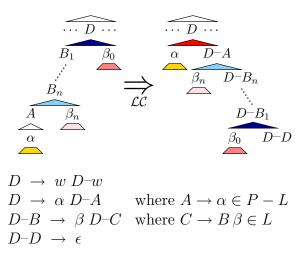
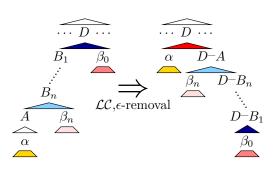
The selective left-corner transform (based on the Johnson and Roark (2000) Coling paper)

Mark Johnson¹

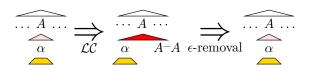

¹Brown University Providence, RI Mark_Johnson@Brown.edu

November 2009

Left-corner grammar and tree transforms


- Transforms left-recursion into right-recursion
- Top-down parser using left-corner transformed grammar simulates a left-corner parser with original grammar
- Defines an invertable mapping from parse trees of original grammar to parse trees of transformed grammar
- Left-corner grammar transform
 - ▶ new grammar defines *same distribution* over transformed trees as original grammar
 - reduces memory required (stack size)
- Left-corner *tree transform*
 - ▶ learn rule probabilities from *transformed trees*
 - \Rightarrow defines different distribution from grammar estimated from original trees
 - ► makes some linguistic dependencies local (Manning and Carpenter 1997)

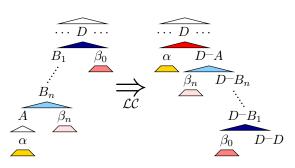
The selective left-corner transform


• The transformed grammar is not a PCFG because it isn't normalized (but it is equivalent to a PCFG)

Epsilon removal D- $D \rightarrow \epsilon$

$$\begin{array}{ll} D \to w \ D - w \\ D \to w \ D \\ D \to \alpha \ D - A & \text{where } A \to \alpha \in P - L \\ D \to \alpha & \text{where } D \Rightarrow_L^\star A, A \to \alpha \in P - L \\ D - B \to \beta \ D - C & \text{where } C \to B \ \beta \in L \\ D - B \to \beta & \text{where } D \Rightarrow_L^\star, C \to B \ \beta \in L \end{array}$$

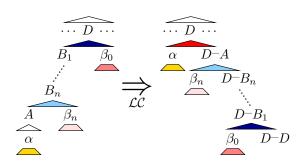
The effect of ϵ -removal on top-down rules


• Top-down rules in left-corner transform

$$\begin{array}{ll} D \ \rightarrow \ \alpha \ D – A & \text{where} \ A \rightarrow \alpha \in P - L \\ D – D \ \rightarrow \ \epsilon & \end{array}$$

• After ϵ -removal

$$\begin{array}{ccc} D & \to & \alpha & D - A & \text{where } A \to \alpha \in P - L \\ D & \to & \alpha & \text{where } D \Rightarrow_L^\star A, A \to \alpha \in P - L \end{array}$$


Pruning useless rules — link constraints

- A rule is *useless* if it is never used in a complete derivation
- Link constraints filter useless left-corner categories

$$D^-X$$
 is useful \Leftrightarrow $D \Rightarrow_L^{\star} X \gamma$ for some $\gamma \in \{V \cup T\}^{\star}$ (If we've applied ϵ -removal, then $\gamma \in \{V \cup T\}^+$)

Pruning useless rules — accessibility constraints

- Accessibility constraints restrict left-corner categories to those below a non-left child
- D-X is useful iff D = S or the original grammar contains a rule $A \to \alpha D\beta$, $\alpha \in \{V \cup T\}^+$

Choosing the set of left-corner rules

- The implementor chooses which rules are recognized top-down and which are recognized left-corner
- The smallest set of rules that results in a non-left-recursive grammar is:

$$\{A \to B\beta \in P : B \Rightarrow_P^{\star} A \ldots \}$$

• If the preterminals are distinct from the non-terminals, then every terminal is recognized top-down

Explosion in number of rules

$$\begin{array}{ll} D \to w \ D^-w \\ D \to \alpha \ D^-A & \text{where } A \to \alpha \in P-L \\ D^-B \to \beta \ D^-C & \text{where } C \to B \ \beta \in L \\ D^-D \to \epsilon & \end{array}$$

- Even after pruning, the transformed grammar can be quadratically larger than the original grammar
 - ▶ the transformed grammar can be huge
 - \Rightarrow sparse data problems with tree transforms
- The transformed grammar contains a rule for each top-down rule $A \to \alpha$ and each ancestor D in original grammar
- The transformed grammar contains a rule for each left-corner rule $C \to B \, \beta$ and each ancestor D in original grammar

Top-down factorization

• Problematic rule schema:

$$D \rightarrow \alpha D - A$$
 where $A \rightarrow \alpha \in P - L$

- \Rightarrow Introduce new nonterminal intervening between D and A
 - Resulting rule schemata:

$$D \to A' D - A$$
 where A' is a "new" nonterminal $A' \to \alpha$ where $A \to \alpha \in P - L$

