
Learning rules with Adaptor Grammars
(the Google edition)

Mark Johnson

joint work with Sharon Goldwater and Tom Griffiths

July 2009

1 / 89

The drunk under the lamppost

Late one night, a drunk guy is crawling around under a
lamppost. A cop comes up and asks him what he’s doing.

“I’m looking for my keys,” the drunk says. “I lost them
about three blocks away.”

“So why aren’t you looking for them where you dropped
them?” the cop asks.

The drunk looks at the cop, amazed that he’d ask so
obvious a question. “Because the light is better here.”

2 / 89

Ideas behind talk
• Most successful statistical learning methods are parametric

I PCFGs have one probability parameter per rule
I PCFG learning: given rules and data, learn rule probabilities

• Non-parametric learning: learn parameters (rules) as well as values
• Adaptor grammars are a non-parametric extension of PCFGs which

learn the rules as well as their probabilities
• Monte Carlo Markov Chain (MCMC) sampling methods are natural

inference procedures for non-parametric models
I The adaptor grammar inference procedure samples rules as well

their probabilities

• MCMC inference techniques that prove useful include:
I estimating hyper-parameters using slice sampling
I modal decoding from multiple samples from multiple runs
I random initialization instead of incremental initialization
I table label resampling as well as sentence resampling

All but the last apply to a wide variety of non-parametric models
3 / 89

Language acquisition as Bayesian inference

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

• Likelihood measures how well grammar describes data

• Prior expresses knowledge of grammar before data is seen
I can be very specific (e.g., Universal Grammar)
I can be very general (e.g., prefer shorter grammars)

• Posterior is distribution over grammars
I expresses uncertainty about which grammar is correct

• Note: infinitely many grammars may have positive posterior
probability

4 / 89

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation
Adaptor grammars for word segmentation

Bayesian inference for adaptor grammars
Modal decoding
Random vs incremental initialization
Table label resampling

Conclusion

Extending Adaptor Grammars

5 / 89

Probabilistic context-free grammars
• Rules in Context-Free Grammars (CFGs) expand nonterminals into

sequences of terminals and nonterminals

• A Probabilistic CFG (PCFG) associates each nonterminal with a
multinomial distribution over the rules that expand it

• Probability of a tree is the product of the probabilities of the rules
used to construct it

Rule r θr Rule r θr

S → NP VP 1.0
NP → Sam 0.75 NP → Sandy 0.25
VP → barks 0.6 VP → snores 0.4

P


Sam

NP

S

VP

barks

 = 0.45 P


Sandy

NP

S

VP

snores

 = 0.1

6 / 89

Learning syntactic structure is hard

• Bayesian PCFG estimation works well on toy data

• Results are disappointing on “real” data
I wrong data?
I wrong rules?

(rules in PCFG are given a priori; can we learn them too?)

• Strategy: study simpler cases
I Morphological segmentation (e.g., walking = walk+ing)
I Word segmentation of unsegmented utterances

7 / 89

A CFG for stem-suffix morphology

Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .
Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar’s trees can represent any
segmentation of words into stems
and suffixes

⇒ Can represent true segmentation

• But grammar’s units of
generalization (PCFG rules) are
“too small” to learn morphemes

8 / 89

A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
I not a practical problem, as only a finite set of rules could possibly

be used in any particular data set

9 / 89

Maximum likelihood estimate for θ is trivial

• Maximum likelihood selects θ that minimizes KL-divergence
between model and training data W distributions

• Saturated model in which each word is generated by its own rule
replicates training data distribution W exactly

⇒ Saturated model is maximum likelihood estimate

• Maximum likelihood estimate does not find any suffixes

Word

Stem

t a l k i n g

Suffix

#

10 / 89

Forcing generalization via sparse Dirichlet priors
• Idea: use Bayesian prior that prefers fewer rules
• Set of rules is fixed in standard PCFG estimation,

but can “turn rule off” by setting θA→β ≈ 0
• Dirichlet prior with αA→β ≈ 0 prefers θA→β ≈ 0

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (0.5,1)
α = (0.2,1)
α = (0.1,1)

11 / 89

Morphological segmentation experiment

• Trained on orthographic verbs from U Penn. Wall Street Journal
treebank

• Uniform Dirichlet prior prefers sparse solutions as α→ 0

• Gibbs sampler samples from posterior distribution of parses
I reanalyses each word based on parses of the other words

