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Motivation: why combine grammar and
statistics?

e Statistics has nothing to do with grammar: WRONG

e Statistics = inference from uncertain or incomplete data
= Language acquisition Is a statistical inference problem
= Sentence interpretation is a statistical inference problem

e How can we do statistical inference over linguistically realistic
representations?



What iIs a Stochastic LFG?

(stochastic = incorporating a random component)

A Stochastic LFG consists of:

e A non-stochastic component: an LFG G, which defines Q, the
universe of input-candidate pairs

e A stochastic component: An exponential model over Q

— A finite set of properties or features f4, ..., fp.
Each property f; maps x € Q to a real number f;(x)

— Each property f; has a property weight w;.
w; determines how f; affects the distribution of candidate
representations



A simple SLFG

Input-candidate pairs Properties
| nput c-structure f-structure | fx1 fsg  fEaITH
[ BE,1,SG ] |/>\ [ BE.1,SG ]
[ BE,1,SG ] |/>\ [ BE ]

o If Wpa1TH < Wxq +Wrkgg then | amis preferred

o Ifwi+Wisg < WraiTH then | beis preferred

(Apologies to Bresnan 1999)
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Exponential probability distributions

PI’(X) _ Eewl-fl(x)+wz-f2(x)+...+wn-fn(x)

Z
where Z Is a normalization constant.

The weights w; can be negative, zero, or positive.

e EXxponential distributions have lots of nice properties

— Maximum Entropy distributions are exponential

e Many familiar distributions (e.g., PCFGs, HMMs, Harmony
theory) are exponential or log linear



Conditional distributions

Conditional distributions tell us how likely a structure is given
certain conditions.

e For parsing, we need to know how likely an input-candidate pair
X 1S, given a particular phonological string p, I.e.,
Pr(x|Phonology = p)

e For generation, we need to know how likely an input-candidate
pair x is, given a particular semantic input s, i.e., Pr(x|Input = s)



Conditional distributions

semantic input

Input Increasing
/\‘/\‘ probability
Phonology @

most likely phonologlcal output
most likely semantic Interpretation

Input Increasing
/'\‘ /\‘ probability
Phonology @

phonologlcal Input
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Generation

Pr(x|Input)

Parsing

Pr(x|Phonology)



SLFG for parsing

e \We used the parses of a conventional LFG (supplied by Xerox
PARC)

— On average each ambiguous sentence has 8 parses
— Our SLFG should identify the correct one

e \We wrote our own property functions

e \We estimated the property weights from a hand-corrected parsed
training corpus

— The weights are chosen to maximize the conditional
probability (pseudo-likelihood) of the correct parses given

the phonological strings (Johnson et. al. 1999)
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Sample parses

TURN

|

ROOT PEITIOD
Schj :

|
let PRON Y WP

us take DATEP

N COMMA

Tuesday

, [ﬁ NUI\/fBER

the fifteenth

SENTENCE.ID  BAC002E
ANIM  +
CASE ACC
NUM PL
OBJ | PERS 1
PRED ~PRO
PRON-FORM  WE
o L PRON-TYPE  PERS |
PASSIVE —
PRED _ LET(2.10)9
STMT-TYPE MPERATIVE
PERS 2
SUBJ | PRED PRO
, | PRON-TYPE  NULL

TNS-ASP | MOOD

OBJ
XCOMP

10

13 b

PASSIVE

DD

IMPERATIVE |

- ANIM —

NTYPE [

NUM SG
PRED

SPEC [

APP

CASE ACC
GEND NEUT

GRAIN
NTYPE PROPER

TIME DAY

NUM SG
PERS 3

PRED  TUESDAY

TALKLC /O 190\

TIME DATE

fifteen

SPEC-FORM
SPEC-TYPE

NUMBER ORD]

THE
DEF

COUNT
DATE J




Property functions

The property functions can be any (efficiently computable)
function of the candidate representations

If the grammar is a CFG then estimating property weights is
simple if the property functions count rule use

If the grammar is not a CFG, then the simple estimator that
works for PCFGs is inconsistent (Abney 1998)

