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1 Introduction

This paper summarizes our recent work in developing statistical models of lan-
guage which are compatible with the kinds of linguistic structures posited by
current linguistic theories. Unlike most work in statistical computational lin-
guistics, we are interested in models which are capable of capturing the kinds
of non-local context-sensitive dependencies captured by modern theories of syn-
tax. In a series of papers we have developed tools for estimating or “learning”
such models from data (Johnson et al., 1999; Johnson and Riezler, 2000; Riezler
et al., 2000) and this paper provides a high-level overview of both the general
approach and the methods we developed; however, the reader should refer to
the original papers for full details and experimental results.

The goal of this work is to understand how human language can be learnt
and used in comprehension and generation. These investigations are couched in
a statistical framework because we think that much of language learning and use
involves weighing weak, unreliable cues. Humans seem exquisitely sensitive to
frequency information. In psycholinguistics, lexical frequency effects are often
stronger than purely non-lexical syntactic phenomena, and researchers in the
field of language acquisition note that children can detect prosodic cues that are
often (but not always) correlated with syntactic structure. In language compre-
hension, there are prosodic and lexical cues which are weakly correlated with
syntactic structure or semantic interpretation, and it seems reasonable to ex-
pect human language users to exploit these regularities. Turning to theoretical
results on learning, it seems that statistical learners may be more powerful than
non-statistical learners. For example, while Gold’s famous results showed that
neither finite state nor context free languages can be learnt from positive exam-
ples alone (Gold, 1967), it turns out that probabilistic context free languages can
be learnt from positive examples alone (Horning, 1969). Informally, a class of
languages may be statistically learnable even though its categorical counterpart
is not because the statistical learning framework makes stronger assumptions
about the training data (i.e., it is distributed according to some probabilistic
grammar from the class) and accepts a weaker criterion for successful learning
(convergence in probability).

Our statistical approach requires that the space of possible human languages
be described in terms of a finite dimensional parameter space. In this respect
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our approach is similiar to the “Principles and Parameters” approach (Chomsky,
1981), except that our parameters are real-valued rather than binary-valued.
Clearly, the requirement that all human languages can be described in such
terms implies that there are innate constraints on possible human languages. In
principle our statistical learning methods can be applied to highly constrained
models with a small number of parameters (which would presumably have to
be very abstract) as well as to very general models with a very large number of
parameters. In this sense our approach is agnostic concerning the nature of the
innate constraints. As we explain below, we believe that statistical approaches
to language learning provide a general theoretical framework in which diverse
models of learning can be investigated empirically, which we expect will be far
more interesting than philosophical speculation.

Our adoption of a statistical approach does not mean that we claim that hu-
mans are actually performing numerical calculations during language learning
or language use. Indeed, in our exeriments we are often comparing vastly dif-
ferent probabilities that vary by several orders of magnitude, so high precision
numerical calculation might not be necessary. It may turn out that one can
obtain similiar results by classifying events along a finite ordinal scale, say, as
“likely”, “unlikely” or “impossible”. Even if this can be done, however, we claim
that statistics still plays a foundational role in the study of language learning
and use, since statistics provides the basic mathematical theory of inference
from uncertain data. As such, it provides the theory of optimal learners and
optimal comprehenders (optimal in an information-theoretic sense) which serve
as idealizations of, and upper bounds to, human performance. If an optimal
statistical learner fails to learn a language given certain kinds of inputs (say,
phonological forms alone) under certain assumptions about universal grammar,
then we can be fairly certain that human beings either have access to richer
data or have stronger biases that restrict the class of possible grammars.

Even though our emphasis in this paper is scientific, we would like to point
out that this research has important technological applications. Unlike many
of the models used in current statistical computational linguistics, the kinds of
grammars we are working with, Lexical Functional Grammars, provide detailed
syntactic and semantic descriptions of the sentences of the language. This kind
of detailed description is essential if computers are to perform tasks that re-
quire a deeper and more detailed “understanding” of natural language than the
current superficial models permit.

An immediate goal of this research is to find a way of defining probability
distributions over linguistically realistic structures in a way that permits us to
define language learning and language comprehension as statistical problems,
and the rest of this paper concentrates on these questions. The next section
describes the linguistic theory, Lexical-Functional Grammar, which defines the
linguistic structures used in this research, and the following section explains how
we define a probability distribution over these structures. Section 4 describes
how one can learn the parameters that define probability distributions over these
structures in principle, and points out some of the practical problems that make
straight-forward ways of estimating these distributions infeasible. This leads us
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to the “pseudo-likelihood” estimation methods described in section 5, which
also raise interesting questions concerning the nature of the data available to
the child and modularity of language learning and processing.

2 Lexical-functional grammar

This research differs from most work in statistical computational linguistics in
that it is compatible with and builds on the results of modern linguistic theory.
While our approach is compatible with virtually all existing theories of gram-
mar (including transformational grammar and minimalist grammars), we have
adopted the framework and structures of Lexical-Functional Grammar (LFG)
in our research. LFG has several properties that make it especially well-suited
for research involving linguistically-oriented probabilistic grammars. The for-
mal definition of LFGs and the structures they generate is clear and precise
(Kaplan, 1995), and LFG provides simple, clean descriptions of a wide range of
typologically diverse linguistic phenomena (Bresnan, 1982). Recent linguistic
work integrating Optimality-theory with LFG helps to identify features that
are likely to be useful in the probabilistic models discussed in the next sec-
tion (Bresnan, 1998; Johnson, 1998). Equally important, the LFG framework
outlines all of the components of grammar and there are existing, reasonably
comprehensive, LFGs for languages such as English and German. There is also
a substantial amount of existing computational research on LFG, including on
efficient parsing with large grammars (Maxwell III and Kaplan, 1993), which
we exploit in our research.