12 / 89

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed

including including including including
add add add add

adds adds adds add s
added added add ed added

adding adding add ing add ing
continue continue continue continue

continues continues continue s continue s
continued continued continu ed continu ed

continuing continuing continu ing continu ing
report report report report

reports report s report s report s
reported reported reported reported

reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsiz e downsiz e

downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted

13 / 89

Log posterior for models on token data

-1.2e+06

-1e+06

-800000

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Posterior

• Correct solution is nowhere near as likely as posterior

⇒ model is wrong!
14 / 89

Relative frequencies of inflected verb forms

15 / 89

Types and tokens
• A word type is a distinct word shape

• A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

• Estimating θ from word types rather than word tokens eliminates
(most) frequency variation

I 4 common verb suffixes, so when estimating from verb types
θSuffix→i n g # ≈ 0.25

• Several psycholinguists believe that humans learn morphology from
word types

• Goldwater et al investigated a morphology-learning model that
learnt from an interpolation of types and tokens

16 / 89

Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted

17 / 89

Log posterior of models on type data

-400000

-200000

 0

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Optimal suffixes

• Correct solution is close to optimal at α = 10−3

18 / 89

Desiderata for an extension of PCFGs

• PCFG rules are “too small” to be effective units of generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

• Type-based inference mitigates over-dispersion
⇒ Hierarchical Bayesian model where:

I context-free rules generate types
I another process replicates types to produce tokens

• Adaptor grammars:
I learn probability of entire subtrees (how a nonterminal expands to

terminals)
I use grammatical hierarchy to define a Bayesian hierarchy, from

which type-based inference emerges
I inspired by Goldwater’s work

19 / 89

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation
Adaptor grammars for word segmentation

Bayesian inference for adaptor grammars
Modal decoding
Random vs incremental initialization
Table label resampling

Conclusion

Extending Adaptor Grammars

20 / 89

Dirichlet-Multinomials with many outcomes

• Dirichlet prior α, observed data z = (z1, . . . , zn)

P(Zn+1 = k | z,α) ∝ αk + nk(z)

• Consider a sequence of Dirichlet-multinomials where:
I total Dirichlet pseudocount is fixed α =

∑m
k=1 αk , and

I prior uniform over outcomes 1, . . . ,m, so αk = α/m
I number of outcomes m→∞

P(Zn+1 = k | z, α) ∝


nk(z) if nk(z) > 0

α/m if nk(z) = 0

But when m� n, most k are unoccupied (i.e., nk(z) = 0)

⇒ Probability of a previously seen outcome k ∝ nk(z)
Probability of an outcome never seen before ∝ α

21 / 89

From Dirichlet-multinomials to Chinese Restaurant

Processes
• Observations z = (z1, . . . , zn) ranging over outcomes 1, . . . ,m
• Outcome k observed nk(z) times in data z
• Predictive distribution with uniform Dirichlet prior:

P(Zn+1 = k | z) ∝ nk(z) + α/m

• Let m→∞

P(Zn+1 = k | z) ∝ nk(z) if k appears in z

P(Zn+1 6∈ z | z) ∝ α

• If outcomes are exchangable ⇒ number in order of occurence
⇒ Chinese Restaurant Process

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

22 / 89

Chinese Restaurant Process (0)

• Customer→ table mapping z =

• P(z) = 1

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

23 / 89

Chinese Restaurant Process (1)

α

• Customer→ table mapping z = 1

• P(z) = α/α

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

24 / 89

Chinese Restaurant Process (2)

1 α

• Customer→ table mapping z = 1, 1

• P(z) = α/α× 1/(1 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

25 / 89

Chinese Restaurant Process (3)

2 α

• Customer→ table mapping z = 1, 1, 2

• P(z) = α/α× 1/(1 + α)× α/(2 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

26 / 89

Chinese Restaurant Process (4)

2 1 α

• Customer→ table mapping z = 1, 1, 2, 1

• P(z) = α/α× 1/(1 + α)× α/(2 + α)× 2/(3 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

27 / 89

Pitman-Yor Process (0)

• Customer→ table mapping z =
• P(z) = 1

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

28 / 89

Pitman-Yor Process (1)

b

• Customer→ table mapping z = 1
• P(z) = b/b

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

29 / 89

Pitman-Yor Process (2)

1− a a + b

• Customer→ table mapping z = 1, 1
• P(z) = b/b × (1− a)/(1 + b)