Left-corner factorization

• Problematic rule schema:

$$D - B \rightarrow \beta D - C$$
 where $C \rightarrow B \beta \in L$

- \Rightarrow Introduce a new nonterminal intervening between D and B
 - Resulting rule schemata:

$$D^-B \to C \backslash B \ D^-C$$
 where $C \backslash B$ is a "new" nonterminal $C^-B \to \beta$ where $C \to B \ \beta \in L$

• These transformations can also be used in tree-transformations

Sizes of PCFGs without epsilon removal

	none	(td)	(lc)	(td, lc)
\overline{G}	15,040			
\mathcal{LC}_{P}	346,344		30,716	
\mathcal{LC}_N	345,272	113,616	254,067	$22,\!411$
\mathcal{LC}_{L_0}	314,555	$103,\!504$	$232,\!415$	21,364
$\overline{\mathcal{T}_P}$	20,087		17,146	
\mathcal{T}_N	19,619	16,349	19,002	15,732
\mathcal{T}_{L_0}	18,945	16,126	$18,\!437$	15,618

- P is the set of all productions in G (i.e., the standard left-corner transform),
- N is the set of all productions in P which do not begin with a POS tag, and
- L_0 is the set of left-recursive productions.

Sizes of PCFGs with epsilon removal

	rule factoring				
	none	(td)	(lc)	(td, lc)	
\overline{G}	15,040				
\mathcal{LC}_{P}	564,430		38,489		
\mathcal{LC}_N	563,295	176,644	411,986	$25,\!335$	
\mathcal{LC}_{L_0}	505,435	157,899	371,102	$23,\!566$	
$\overline{\mathcal{T}_P}$	22,035		17,398		
\mathcal{T}_N	21,589	16,688	20,696	15,795	
\mathcal{T}_{L_0}	21,061	$16,\!566$	20,168	15,673	

- P is the set of all productions in G (i.e., the standard left-corner transform),
- N is the set of all productions in P which do not begin with a POS tag, and
- L_0 is the set of left-recursive productions.

Rules in section 23 not seen in 2–21

Transform	none	(td)	(lc)	(td,ld)
none	514			
$\overline{\mathcal{T}_P}$	665		535	
\mathcal{T}_N	664	543	639	518
T_{L_0}	640	547	615	522
$\mathcal{T}_{P,\epsilon}$	719		539	
$\mathcal{T}_{N,\epsilon}$	718	554	685	521
$\mathcal{T}_{L_0,\epsilon}$	706	561	666	521

Labelled precision and recall on section 23

Transform	none	(td)	(lc)	(td,ld)
none	70.8,75.3			
$\overline{\mathcal{T}_{P,\epsilon}}$	75.8,77.7		74.8,76.9	
$\mathcal{T}_{N,\epsilon}$		73.8,75.8		
$\mathcal{T}_{L_0,\epsilon}$	75.8,77.4	73.0, 74.7	75.6,77.8	72.9,75.4

Binarization and left-corner parsing

- Basic idea: delay decisions as long as possible
- In standard left-corner parsing $\Rightarrow left \ binarization$
- Standard left-corner grammar transform:

$$X \to w \ X - w$$

 $X - X \to \epsilon$
 $X - B_1 \to X - A \ B_2 \ \dots \ B_n$ where $A \to B_1 \ \dots \ B_n \in P$

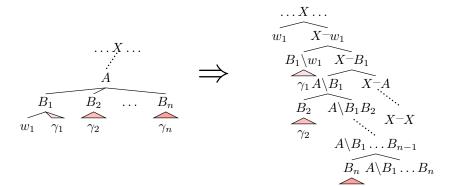
• Left binarization and left-corner transform:

$$\begin{array}{ll} X \to wX^-w \\ X^-X \to \epsilon \\ X^-\beta \to X^-A & \text{where } A \to \beta \in P \\ X^-\beta \to B \ X^-\beta B \end{array}$$

• But this explodes the number of rules, and left-corner factorization does not help!

Binarization with left-corner factoring

• Left-corner factoring grammar


$$X \to w \ X - w$$
 $X - X \to \epsilon$
 $X - B \to A \setminus B \ X - A$
 $A \setminus B \to \beta$ where $A \to B \ \beta \in P$

- predicts entire RHS after 1st child
- Binarized left-corner factoring grammar

$$\begin{array}{ll} X \to w \ X - w \\ X - X \to \epsilon \\ X - B \to A \backslash B \ X - A \\ A \backslash \beta \to \epsilon & \text{where } A \to \beta \in P \\ A \backslash \beta \to B \ A \backslash \beta B & \text{filter: } A \to \beta \, B \, \gamma \in P \end{array}$$

incrementally enumerates children on RHS

Binarization with left-corner factoring

 γ_n