An LFG structure of a sentence consists of a small number of distinct compo-
nents, such as the phonological structure, the syntactic structure, the semantic
interpretation, etc. Unlike linguistic theories such as HPSG (Pollard and Sag,
1987; Pollard and Sag, 1994), these components are heterogeneous, permitting
the “natural” data-structures for each component to be used (e.g., syntactic
structures are trees, semantic interpretations are represented by terms from the
λ-calculus, etc.).

To keep things simple in this paper, however, we will only use a subset of
these components and simplify them where appropriate. For example, we take
the phonological component of a sentence to be just a string of words, and ig-
nore prosody and other phonological details. Similarly, we take the semantic
interpretation of a sentence to be its predicate-argument structure (roughly,
“who did what to whom”), and ignore mood, tense, etc. We make extensive
use of two components in this paper. The constituent or c-structure of a sen-
tence shows the temporal arrangement of words, phrases and clauses organized
as a tree structure. The functional or f-structure of a sentence is an attribute-
value structure that shows the grammatical function relationships between the
phrases and clauses of a sentence, abstracting away from details of linear or-
der. The particular grammatical function relationship involved (e.g., subject,
object, etc.) is represented by the attribute name, and f-structures also en-
code the argument-adjunct distinction. Although it probably deserves to be a
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Figure 1: The c-structure and the f-structure for the English sentence Sandy
wants to drink wine.

component in its own right, for simplicity we follow early work in LFG that
encodes the predicate-argument structure of a phrase or sentence as the value
of the predicate attribute in an f-structure. Figure 1 depicts the c-structure
and f-structure of the English sentence Sandy wants to drink wine.

One of the reasons for adopting an attribute-value representation of f-structure
in LFG is that such structures can describe the multiple functional roles that a
single constituent can play in a single sentence. For example, in Sandy wants to
drink wine the NP Sandy functions both as the subject of both the verb wants
and the verb drink (cf., Sandy wants Sam to drink wine). This is indicated by
a re-entrancy in the f-structure, depicted by the shared index “ 1 ” in Figure 1.

Similiar re-entrancies are used to indicate the functional roles played in rel-
ative clauses and wh-questions, where a functional dependency may span an
unbounded distance in the constituent structure. For example, in the question
Which bottle did Sandy want Sam to open?, the wh-phrase which bottle functions
as the object of the verb open even though the two elements are discontinuous
in c-structure terms. As explained in section 3, lexical dependencies between
governor-governee pairs play an important role in our probabilistic model, and
their explicit representation in LFG’s f-structure makes the construction of our
probabilistic model much easier. (As far as we can tell, because other cur-
rent stochastic parsing models compute such lexical dependencies directly from
c-structure, they tend to ignore most of the more complicated cases of depen-
dencies).

F-structures also make explicit other important linguistic information. For
example, the f-structure in Figure 1 encodes person and number features on
noun phrases (important for subject-verb and pronoun agreement); although not
shown here, f-structures also encode verb tense and other semantically important
information. Notice that the f-structure makes explicit dependencies that may
be non-local or only indirectly marked in the c-structure, and represents these
in a relatively language-independent way. This gives LFG the power to provide
simple descriptions of phenomena such as crossed serial dependencies, which
cannot be described using weaker, purely tree-based approaches such as context-
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free grammars (Bresnan et al., 1982; Shieber, 1985; Kaplan and Zaenen, 1995).
To be well-formed, an LFG linguistic structure must satisfy certain con-

straints. Some of these constraints ensure the consistency of the component
structures; e.g., that the words of the phonological structure are (by and large)
the same as the words in the syntactic structure. In a conventional (non-
stochastic) LFG for a particular language, other language-specific constraints
are also imposed, which force the structure to be grammatical in that language.
For example, a conventional LFG for English might impose the constraint that
a direct object NPs follow their governing verbs or prepositions, yielding famil-
iar English SVO word order, whereas a corresponding LFG for German would
impose different word order constraints that permit SOV word order.

An account of language acquisition should explain how the properties that
differentiate the language being learnt from other possible human languages are
acquired. Since one of the goals of this research is to determine the extent
to which language learning can be viewed as a statistical parameter estimation
problem, the restrictions or constraints imposed on possible linguistic structures
should be universal, i.e., satisfied by all possible human languages. Thus the
set of candidate linguistic structures (which we call Ω below) should include
all structures possible in any human language. (This desideratum also applies
to Optimality-theory versions of LFG). Unfortunately, such “universal gram-
mars” are not yet available: indeed, there are still major conceptual issues to
be resolved before such a universal grammar (for any linguistic theory) can be
constructed. For example, what is the nature of the lexicon in a universal gram-
mar? Since a universal grammar should by definition be able to generate any
linguistic structure from any possible human language, and since these linguistic
structures include arbitrary lexical details (e.g., phonological forms and seman-
tic intepretations), it would seem that a universal grammar must be capable
of generating an infinite number of (possible) lexical items. While this is not
incompatible with a finite universal grammar (since the lexicon could itself be
specified by a generative process), the nature of the universal constraints on
possible lexical entries seems largely unexplored.