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

30 / 89

Pitman-Yor Process (3)

2− a a + b

• Customer→ table mapping z = 1, 1, 2
• P(z) = b/b × (1− a)/(1 + b)× (a + b)/(2 + b)

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

31 / 89

Pitman-Yor Process (4)

2− a 1− a 2a + b

• Customer→ table mapping z = 1, 1, 2, 1
• P(z) = b/b× (1− a)/(1 + b)× (a + b)/(2 + b)× (2− a)/(3 + b)

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

32 / 89

Labeled Chinese Restaurant Process (0)

• Table→ label mapping y =

• Customer→ table mapping z =

• Output sequence x =

• P(x) = 1

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

33 / 89

Labeled Chinese Restaurant Process (1)

fish

α

• Table→ label mapping y = fish

• Customer→ table mapping z = 1

• Output sequence x = fish

• P(x) = α/α× P0(fish)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

34 / 89

Labeled Chinese Restaurant Process (2)

fish

1 α

• Table→ label mapping y = fish

• Customer→ table mapping z = 1, 1

• Output sequence x = fish,fish

• P(x) = P0(fish)× 1/(1 + α)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

35 / 89

Labeled Chinese Restaurant Process (3)

fish

2

apple

α

• Table→ label mapping y = fish,apple

• Customer→ table mapping z = 1, 1, 2

• Output sequence x = fish,fish,apple

• P(x) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

36 / 89

Labeled Chinese Restaurant Process (4)

fish

2

apple

1 α

• Table→ label mapping y = fish,apple

• Customer→ table mapping z = 1, 1, 2

• Output sequence x = fish,fish,apple,fish

• P(x) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)× 2/(3 + α)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

37 / 89

Summary: Chinese Restaurant Processes and

Pitman-Yor Processes

• Chinese Restaurant Processes (CRPs) generalize
Dirichlet-Multinomials to an unbounded number of outcomes

I concentration parameter α controls how likely a new outcome is
I CRPs exhibit a rich get richer power-law behaviour

• Pitman-Yor Processes (PYPs) generalize CRPs by adding an
additional parameter (each PYP has a and b parameters)

I PYPs can describe a wider range of distributions than CRPs

• Labeled CRPs and PYPs use a base distribution to label each table
I base distribution can have infinite support
I concentrates mass on a countable subset

38 / 89

Labeled Chinese restaurants and Dirichlet processes

• A labeled Chinese restaurant processes maps a base distribution PB

to a stream of samples from a different distribution with the same
support

• CRPs specify the conditional distribution of the next outcome
given the previous ones

• Each CRP run can produce a different distribution over labels

• It defines a mapping from α and PB to a distribution over
distributions DP(α,PB)

• DP(α,PB) is called a Dirichlet process (DP) with concentration
parameter α and base distribution PB

• The base distribution PB can itself be defined by a DP
⇒ hierarchy of DPs

39 / 89

Nonparametric extensions of PCFGs

• Chinese restaurant processes are a nonparametric extension of
Dirichlet-multinomials because the number of states (occupied
tables) depends on the data

• Two obvious nonparametric extensions of PCFGs:
I let the number of nonterminals grow unboundedly

– refine the nonterminals of an original grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG

I let the number of rules grow unboundedly

– “new” rules are compositions of several rules from original
grammar

– equivalent to caching tree fragments
⇒ adaptor grammars

• No reason both can’t be done together . . .

40 / 89

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation
Adaptor grammars for word segmentation

Bayesian inference for adaptor grammars
Modal decoding
Random vs incremental initialization
Table label resampling

Conclusion

Extending Adaptor Grammars

41 / 89

Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by CFG
rules as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
I by picking a rule and recursively expanding its children, or
I by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Implemented by having a CRP/PYP for each adapted nonterminal

• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs/PYPs

42 / 89

Adaptor grammar for stem-suffix morphology (0)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
43 / 89

Adaptor grammar for stem-suffix morphology (1a)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
44 / 89

Adaptor grammar for stem-suffix morphology (1b)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
45 / 89

Adaptor grammar for stem-suffix morphology (1c)

Word→ Stem Suffix

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words:
46 / 89

Adaptor grammar for stem-suffix morphology (1d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
47 / 89

Adaptor grammar for stem-suffix morphology (2a)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
48 / 89

Adaptor grammar for stem-suffix morphology (2b)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
49 / 89