OT constraints can be used as property functions

c/f-str fragments can be used as property functions, yielding
consistent LFG-DOP estimators (B. Cormons)
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The property functions we used

Rule properties: For every non-terminal N, fy(X) is the number of
times N occurs in c-structure of x

Attribute value properties: For every attribute a and every atomic
value v, fa—y(X) is the number of times the pair a= v appears in
X

Argument and adjunct properties: For every grammatical
function g, fg(x) is the number of times g appears in x
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Additional property functions

Non-rightmost phrases: fyr(X) is the number of c-structure
phrasal nodes that have a right sibling. (Right association)

Coordination parallelism: fc (x),i =1,...,4 is the number of
coordinate structures in x that are parallel to depth i

Consistency of dates, times, locations: fp(x) is the number of
non-date subphrases in date phrases. Similarly for times and
locations.
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Additional property functions

Lexical dependency properties: For all predicates p1, po and
grammatical functions g, f;p, g p,)(X) is the number of times the
head of p;’s g function is po.

For example, in Al ate George's pizza, fest 0B pizza) = 1-

e Our LFG training corpus was too small to estimate the lexical
dependency property weights

e We developed a method for incorporating property weights that
are estimated in other ways (Johnson et. al. 2000)

e Lexical properties were not very useful with English data, but

they were useful with German data
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Stochastic LFG experiment

e Two parsed LFG corpora provided by Xerox PARC

e Grammars unavailable, but corpus contains all parses and hand-identified

correct parse

e Properties chosen by inspecting Verbmobil corpus only

Ver bmobil corpus | Homecentre corpus
# of sentences 540 980
# of ambiguous sentences 324 424
Av. amb. sentence length 13.8 13.1
# of amb. parses 3245 2865
# of nonlexical properties 191 227
# of rule properties 59 57
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SLFG parsing performance evaluation

Verbmobil corpus
324 sentences

Homecentre corpus
424 sentences

C —log PL C —log PL
Random | 88.8 533.2 136.9 590.7
SLFG 180.0 | 401.3 | 283.25 580.6

Corpus only contains ambiguous sentences; 10-fold cross-validation

SCOres

C Is the number of maximum likelihood parses of held-out test corpus

that were the correct parses

PL is the conditional probability of the correct parses

Combined system performance: 75% of MAP parses are correct
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Further Extensions

e EXpectation maximization:
A technique for estimating property weights from corpora which
do not indicate which parse is correct (Riezler et. al. 2000)

e Automatic property selection:
New property functions are constructed “on the fly” based on
the most useful current properties, and incorporated into the

SLFG only if they are useful.

Research question: can these two techniques be combined?
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Trading hard for soft constraints

e Many linguistic dependencies can be expressed either as a hard
grammatical constraint or as a soft stochastic property
e Advantages of using stochastic properties
— greater robustness. more sentences can be interpreted

— property weights can be automatically learnt but not the
underlying LFG
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Generality of the approach

e Approach extends to virtually any theory of grammar

— The universe of candidate representations is defined by a
grammar (LFG, HPSG, P&P, Minimalist, etc.)

— Property functions map candidate representations to
numbers (OT constraints, parameters, etc.)

— A learning algorithm estimates property weights from a
corpus (parameter values)
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SLFG and OT-LFG are closely related

OT constraints interact via strict domination, while SLFG properties
do not.

o LetF ={f1,...,fn} beaset of OT constraints. F is strictly
bounded iff fj(x) <c, forall fj e Fandxe Q

e Observation: If the OT constraints F are strictly bounded then

for any constraint ordering f1 > ... > fy, there are property
weights so that the exponential distribution on properties

f1,..., fm satisfies:

x is more optimal than X' < Pr(x) > Pr(x)
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English auxiliaries (Bresnan 1999)

Input: [1 SG]
*PL, *2 | FAITH | *SG, *1, *3

[ ‘am’: [1SG **
‘art’.  [2 SG] *1 * *
‘IS’ 3 SG] *1 *x
77?:  [1PL] *| * *
297 2 PL] *|* *
297 3 PL] *| * *
‘are’: [ ] *1
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Emergence of the unmarked