Because of the lack of any reasonable candidate for a universal grammar,
our computational experiments to date have utilized grammars for specific lan-
guages such as English (Johnson et al., 1999; Johnson and Riezler, 2000) and
German (Riezler et al., 2000). Thus the statistical models developed in these
experiments in effect learn how likely each grammatical linguistic structure of
the particular language are: thus these models are capable of interpreting and
disambiguating phonological forms in comprehension, but do not directly model
language learning per se.
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3 Probability distributions over linguistic struc-

tures

This section explains how we define a probability distribution over a set of
possible linguistic structures Ω. In a model of language learning, Ω should
be the set of all structures that could appear in any human language, but for
a model of parsing of a single language one might take Ω to be the set of
grammatical structures of that language. Note that in either of these cases, Ω
is a countably infinite set, even if it is highly constrained by innate, language-
specific constraints.

The probability distribution over Ω is defined in terms of a finite vector
of features f = (f1, . . . , fm), where each fj is a function mapping a linguistic
structure x ∈ Ω to a real number fj(x). (The term ‘feature’ is used both in
statistics and linguistics; we follow the standard usage in statistics here, and
use the term ‘attribute’ to refer to components of attribute-value structures
or node labels). While the mathematics impose few constraints on what the
features can be, we generally take fj(x) to be the number of times that a given
construction appears in the linguistic structure x ∈ Ω, which means that fj(x)
is a non-negative integer.

The features can be lexicalized, i.e., they can make reference to a specific
words or word classes, but they need not be. For an example of a non-lexicalized
feature, let f1(x) be the number of times that a direct object immediately
precedes its governing verb in x; this is presumably almost always zero for
sentences of English, but is often non-zero for a head-final language like German.
For an example of a lexicalized feature, let f2(x) is the number of times the verb
eat appears with a direct object in the structure x; if this is close to number
of times eat appears in x then presumably eat is a primarily transitive verb.
The selection of features is presumably an empirical linguistic issue (just as the
selection of constraints in an Optimality Theory grammar or of parameters in
a Principles and Parameters model are empirical issues).

In our experiments with probabilistic LFGs we use a wide variety of fea-
tures (see Johnson et al. (1999) for a more detailed description). Inspired by
probabilistic context-free grammars, we introduced a feature fA for each cate-
gory A that can label a c-structure node, and define fA(x) to be the number
of times a node labelled A appears in the c-structure of x. Additionally, the
probabilistic LFGs evaluated below used the following kinds of features, whose
selection was guided by the principles proposed by Hobbs and Bear (1995).
Adjunct and argument features indicate adjunct and argument attachment re-
spectively, and permit the model to capture a general argument attachment
preference. In addition, there are specialized adjunct and argument features
corresponding to each grammatical function used in LFG (e.g., subject, ob-

ject, complement, adjunct, etc.) There are features indicating both high
and low attachment (determined by the complexity of the phrase being attached
to). Another feature indicates non-right-branching nonterminal nodes. There is
a feature for non-parallel coordinate structures (where parallelism is measured
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in constituent structure terms). Each f-structure attribute-atomic value pair
which appears in any feature structure is also used as a feature. We also use
a number of features identifying syntactic structures that seem particularly im-
portant in the particular corpora we used in our experiments, such as a feature
identifying NPs that are dates (it seems that date interpretations of NPs are
preferred if they are available).

Ideally we would like to include lexical features directly in our experiments
to capture the dependencies between governors and the heads of the phrases
that they govern, but we did not have enough training data to estimate these
directly in our experiments. However, probabilistic models of such dependencies
can be constructed by other means, and we can include information from such
“auxiliary” models in our model as follows (Johnson and Riezler, 2000; Riezler
et al., 2000). Suppose we have an auxiliary model R which assigns a positive
numerical preference score R(x) to each x ∈ Ω. (R might define a probability
distribution over Ω, but need not). Then we define a new feature fR(x) =
log R(x), and treat it otherwise just as another feature in our model. In effect,
the preference information from the auxiliary model R is treated as another
source of information that will be taken into account in the model we construct.
This provides a general mechanism whereby a range of complex preferences
(possibly including innate ones) can be included in a statistical model, which
generalizes the “reference distribution” approach described in Jelinek (1997).

We now explain how the probability of a particular linguistic structure x is
defined in terms of its feature values f(x) = (f1(x), . . . , fm(x)). While there are
many ways in which this can be done, we use the class of log-linear models in
our research (Abney, 1997). We justify our choice of log-linear models after we
have explained how they are defined.

Given a set of linguistic structures Ω and a feature vector (f1, . . . , fm), a
log-linear model is defined by a parameter vector θ = (θ1, . . . , θm), where each
θj is a real number. Informally, θj is the “weight” assigned to the corresponding
feature fj . If θj is positive then higher values of fj(x) increase the probability
of x, and if θj is negative then higher values of fj(x) decrease the probability
of x (assuming that the values of fj′(x), j′ 6= j stay the same).