Adaptor grammar for stem-suffix morphology (2c)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats
50 / 89

Adaptor grammar for stem-suffix morphology (2d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs
51 / 89

Adaptor grammar for stem-suffix morphology (3)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs, cats
52 / 89

Adaptor grammars as generative processes

• The sequence of trees generated by an adaptor grammar are not
independent

I it learns from the trees it generates
I if an adapted subtree has been used frequently in the past, it’s

more likely to be used again

• but the sequence of trees is exchangable (important for sampling)

• An unadapted nonterminal A expands using A→ β with
probability θA→β

• Each adapted nonterminal A is associated with a CRP (or PYP)
that caches previously generated subtrees rooted in A

• An adapted nonterminal A expands:
I to a subtree τ rooted in A with probability proportional to the

number of times τ was previously generated
I using A → β with probability proportional to αAθA→β

53 / 89

Properties of adaptor grammars

• Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately

• Probability of a subtree τ is proportional to:
I the number of times τ was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

I plus αA times prob. of generating it via PCFG expansion

⇒ Useful compound structures can be more probable than their parts

• PCFG rule probabilities estimated from table labels
⇒ learns from types, not tokens
⇒ dampens frequency variation

54 / 89

Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is composed of
a Stem and a Suffix, which are
composed of Chars

• To generate a new Word from an
adaptor grammar

I reuse an old Word, or
I generate a fresh one from the base

distribution, i.e., generate a Stem
and a Suffix

• Lower in the tree
⇒ higher in Bayesian hierarchy

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

55 / 89

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation
Adaptor grammars for word segmentation

Bayesian inference for adaptor grammars
Modal decoding
Random vs incremental initialization
Table label resampling

Conclusion

Extending Adaptor Grammars

56 / 89

Unsupervised word segmentation

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

y Mu Nw Ma Mn Mt Nt Mu Ns Mi ND M6 Nb MU Mk

• Useful cues for word segmentation:
I Phonotactics (Fleck)
I Inter-word dependencies (Goldwater)

57 / 89

Word segmentation with PCFGs (1)

Sentence→ Word+

Word→ Phoneme+

which abbreviates

Sentence→ Words
Words→ Word Words
Word→ Phonemes
Phonemes→ Phoneme Phonemes
Phonemes→ Phoneme
Phoneme→ a | . . . | z

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

58 / 89

Word segmentation with PCFGs (1)

Sentence→ Word+

Word→ all possible phoneme strings

• But now there are an infinite number of
PCFG rules!

I once we see our (finite) training data, only
finitely many are useful

⇒ the set of parameters (rules) should be
chosen based on training data

Words

Word

D 6

Words

Word

b U k

59 / 89

Unigram word segmentation adaptor grammar

Sentence→ Word+

Word→ Phoneme+

• Adapted nonterminals
indicated by underlining

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

• Adapting Words means that the grammar learns the probability of
each Word subtree independently

• Unigram word segmentation on Brent corpus: 56% token f-score

60 / 89

Unigram adaptor grammar after learning
• Given the Brent corpus and the unigram adaptor grammar

Words→ Word+

Word→ Phon+

the learnt adapted grammar contains 1,712 rules such as:

15758 Words →Word Words
9791 Words →Word
1660 Word→ Phon+

402 Word→ y u
137 Word→ I n
111 Word→ w I T
100 Word→ D 6 d O g i
45 Word→ I n D 6
20 Word→ I n D 6 h Q s

61 / 89

unigram: Words

• Unigram word segmentation model assumes each word is generated
independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

62 / 89

colloc: Collocations ⇒ Words

Sentence→ Colloc+

Colloc→ Word+

Word→ Phon+

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words

• Both Words and Collocs are adapted (learnt)

• Significantly improves word segmentation accuracy over unigram
model (76% f-score; ≈ Goldwater’s bigram model)

63 / 89

colloc-syll: Collocations ⇒ Words ⇒ Syllables
Sentence→ Colloc+ Colloc→ Word+

Word→ SyllableIF Syllable→ (Onset) Rhyme
Word→ SyllableI (Syllable) (Syllable) SyllableF
Onset→ Consonant+ Rhyme→ Nucleus (Coda)
Nucleus→ Vowel+ Coda→ Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• With 2 Collocation levels, f-score = 87%

64 / 89

colloc-syll: Collocations ⇒ Words ⇒ Syllables

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

65 / 89

Another application of adaptor grammars:

Learning structure in names

• Many different kinds of names
I Person names, e.g., Mr. Sam Spade Jr.
I Company names, e.g., United Motor Manufacturing Corp.
I Other names, e.g., United States of America

• At least some of these are structured; e.g., Mr is an honorific, Sam
is first name, Spade is a surname, etc.