Input: [2 SG]
*PL, *2 | FAITH | *SG, *1, *3

‘am’:  [1 SG] * *I*
‘art’: [2 SG. *1 *
‘IS’ 3 SG] * **
77?:  [1PL] *| * *
297 2 PL] *|* *
297 3 PL] *| * *

1 ‘are’: [ *
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Input to OT and SLFG learners

Constraints: [fsq, fx, fx3, fxsg, f+p, fraith]

Optimal x; Suboptimal competitors Q; — {x; }

[LSG]-‘am’:[100100] | [LSG]-‘art’:[010101],[1SG]-"are’:[000001],.
[2SG]—-‘are’: [000001] | [2SG]—-‘art’:[010100],[2SG]-“is’:[001101],..
[3SG]-‘1s’:[001100] | [3SG]-‘am’:[100101],[3SG]—-"‘are’: [000001],.

e OT learner: find a constraint ordering so each x; is more
optimal than its competitors Q;

e SLFG learner: find weights that maximize the conditional
probability of X; given its competitors Q;
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PL estimation of “Standard English”

Examples
correct

OFRPNWHKARUUIOON IO O
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Iteration



“Standard English” property weights

| am we are Bresnan: *PL, *2 > FAITH > *SG, *1, *3

you are | you are SLFG: *PL >*2 > FAITH > *SG > *1 =73

sheis | they are

weight
*PL
Farth

18 | | | | _|
14 *D -
Property 12 T P — —
10 *Q (G i —

OoON B0
I\
X

o
N
I
(o))
oo
S

Iteration
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Somerset English property weights

be | be Bresnan: *PL, *1 > FAITH > *SG, *2, *3

art | be PL: *PL > *1 > FAITH > *SG > *2 = *3
IS | be
18 I I ; !
—WJ 16 - *l ——
14 *9
Property 12 |- L — —
weight 13 B ’;%E — ~
6 i —
4 L
(2) [ | | | ~
0 2 4 6 8 10

Iteration
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Southern and East Midlands

are | are Bresnan: *PL, *1, *2 > FAITH > *SG, *3

are | are PL: *PL > *1 =*2 =~ FAITH > *SG > *3
IS are
25 T | | |
W 20| *% — -
Property 15 |- L — —
weight . "SG — -
g 10 L
5F Falth/_/‘—
O :«—_\_\/__
5 | | | |
0 2 4 6 8 10

Iteration
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Effect of frequency on weights

| am we are Bresnan:  *PL, *2 > FAITH > *SG, *1, *3
you are | you are 0“lam”  *PL>"*2 > FAITH >*SG > *1 > *3
sheis | they are 10 “l am™  *PL > *2 > FAITH > *SG > *3 > *1
20 | | | |
—w; 18 |- *1 —
16 |- *2 =
Property 14 e —
weight %g B i%f - _
8 - Faith -
6 - _
B ———
2
0 2 4 6 8 10

Training occurences of “I am”
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|_earning from inconsistent data

are | are are | are *PL > FAITH > *SG, *1, *2, *3

art | are are | are *PL, *2 > FAITH > *SG, *1, *3

IS are IS are
6  —~=r T T ]
5 —_
Standard 4 |
English 3L _
examples 2 |- _
correct 1 | —
0 | | | |
1:0 1:2 1:4 1:6 1:8 1:10

Thou art : You are
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|_earning from inconsistent data

am | are am | are *PL > FAITH > *SG, *1, *2, *3

art | are are | are *PL, *2 > FAITH > *SG, *1, *3

IS are IS are *PL > FAITH >*2 >*1 =*3 > *SG
25 e I I I
IR ! SR -
Property 15 | *3 _ |
weight TSG—
10 |- PL —
Faith
5 —
0 | | | |
1:0 1:2 1:4 1:6 1:8 1:10

Thou art : You are
30



Conclusions

Statistical methods can be applied to realistic linguistic
representations!

Statistical methods can improve parser accuracy
Statistical methods can be used to study language acquisition
OT and exponential models are closely related

Statistical estimation may be more robust to noisy data than
current OT learners
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http://www.cog.brown.edu/ mj
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