Mathematically, the probability Pθ(X = x) of x given the parameter vector
θ is defined as follows. We define the weight Vθ(x) of x as the exponential
of a linear combination of the feature values of x, weighted according to the
parameter vector. (Thus the logarithm of Vθ(x) is a linear combination of the
feature values, hence the name log-linear model).

Vθ(x) = exp(

m
∑

j=1

θj fj(x))

A probability distribution over linguistic structures Ω must satisfy the normal-
ization constraint that the sum of probability of the structures in Ω is 1, i.e.,
∑

x∈Ω Pθ(X = x) = 1. We cannot set Pθ(X = x) = Vθ(x) because in general Vθ

does not satisfy the normalization constraint. However, we can make Pθ(X = x)

7



proportional to Vθ(x) by dividing the latter by a normalization factor known as
the partition function Zθ (the name comes from statistical physics, which was
the first major application of log-linear models).

Zθ =
∑

x∈Ω

Vθ(x) (1)

Pθ(X = x) =
Vθ(x)

Zθ

(2)

To be honest, the class of log-linear models is just one of large number of classes
of probabilistic models, and we do not know if human language is best de-
scribed by such a model. Never the less, given the lack of even weak evidence
for other model classes, the flexibility of log-linear models seem to make them
a good class to investigate first. Unlike probabilistic context free grammars
and related models, log-linear models permit essentially arbitrary dependencies
between features (include context-sensitive dependencies), which makes them
ideal for defining probability distributions over linguistically realistic structures
(Abney, 1997). Additionally, there are information-theoretic reasons for prefer-
ring log-linear models over other model classes. The class of log-linear models
is also the class of maximum entropy models; roughly speaking, these are the
models which contain the minimum additional information over and above the
information contained in the training data (see Jelinek (1997) for a textbook
introduction). Virtually all of the well-known probabilistic models of language
are subclasses of the class of log-linear models (e.g., probabilistic context-free
grammars, hidden Markov models, etc.). Finally, even though one might sus-
pect that the restriction to linear combinations of the feature values is unduely
restrictive, because no restrictions are placed on the features themselves, we can
define a feature which is a nonlinear combination of other features, so the class
of log-linear models is much less restrictive than it may first seem.

Because the parameter vector θ determines the distribution of linguistic
structures in the language, estimating θ corresponds to learning the language:
we discuss this problem in the next and following sections. Suppose we have the
parameter vector for a language—how might it be used in comprehension and
production? To keep things simple, ignore contextual and other factors, and
assume that linguistic structures are in fact distributed according to Pθ. Com-
prehension is the problem of identifying the intended semantic interpretation s
given a phonological form w (here taken to be a word string), while production
is the inverse: s is given and we need to identify the corresponding w. Given
these assumptions, it is possible to show that a language user minimizes their
expected error rate by selecting the most probable linguistic structure whose
phonological form is w in comprehension, and by selecting the most probable
linguistic structure whose semantic interpretation is s in production.

We can give a more formal account of the parsing problem as follows (the
account of the generation problem is similiar). Let S be the function map-
ping a linguistic structure to its semantic interpretation, and (abusing notation
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Figure 2: Parsing the phonological form w only involves optimization over the
set Ω(w) of linguistic structures with phonological form w.

somewhat) let Ω(w) be the set of linguistic structures with phonological form
w. Then the semantic interpretation s′ with minimum expected error in the
parsing problem is:

s′ = argmax
s

Pθ(S = s|W = w) (3)

= argmax
s

∑

x∈Ω(w)

s.t. S(x)=s

Vθ(x) (4)

In equation (4) we see that stochastic parsing only involves an optimization
of Vθ over the set Ω(w), and does not involve computation of the partition func-
tion Zθ. The domain of optimization is depicted graphically in Figure 2. The
“off line parsability constraint” of LFG ensures that Ω(w) (the set of possible
parses of w) is always finite (Kaplan and Bresnan, 1982; Pereira and War-
ren, 1983) even though the set of possible linguistic structures Ω is not,1 so
the optimization (3) can be carried out by enumerating the members of Ω(w).
Since the functions V and S are effectively computable, this implies that s′ is
effectively computable as well. Moreover, standard parsing algorithms for non-
probabilistic grammars can be used to enumerate Ω(w) (see Maxwell III and
Kaplan (1993) for a discussion of LFG parsing). Thus for hand-crafted gram-
mars which produce only a moderate number of detailed parses per sentence all
of the technology needed to find the parse with the minimum expected error
already exists.