• Penn treebanks assign flat structures to base NPs (including
names)

• Data set: 10,787 unique lowercased sequences of base NP proper
nouns, containing 23,392 words

• Can we automatically learn the structure of these names?

66 / 89

Adaptor grammar for names
NP→ Unordered+ Unordered→ Word+

NP→ (A0) (A1) . . . (A6) NP→ (B0) (B1) . . . (B6)
A0→ Word+ B0→ Word+

.
A6→ Word+ B6→ Word+

• Warning: hand-selected output, no evaluation!

(A0 barrett) (A3 smith)
(A0 albert) (A2 j.) (A3 smith) (A4 jr.)
(A0 robert) (A2 b.) (A3 van dover)
(B0 aim) (B1 prime rate) (B2 plus) (B5 fund) (B6 inc.)
(B0 balfour) (B1 maclaine) (B5 international) (B6 ltd.)
(B0 american express) (B1 information services) (B6 co)
(U abc) (U sports)
(U sports illustrated)
(U sports unlimited)

67 / 89

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation
Adaptor grammars for word segmentation

Bayesian inference for adaptor grammars
Modal decoding
Random vs incremental initialization
Table label resampling

Conclusion

Extending Adaptor Grammars

68 / 89

Estimating adaptor grammars

• Need to estimate:
I parse trees t = (t1, . . . , tn) for strings x = (x1, . . . , xn)
I cached subtrees τ for adapted nonterminals
I (optional) DP parameters α for adapted nonterminals
I (optional) probabilities θ of base grammar rules

• Component-wise Metropolis-within-Gibbs sampler for parse trees
I sample parse tree tj from P(T | xj , t−j)
I sampling directly from conditional distribution of parses seems

intractable
I construct PCFG proposal grammar G (t−j) on the fly
I each table label τ corresponds to a production in PCFG

approximation
I Use accept/reject to convert samples from PCFG approx to

samples from adaptor grammar

69 / 89

Component-wise Metropolis-within-Gibbs sampling

• Observations (terminal strings) x = (x1, . . . , xn)
Hidden labels (parse trees) t = (t1, . . . , tn)
Probabilistic model (adaptor grammar) P(x, t)

• Metropolis-within-Gibbs sampling algorithm:

initialize t somehow (e.g., random trees)
repeat forever:

pick an index j ∈ 1, . . . , n at random
– construct PCFG proposal grammar G (t−j) on the fly

replace tj with a random sample from P(T | xj , t−j)
where t−j = (t1, . . . , tj−1, tj+1, . . . , tn)

• After burn-in the samples t are distributed according to P(T | x)

70 / 89

Metropolis-with-Gibbs sampler

• Collapsed Gibbs sampler: resample parse Tj given wj and t−j

• Table counts change within a parse tree

⇒ grammar is not context-free
⇒ breaks standard dynamic programming
⇒ Metropolis accept/reject for each Gibbs sample

• PCFG can express probability of selecting a next table given t−j

I ignores changing table counts within single parse

• Rules of PCFG proposal grammar G (t−j) consist of:
I rules A→ β from base PCFG: θ′A→β ∝ αAθA→β
I A rule A→ Yield(τ) for each table τ in A’s restaurant:
θ′
A→Yield(τ)

∝ nτ , the number of customers at table τ

• Parses of G ′ can be mapped back to adaptor grammar parses

71 / 89

Bayesian inference for PYP parameters
• Adaptor grammars have 1 (CRP) or 2 (PYP) hyper-parameters for

each adapted non-terminal X

• Previous work used CRP adaptors with tied parameters

• Bayesian prior: for each adapted nonterminal X

aX ∼ Beta(1, 1)

bX ∼ Gamma(10, 0.1)

I Gamma(10, 0.1) is a vague Gamma prior (MacKay 2003)
I permits aX and bX to vary with adapted nonterminal X

• Estimate with slice sampling (no proposal distribution; Neal 2003)

