from inconsistent data

| am  | are | am  | are | *PL $\gg$ Faith $\gg$ *SG, *1, *2, *3             |
|-----|-----|-----|-----|---------------------------------------------------|
| art | are | are | are | *PL, *2 $\gg$ Faith $\gg$ *SG, *1, *3             |
| is  | are | is  | are | $^{*}PL > FAITH > ^{*}2 > ^{*}1 = ^{*}3 > ^{*}SG$ |



### Conclusions

- Statistical methods can be applied to realistic linguistic representations!
- Statistical methods can improve parser accuracy
- Statistical methods can be used to study language acquisition
- OT and exponential models are closely related
- Statistical estimation may be more robust to noisy data than current OT learners

### http://www.cog.brown.edu/~mj

Acknowledgements: This work is supported by 3 NSF awards, including an NSF *Integrated Graduate Education Research and Training Award*.

#### **Selected References:**

S. Abney (1997) "Stochastic Attribute-Value Grammars". *Computational Linguistics* 23.4, 597–617.

M. Johnson, S. Geman, S. Canon, Z. Chi and S. Riezler (1999) "Estimators for Stochastic 'Unification-Based' Grammars". *Proc. 37th ACL*, 535–541.

M. Johnson and S. Riezler (2000) "Exploiting Auxiliary distributions in Stochastic Unification-Based Grammars". *Proc. 1st NAACL*, 154–161.

S. Riezler, D. Prescher, J. Kuhn and M. Johnson "Lexicalized Stochastic Modelling of Constraint-Based Grammars using Log-Linear Measures and EM Training", to appear *Proc ACL 2000*.