4 Learning grammars

The previous section described how we define a log-linear probability distribu-
tion over linguistic structures Ω. We now turn to the problem of determining the
parameter vector θ from some observational data D. At this abstract level, this
is just a statistical estimation problem and a wealth of statistical theory applies

1The off-line parsability constraint only implies that Ω(w) is finite if the lexicon itself is
finite, which may not be true if Ω is taken to be the set of structures generated by a universal
grammar.
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to it. The difficulty of this problem depends on the set of possible structures
Ω, the features f which describe each structure, and the data D from which the
estimate is to be made. There is no guarantee that the parameter vector can
be estimated at all, and even if it can be, it may be the case that an unreason-
ably large amount of data required to estimate it accurately, no matter what
estimation procedure is used. In general, there is a trade-off between model
bias (i.e., constraints on possible languages) and the variance in estimates of
the model’s parameters from data: changing the model class to lower the bias
raises the variance in the estimated models (Geman, Bienenstock, and Doursat,
1992). This argument is familiar in the study of language acquisition, where it is
standardly used to argue for restrictive innate constraints on possible languages.
We would like to suggest that a statistical perspective enriches the debate in
several ways. First, “soft” probabilistic biases can lower variance, so it may
not be necessary to posit “hard” categorical innate constraints to ensure ac-
curate learning. Second, statistics provides quantitative tools for investigating
bias/variance trade-offs, which may add an additional empirical dimension to
the study of universal grammar and language acquisition.

In our experiments we use maximum likelihood estimators (but see the dis-
cussion of regularization in section 5). A maximum likelihood estimator selects
a parameter vector θ which makes the data D as likely as possible, i.e., it ig-
nores the prior term and maximizes the log-likelihood LD(θ) = log P(D|θ) of
the training data in θ. Under very general conditions, maximum likelihood esti-
mation is unbiased (the expected value of parameter estimate is its true value),
consistent (as the size of the data grows, the estimated parameters converge on
the true value) and asymptotically efficient (there is no other estimation proce-
dure whose parameter estimates have uniformly lower variance). Further, given
the independence assumptions below the maximum likelihood estimator for a
log-linear model selects the closest model to the training data distribution in
terms of Kullback-Leibler divergence (an information-theoretic measure of the
distance between two distributions).

More formally, suppose that D consists of a sequence of fully observed parses
D = (x1, . . . , xn), xi ∈ Ω. (“Fully observed” means that the learner has access
to the complete linguistic structures; we consider the problem of learning from
phonological forms alone below). We make the standard statistical assumptions
that each observation xi is independent of the other observations xi′ , i

′ 6= i,
and that each xi is identically distributed according to Pθ for some unknown
θ (these assumptions are undoubtedly incorrect, but we hope that they are
approximately true). Given these assumptions, the likelihood LD of the data D

and the corresponding maximum likelihood estimate θ̂ of θ are:

LD(θ) =

n
∏

i=1

Pθ(X = xi) (5)

θ̂ = argmax
θ

LD(θ)

Figure 3 graphically depicts this maximum likelihood estimation. Informally,
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Figure 3: Maximum likelihood estimation from fully observed (parsed) data

maximum likelihood estimation adjusts θ to make the weight Vθ(xi) of each
training datum as large as possible relative to the partition function Zθ (the
sum of the weights of all linguistic structures Ω).

It is straight forward to show that LD has a unique maximum value, and
at this maximum the expected value E

θ̂
(fj) of each feature under the distribu-

tion P
θ̂

is equal to its expected value under the “empirical distribution” of the
training data D, i.e.,:

E
θ̂
(fj) =

1

n

n
∑

i=1

fj(xi), j = 1, . . . , m.

Thus maximum likelihood estimation selects a parameter vector θ̂ so that the
expected value of each feature under the estimated distribution P

θ̂
is the same

as the average value of that feature in the training data, which intuitively seems
to be a reasonable thing to do.

Now we turn to the case where the training data is partially hidden and
consists of phonological forms alone, i.e., D′ = (w1, . . . , wn), where each wi is
a phonological form (here taken to be a string of words). In this situation the
training data does not uniquely identify the linguistic structure corresponding
to each phonological form wi; all we know is that it lies somewhere inside the set
Ω(wi) = {x : W (x) = wi} of linguistic structures whose phonological forms are
wi. Making the same independence assumptions as before, the likelihood L′

D′

of the data D′ is now a product of the marginal probability of each wi, where
the marginal probability of w is the sum of the probability of each x ∈ Ω(w).

Pθ(W = w) =
∑

x∈Ω(w)

Pθ(X = x)

L′

D′(θ) =

n
∏

i=1

Pθ(W = wi) (6)

θ̂ = argmax
θ

L′

D′(θ)

Figure 4 graphically depicts the quantity being maximized during estimation
from phonological forms alone. Notice that the maximum likelihood estimator
selects the θ that places maximum weight on the Ω(wi) as compared to the
whole of Ω.
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Figure 4: Maximum likelihood estimation from partially visible (phonological
form) data

There is a standard technique known as the Expectation-Maximization (EM)
algorithm which reduces the optimization required in maximum likelihood es-
timation from partially hidden data to a series of optimizations of the kind
involved in maximum likelihood estimation from fully visible data (Dempster,
Laird, and Rubin, 1977). The technique requires an initial guess θ(0) of the
parameter vector as well as the partially observed data D′, and it produces a
sequence of estimates θ(1), θ(2), . . .. This sequence has the property that that
each additional estimate typically increases, and provably does not decrease,
the likelihood of the partially observed data, i.e., L′

D′(θ(k+1)) ≥ L′

D′(θ(k)). In-
formally, the technique involves treating each partial observation wi as a set
of fully observed data consisting of each x ∈ Ω(wi), with each full observation
x weighted according to Pθ(k)(x), where θ(k) is the estimate of θ at the kth
iteration. Thus EM “pays most attention to” the x ∈ Ω(wi) that its current
estimate of θ assigns the highest probability to.