• Biggest improvement on complex models, e.g., colloc-syll:
I tied parameters 78% token f-score
I aX = 0, sampling bX (i.e., CRP adaptors) 84% token f-score
I sampling aX and bX (i.e., PYP adaptors) 87% token f-score

72 / 89

Finding the modal word segmentation
• Previous work decoded using last sampled trees (2,000 epochs)

• After burn-in, samples are distributed according to P(t | x)
⇒ use samples to identify modal word segmentation

• Modal decoding:
I For each sentence xi collect sample parses si = (s

(1)
i , . . . , s

(800)
i)

(every 10th epoch from epochs 1,000–2,000 from 8 runs)

I Compute word segmentations wi = (w
(1)
i , . . . ,w

(800)
i) from parses

I Compute modal segmentation ŵi = argmaxw nw (wi),
where nw (wi) is the number of times w appears in wi

• Improves word segmentation token f-score in all models

Model Average Max-modal
unigram 55% 56%
colloc 74% 76%
colloc-syll 85% 87%

• Goodman (1998) max-marginal decoding should also be possible

73 / 89

Random vs incremental initialization

• The Gibbs sampler parse trees t needs to be initialized somehow

Random initialization: Assign each string xi a random parse ti

generated by base PCFG
Incremental initialization: Sample ti from P(t | xi , t1:i−1)

• Incremental initialization is easy to implement in a Gibbs sampler

• Incremental initialization improves token f-score in all models,
especially on simple models

Model Random Incremental
unigram 56% 81%
colloc 76% 86%
colloc-syll 87% 89%

but see caveats on next slide!

74 / 89

Incremental initialization produces low-probability

parses

 185000

 190000

 195000

 200000

 205000

 210000

 215000

 220000

 0 500 1000 1500 2000

-l
og

 P
(x

,t)

Iteration

incremental initialization
batch initialization

75 / 89

Why incremental initialization produces

low-probability parses

• Incremental initialization produces sample parses t with lower
probability P(t | x)

• Possible explanation: (Goldwater’s 2006 analysis of Brent’s model)
I All the models tend to undersegment (i.e., find collocations

instead of words)
I Incremental initialization greedily searches for common substrings
I Shorter strings are more likely to be recurr early than longer ones

76 / 89

Table label resampling

• Each adapted non-terminal has a CRP with tables labeled with
parses

• “Rich get richer” ⇒ resampling a sentence’s parse reuses the same
cached subtrees

• Resample table labels as well sentence parses
I A table label may be used in many sentence parses
⇒ Resampling a single table label may change the parses of a single

sentence
⇒ table label resampling can improve mobility with grammars with a

hierarchy of adapted non-terminals

• Essential for grammars with a complex hierarchical structure

77 / 89

Table label resampling example
Label on table in Chinese Restaurant for colloc

Colloc

Word

y u

Word

w a n t t u

⇒
Colloc

Word

y u

Word

w a n t

Word

t u

Resulting changes in parse trees
Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

⇒

Sentence

Colloc

Word

y u

Word

w a n t

Word

t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

t e k

Word

D 6

Word

d O g i

Word

Q t

⇒

Sentence

Colloc

Word

y u

Word

w a n t

Word

t u

Colloc

Word

t e k

Word

D 6

Word

d O g i

Word

Q t 78 / 89

Table label resampling produces much

higher-probability parses

 185000

 190000

 195000

 200000

 205000

 210000

 215000

 220000

 0 500 1000 1500 2000

-l
og

 P
(x

,t)

Iteration

no table label resampling
table label resampling

79 / 89

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation
Adaptor grammars for word segmentation

Bayesian inference for adaptor grammars
Modal decoding
Random vs incremental initialization
Table label resampling

Conclusion

Extending Adaptor Grammars

80 / 89

Summary and future work

• Adaptor Grammars (AG) “adapt” to the strings they generate

• AGs learn probability of whole subtrees (not just rules)

• AGs are non-parametric because cached subtrees depend on the
data

• MCMC sampling is a natural approach to AG inference
I Slice sampling hyperparameters improves accuracy by 10%
I Modal decoding improves accuracy by 2%
I Incremental initialization improves accuracy by 2%, but hurts

posterior probability
I Table label resampling improves performance by 20%

Taken together, colloc-syll word segmentation model improves
from last year’s 78% to 87% token f-score

81 / 89

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation
Adaptor grammars for word segmentation

Bayesian inference for adaptor grammars
Modal decoding
Random vs incremental initialization
Table label resampling

Conclusion

Extending Adaptor Grammars

82 / 89

Issues with adaptor grammars

• Recursion through adapted nonterminals seems problematic
I New tables are created as each node is encountered top-down
I But the tree labeling the table is only known after the whole

subtree has been completely generated
I If adapted nonterminals are recursive, might pick a table whose

label we are currently constructing. What then?

