The selective left-corner transform
(based on the Johnson and Roark (2000) Coling

paper)

Mark Johnson!

1Brown University
Providence, RI
Mark_Johnson@Brown.edu

November 2009

1/18

Left-corner grammar and tree transforms

e Transforms left-recursion into right-recursion

e Top-down parser using left-corner transformed grammar
simulates a left-corner parser with original grammar

e Defines an invertable mapping from parse trees of original
grammar to parse trees of transformed grammar
o Left-corner grammar transform
» new grammar defines same distribution over transformed trees
as original grammar
» reduces memory required (stack size)
o Left-corner tree transform
» learn rule probabilities from transformed trees
= defines different distribution from grammar estimated from
original trees

» makes some linguistic dependencies local (Manning and
Carpenter 1997)

V]
[

The selective left-corner transform

—_ —_
. D .- ... D
. .
Bl ﬁo « D-A
PARRN DﬁADB
B, i N
e LC
A 677, D—B;
=~ LN\ .
(&% 50 D—-D
YARRN PARRN
D — wDw

D — aD-A where A —a € P— L
D-B — B D-C whereC — Bpe€L
D-D — ¢

e The transformed grammar is not a PCFG because it isn’t
normalized (but it is equivalent to a PCFG)

Epsilon removal D-D — ¢

SoOToOTo

.
A b
.
[0
PN

— w D—w
— wD
— aD-A

-B — 6 D-C
B — 8

.
50 « D—A

LC,e-removal

where A - a € P— L

where D =7 AAA—aeP—-1L
where C' — B € L

where D =7, — B3 e L

The effect of e-removal on top-down rules

o LC « A—A eremoval «
PN PN PN

e Top-down rules in left-corner transform

D — aD-A where A —-a€eP—1L
D-D — ¢

e After e-removal

D — aD-A where A —-aceP—1L
D — « where D =7 AAA—aeP—-L

Pruning useless rules — link constraints

_ _
.
Bl ﬁ() « D-A
B, D-B
B, i N
e LC
A Bn DB,
=~ LN .
(] ﬂo D-D
ARRN AN

e A rule is useless if it is never used in a complete derivation

o Link constraints filter useless left-corner categories
D-X isuseful < D=7 X for someye {VUT}*

(If we've applied e-removal, then v € {V UT}T)

6/18

Pruning useless rules — accessibility constraints

e e
i
Bl ﬁo [0 D—A
3, DB
B, i PN
e LC
A ﬂn DB,
Py N\ .
« ﬁo D—D
LN PANRN

o Accessibility constraints restrict left-corner categories to those
below a non-left child

e DX is useful iff D = S or the original grammar contains a rule

A—aDB, ae{VUTH

Choosing the set of left-corner rules

e The implementor chooses which rules are recognized top-down
and which are recognized left-corner

e The smallest set of rules that results in a non-left-recursive
grammar is:

{A—-BfeP : B=7A...}

o If the preterminals are distinct from the non-terminals, then
every terminal is recognized top-down

Explosion in number of rules

D — wD-w

D — aD-A where A - a € P— L
D-B — B D-C whereC — Bpe€lL
D-D — ¢

e Even after pruning, the transformed grammar can be
quadratically larger than the original grammar

» the transformed grammar can be huge
= sparse data problems with tree transforms
e The transformed grammar contains a rule for each top-down
rule A — « and each ancestor D in original grammar
e The transformed grammar contains a rule for each left-corner
rule C' — B 3 and each ancestor D in original grammar

Top-down factorization

e Problematic rule schema:
D — aD-A where A —-aceP—-1L

= Introduce new nonterminal intervening between D and A

e Resulting rule schemata:

D — A" D-A where A’ is a “new” nonterminal
A — « where A - a € P—L

10/18

Left-corner factorization

e Problematic rule schema:
D-B — 8 D-C whereC —BpelL

= Introduce a new nonterminal intervening between D and B

e Resulting rule schemata:

D-B — C\B D-C where C\B is a “new” nonterminal
C-B — 3 where C' — B € L

e These transformations can also be used in tree-transformations

11/18

Sizes of PCFGs without epsilon removal

none (td) (lc) (td, lc)
G 15,040

LCp | 346,344 30,716

LCy | 345,272 113,616 254,067 22,411

LCr, | 314,555 103,504 232,415 21,364
Tp 20,087 17,146
TN 19,619 16,349 19,002 15,732
1L, 18,945 16,126 18,437 15,618

e P is the set of all productions in G (i.e., the standard
left-corner transform),

e N is the set of all productions in P which do not begin with a
POS tag, and

e [is the set of left-recursive productions.

12 /18

Sizes of PCFGs with epsilon removal

rule factoring

none (td) (lc) (td, 1c)
G 15,040
LCp | 564,430 38,489

LCy | 563,295 176,644 411,986 25,335
LCp, | 505,435 157,809 371,102 23,566
Tr | 22,035 17,398

Ty | 21,580 16,688 20,696 15,795
7., | 21,061 16,566 20,168 15,673

e P is the set of all productions in G (i.e., the standard
left-corner transform),

e N is the set of all productions in P which do not begin with a
POS tag, and

e [is the set of left-recursive productions.

13 /18

Rules in section 23 not seen in 2-21

Transform | none (td) (lc) (td,ld)
none 514
Tp 665 535
In 664 543 639 518
17, 640 547 615 522
Tp. 719 539
TN 718 554 685 521
Troe 706 561 666 521

Labelled precision and recall on section 23

Transform | none (td) (Ic) (td,1d)
none 70.8,75.3
Tp.e 75.8,77.7 74.8,76.9

Tne | 75.8,77.6
Tioe | 75.8,77.4

73.8,75.8 75.5,77.8 72.8,75.4
73.0,74.7 75.6,77.8 72.9,75.4

Binarization and left-corner parsing

Basic idea: delay decisions as long as possible

In standard left-corner parsing = left binarization

Standard left-corner grammar transform:

X —-wXw
X-X — ¢
X-B—-—XABy...B, whereA— DB, ... B,eP

Left binarization and left-corner transform:

X - wX-w

X-X —e¢

X-0—X-A where A — 3 € P
X-0— BX-(B

But this explodes the number of rules, and left-corner
factorization does not help!

16 /18

Binarization with left-corner factoring
o Left-corner factoring grammar
X —-w X-w
XX —e€
X-B— A\B X-A
A\B — where A - B3 € P

» predicts entire RHS after 1st child
e Binarized left-corner factoring grammar

X —wXw

XX —e€

X-B— A\B X-A

A\B — € where A — € P
A\ — B A\pB filter: A— 8By€e P

» incrementally enumerates children on RHS

17 /18

Binarization with left-corner factoring

w1 X—w1

Bl\wl X_Bl
nA\B; X-A

/\
B1 BQ e Bn BQ A\BlBQ

g
2 A\BL...Bu

/\
B, A\Bi ...B,

Tn

18 /18