Unlike the fully visible case, there is no guarantee that the likelihood function
for partially hidden data has only a single local maximum, and the EM algo-
rithm can get “trapped” in such local maxima. Indeed, there is no guarantee
that estimation is possible at all: the parameter vector θ may simply be non-
identifiable from the kind of data available. For example, it is logically possible
that universal grammar permits two different languages with exactly the same
marginal distribution over phonological forms, even though the two languages
associate each phonological form with different semantic interpretations.

5 Pseudo-likelihood estimation

The previous section introduced maximum likelihood estimation of θ for both
fully visible and partially hidden data. Unfortunately, it seems that directly
maximizing the likelihood (5) is computationally infeasible even for fully visible
data (and since the EM technique reduces the partially hidden data case to
the fully visible data case, it too is infeasible). The standard algorithms for
maximizing this likelihood are iterative, and require the calculation of the ex-
pected value of each feature Eθ(fj) for a variety of different parameter vectors
θ (see Berger, Della Pietra, and Della Pietra (1996) and Jelinek (1997) for an
introduction to these algorithms). Informally, the cause of the infeasibility is
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that maximum likelihood estimation requires us to select the parameter vector θ
that maximizes the weight Vθ(xi) on the observed datum xi relative to the sum
Zθ of the weights on all possible linguistic structures x ∈ Ω (see Figure 3 and
equations 1, 2 and 5). Because Ω is infinite, we cannot calculate the partition
function Zθ or the feature expectations Eθ(fj) by directly enumerating Ω. In-
deed, even calculating the probability Pθ(X = x) of a single linguistic structure
x seems infeasible, since it too crucially involves Zθ (see equation 2).

If Ω and the feature vector f have a suitably simple structure, then it may
be the case that Zθ and Eθ(fj) can be calculated analytically. For example, if Ω
is the set of trees generated by a context free grammar and the feature fi maps
an x ∈ Ω to the number of times the ith production is used in a derivation of
x, then Zθ and Eθ(fj) can be calculated without an explicit enumeration of Ω
(Abney, McAllester, and Pereira, 1999; Chi, 1999). However, this calculation
depends crucially on the context free or Markovian independence properties of
Probabilistic Context Free Grammars. It seems that such context free systems
cannot describe the true set Ω of possible linguistic structures (Shieber, 1985),
yet these context free properties are what makes the direct calculation of Zθ

and Eθ(fj) feasible. Indeed, precisely because the Lexical Functional Grammars
used in this research are capable of capturing the non-local, context-sensitive
dependencies of natural language, the methods that can be used to calculate Zθ

and Eθ(fj) for PCFGs do not extend to LFGs.
Never the less, we believe that there may be techniques for calculating or ap-

proximating Zθ for LFGs that avoid explicit enumeration. Abney (1997) points
out that Eθ(fj) can be approximated using Monte Carlo sampling techniques
that do not enumerate all of Ω. While this is in principle correct, a “back of
the envelope” calculation suggests that the particular Hastings Metropolis sam-
pling scheme that Abney proposes is computationally impractical for all but
small grammars (see Johnson et al. (1999) for further discussion).

However, note that the full joint distribution over phonological forms and
their parses is not actually required for natural language processing tasks. For
example, as explained above, comprehension and parsing only requires the con-
ditional distribution P(X |W ) of linguistic structures given their phonological
forms (see equation (3) and Figure 2 above). Crucially, estimating these condi-
tional distributions is often computationally feasible, even though estimation of
the joint distribution is infeasible.

Consider the case where the data is fully observed: D consists of parses
D = (x1, . . . , xn), xi ∈ Ω as above. Each parse is associated with a phonological
form wi = W (xi). Making the same independence assumptions as before, the
conditional likelihood or pseudo-likelihood PLD of the data D and the corre-
sponding maximum likelihood estimate θ̂ of θ are:

Zθ(w) =
∑

x∈Ω(w)

Vθ(x)

Pθ(X = x|W = w) =
Vθ(x)

Zθ(w)
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Figure 5: Maximum pseudo-likelihood estimation from fully observed data

PLD(θ) =

n
∏

i=1

Pθ(X = xi|W = wi) (7)

θ̂ = argmax
θ

PLD(θ)

Whereas the likelihood LD is a product of (unconditional) probabilities (5),
the pseudo-likelihood PLD is a product of conditional probabilities (7). Ulti-
mately, pseudo-likelihood differs from likelihood in that pseudo-likelihood only
involves Zθ(w) in place of the infeasible Zθ in the likelihood. It is straight
forward to show that at the maximum of (7), the sum of the conditional expec-
tations of each feature must be same as sum of their empirical values, where
Eθ(f |W ) is the expectation of f with respect to the conditional distribution
Pθ(X |W ):

n
∑

i=1

E
θ̂
(fj |W = wi) =

n
∑

i=1

fj(xi), j = 1 . . .m.

Moving to pseudo-likelihood makes a crucial difference in the kinds of expec-
tations that must be computed in the standard algorithms for maximizing θ;
they now involve the generally feasible conditional expectations Eθ(fj |W ) rather
than the infeasible unconditional expectations Eθ(fj).