• Extend adaptor grammars so adapted fragments can end at
nonterminals a la DOP (currently always go to terminals)

I Adding “exit probabilities” to each adapted nonterminal
I In some approaches, fragments can grow “above” existing

fragments, but can’t grow “below” (O’Donnell)

• Adaptor grammars conflate grammatical and Bayesian hierarchies
I Might be useful to disentangle them with meta-grammars

83 / 89

Context-free grammars
A context-free grammar (CFG) consists of:
• a finite set N of nonterminals,
• a finite set W of terminals disjoint from N ,
• a finite set R of rules A→ β, where A ∈ N and β ∈ (N ∪W)?

• a start symbol S ∈ N .
Each A ∈ N ∪W generates a set TA of trees.
These are the smallest sets satisfying:
• If A ∈ W then TA = {A}.
• If A ∈ N then:

TA =
⋃

A→B1...Bn∈RA

TreeA(TB1 , . . . , TBn)

where RA = {A→ β : A→ β ∈ R}, and

TreeA(TB1 , . . . , TBn) =

{
�� PP

A

t1 tn. . .
:

ti ∈ TBi
,

i = 1, . . . , n

}
The set of trees generated by a CFG is TS . 84 / 89

Probabilistic context-free grammars
A probabilistic context-free grammar (PCFG) is a CFG and a vector θ,
where:

• θA→β is the probability of expanding the nonterminal A using the
production A→ β.

It defines distributions GA over trees TA for A ∈ N ∪W :

GA =


δA if A ∈ W∑
A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn) if A ∈ N

where δA puts all its mass onto the singleton tree A, and:

TDA(G1, . . . ,Gn)

(
�� PP

A

t1 tn. . .

)
=

n∏
i=1

Gi(ti).

TDA(G1, . . . ,Gn) is a distribution over TA where each subtree ti is
generated independently from Gi .

85 / 89

DP adaptor grammars

An adaptor grammar (G ,θ,α) is a PCFG (G ,θ) together with a
parameter vector α where for each A ∈ N , αA is the parameter of the
Dirichlet process associated with A.

GA ∼ DP(αA,HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn)

The grammar generates the distribution GS .
One Dirichlet Process for each adapted non-terminal A (i.e., αA > 0).

86 / 89

Recursion in adaptor grammars

• The probability of joint distributions (G,H) is defined by:

GA ∼ DP(αA,HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn)

• This holds even if adaptor grammar is recursive

• Question: when does this define a distribution over (G,H)?

87 / 89

Adaptive fragment grammars
• Disentangle syntactic and Bayesian hierarchy

I Adaptive metagrammar generates fragment distributions
I which plug together as in tree substitution grammar

• Tree fragment sets PA,A ∈ N are smallest sets satisfying:

PA =
⋃

A→B1...Bn∈RA

TreeA({B1} ∪ PB1 , . . . , {Bn} ∪ PBn)

• Grammar’s distributions GA over TA defined using fragment
distributions FA over PA (generalized PCFG rules)

GA =
∑
�� PP

A

B1 Bn. . .
∈PA

FA(�� PP
A

B1 Bn. . .
) TD

�� PP
A

B1 Bn. . .

(GB1 , . . . ,GBn)

• A fragment grammar generates the distribution GS

88 / 89

Adaptive fragment distributions

• HA is a PCFG distribution over PA

HA =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(η δB1 + (1− η)HB1 , . . .)

where η is the fragment exit probability

• Obtain FA by adapting the HA distribution

FA ∼ DP(αA,HA)

• This construction can be iterated, i.e., replace θ with another
fragment distribution

• Question: if we iterate this, when does the fixed point exist, and
what is it?

89 / 89

	Probabilistic Context-Free Grammars
	Chinese Restaurant Processes
	Adaptor grammars
	Adaptor grammars for unsupervised word segmentation
	Adaptor grammars for word segmentation

	Bayesian inference for adaptor grammars
	Modal decoding
	Random vs incremental initialization
	Table label resampling

	Conclusion
	Extending Adaptor Grammars