It turns out that this idea of directly estimating a conditional distribution
(rather than the joint) has been independently discovered at least twice. Besag
(1975), who coined the name ‘pseudo-likelihood’, uses it in a computational vi-
sion setting in which one part of an image serves as the conditioning environment
for another part of the image (here, the phonological form corresponds to one
part of the linguistic structure, and everything else in the structure corresponds
to the other part). Berger, Della Pietra, and Della Pietra (1996) and Jelinek
(1997) both describe optimizations in their algorithms which replace joint prob-
abilities with conditional probabilities in exactly the manner described here
(but they do not acknowledge that this means they are estimating a conditional
rather than a joint distribution).

Figure 5 graphically depicts maximum pseudo-likelihood estimation. In-
formally, maximum pseudo-likelihood estimation adjusts θ to make the weight
Vθ(xi) of each training datum as large as possible relative to Zθ(wi), i.e., the
sum of the weights of all parses Ω(wi) of the phonological form wi. As re-
marked earlier, Ω(wi) is finite and of managable size for LFGs, so Zθ(wi) and
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the conditional expectations required for maximizing the pseudo-likelihood can
be calculated using direct enumeration of Ω(wi).

While pseudo-likelihood estimation is consistent for the conditional distribu-
tion, it is not hard to see that maximizing PLD will not always correctly estimate
the joint Pθ(X) (Chi, 1998). Suppose there is a feature fj which depends solely
on the phonological form W (x) of a linguistic structure x, i.e., fj(x

′) = fj(x)
for all x ∈ Ω and x′ ∈ Ω(W (x); we call such features pseudo-constant. (For
an example of a pseudo-constant feature, let fj(x) be the number of times the
word eat occurs in x). If fj is pseudo-constant, then it is easy to show that the
pseudo-likelihood does not depend on the value of the parameter θj associated
with fj , so maximum pseudo-likelihood estimation provides basis for choosing
a value for θj . In fact, in this case any value of θj gives the same conditional
distribution Pθ(X |W ), so θj is irrelevant to the problem of choosing good parses.

Informally, the relationship between maximum likelihood and pseudo-likelihood
estimation is the same as the relationship between the joint P(X, W ) and the
conditional P(X |W ), which are related by the marginal P(W ):

P(X, W ) = P(X |W ) P(W ).

The parameter vectors estimated by maximum likelihood estimation model the
joint; they describe both the condition distribution of parses given phonological
forms as well as the marginal distribution of phonological forms P(W ), while
pseudo-likelihood estimation focuses on the conditional P(X |W ) and ignores
the marginal.

Interestingly, from a cognitive modularity perspective, the conditional and
the marginal distributions seem to correspond to two different kinds of informa-
tion. As noted above, the conditional distribution P(X |W ) is precisely the in-
formation required for disambiguation in sentence comprehension, which seems
to be purely linguistic knowledge. The marginal distribution P(W ), on the
other hand, describes the distribution of phonological forms, which seems to
involve world knowledge and contextual information at least as much as it in-
volves linguistic knowledge. Thus pseudo-likelihood estimation may be more
compatible with a modular view of language, since it seems to focus on more
purely linguistic knowledge than does maximum likelihood estimation.

We now briefly describe some of the more practical details of pseudo-likelihood
estimation. Despite the assurance of consistency, pseudo-likelihood estimation
is prone to over fitting when a large number of features is matched against a
modest-sized corpus of training data. One particularly troublesome manifesta-
tion of over fitting results from the existence of features which, relative to the
training data, we call “pseudo-maximal”. A feature f is pseudo-maximal for a
phonological form w if and only if for all x′ ∈ Ω(w) f(x) ≥ f(x′) where x is
any correct parse of w, i.e., the feature’s value on every correct parse x of w
is greater than or equal to its value on any other parse of w. Pseudo-minimal
features are defined similarly. It is easy to see that if fj is pseudo-maximal on
each sentence of the training corpus then the parameter assignment θj = ∞
maximizes the corpus pseudo-likelihood. (Similarly, the assignment θj = −∞
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maximizes pseudo-likelihood if fj is pseudo-minimal over the training corpus).
Such infinite parameter values indicate that the model treats pseudo-maximal
features categorically; i.e., any parse with a non-maximal feature value is as-
signed a zero conditional probability.

Of course, a feature which is pseudo-maximal over a finite training corpus is
not necessarily pseudo-maximal for all phonological forms inthose the language.
This is an instance of over fitting, and it can be addressed, as is customary,
by adding to the objective function a regularization term that promotes small
values of θ. In Johnson et al. (1999) we added a quadratic to the log pseudo-
likelihood, which corresponds to multiplying the pseudo-likelihood itself by a
normal distribution. Specifically, we multiplied the pseudo-likelihood by a zero-
mean normal in θ with diagonal covariance and with standard deviation σj for
θj equal to 7 times the maximum value of fj found in any parse in the training

data. Thus instead of choosing θ̂ to maximizing the pseudo-likelihood (7), in the
experiments reported in Johnson et al. (1999) and Johnson and Riezler (2000)

we actually selected θ̂ to maximize:

logPLD(θ̂) −

m
∑

j=1

θ2
j

2σ2
j

(8)

Interestingly, this way of regularizing has a Bayesian interpretation. In Bayesian
estimation one seeks a parameter vector θ that maximizes the posterior proba-
bility P(θ|D) of the parameter vector θ given the training data D. According to
Bayes theorem, this can be done by maximizing the product of the prior proba-
bility P(θ) of the parameter vector and the likelihood P(D|θ) of the data given
the parameter vector. If one sets the prior probability P(θ) to be proportional to
exp(−

∑m
j=1 θ2

j /2σ2
j ) and makes the same independence assumptions concerning

the data as above, then it is possible to show that the Bayesian estimate for θ
is precisely the θ that maximizes (8).

In these experiments, the set of possible linguistic structures Ω was defined
by a hand-written LFG for English, which was specifically designed at Xerox
Parc to generate the sentences in two corpora of business appointment dialogs
and “Homecenter” printer/copier documentation, consisting of 500 and 1000
parsed sentences respectively. Even though the grammar included all standard
linguistic constraints, the sentences in the corpora were often highly ambiguous,
with an average of 8 parses per sentence. The training data consisted of the
correct parse for each sentence (which was identified manually) together with
the set of all alternative (i.e., incorrect) parses of the sentence generated by the
grammar. Using a cross-validation framework, we showed that a model trained
by maximum pseudo-likelihood correctly disambiguated approximately 58% of
ambiguous test sentences, whereas a model that treated each parse as equally
likely would correctly disambiguate only 25% of the ambiguous test sentences.

We now turn to the more realistic situation (in terms of language acquisition)
where the training data consists of phonological forms alone. Whereas maxi-
mum likelihood estimation from partially visible data is conceptually straight
forward—one adjusts θ to maximize the likelihood of the phonological forms
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Figure 6: A straight forward application of maximum pseudo-likelihood estima-
tion from partially visible (phonological form) data fails

that constitute the training data D—it turns out that similiar approach based
on pseudo-likelihood fails. Specifically, conditioning the marginal P(W = wi)
in the likelihood (6) on the phonological form results in a constant-valued like-
lihood that does not vary with θ or D, so estimation fails.

Intuitively, the problem is that we are trying to maximize the sum of the
weights Vθ(x) placed on the x ∈ Ω(wi) relative to the sum of the weights of
exactly the same set Ω(wi), as depicted in Figure 6. Standard maximum likeli-
hood estimation from partially visible data (as performed by the EM algorithm)
maximizes the sum of the weights placed on Ω(wi) relative to the sum Zθ of the
weights placed on all possible linguistic structures Ω.

We noted earlier that maximum likelihood estimation is infeasible because
the partition function Zθ and the expectations Eθ(fj) involve summing over
all possible linguistic structures Ω. In Riezler et al. (2000) we developed a
method for maximum likelihood estimation from partially visible data that ex-
ploits a data-oriented approximation to Zθ and Eθ(fj) in which we replace
the summation over Ω with a summation over the finite set Ω(D′) consisting
of all possible parses the phonological forms that constitute the training data
D′ = (w1, . . . , wn). More precisely, the likelihood function L′′

D′ maximized in
these experiments is:

Ω(D′) =
n
⋃

i=1

Ω(wi)

Zθ(D
′) =

∑

x∈Ω(D′)

Vθ(x)

Pθ(W = w|W ∈ D′) =
Zθ(wi)

Zθ(D′)

L′′

D′(θ) =

n
∏

i=1

Pθ(W = wi|W ∈ D′)

Figure 7 depicts the likelihood function that this data-oriented approach
maximizes. Unlike with standard maximum likelihood estimation, computation
of the data-oriented partition function Zθ(D

′) and the corresponding expec-
tations is feasible. The data-oriented approach can be viewed as a version of
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Figure 7: An data-oriented approach to estimation from partially visible (phono-
logical form) data

pseudo-likelihood in the following way. Recall the key idea behind pseudo-
likelihood: namely, that one can define a likelihood function by conditioning
one part of the structure on another part of that structure. In pseudo-likelihood
estimation from fully visible (parsed) data we take each sentence to be an obser-
vation and condition each linguistic structure on its phonological form. In this
data-oriented approach, we take the entire data set D′ to be an observation,
and condition each phonological form on the fact that it occured in D′.

Since the above described estimation procedure does not require manually
annotated data for training but merely data consisting of phonological forms
alone, large sets of training data can easily be provided. In our experiments
we parsed a large corpus of newspaper text with a German LFG grammar (de-
veloped in the ParGram project at the University of Stuttgart), and extracted
all parses for sentences which were assigned at most 20 parses by the gram-
mar. This resulted in a training corpus of approximately 36,000 sentences and
250,000 parses. The rationale behind the employed restriction of the ambiguity
of the training data is to simplify the estimation problem by restricting the
entropy of the distribution over the training parses. A further attempt to reg-
ularize the estimation procedure is a initial regularization of parameter values
with the effect of focussing the search in maximization on a proper subspace of
the parameter space. Together, these regularization techniques serve to make
EM a manageable estimation tool for highly precise statistical disambiguation.
An evaluation of disambiguation performance on LFG parsed newspaper sen-
tences with on average 25 parses per sentence showed the following results: The
task of matching full c/f-structure pairs to the manually selected pair could
be performed correctly in over 60% of the test cases; a disambiguation of the
predicate-argument structures of the parses of the test sentences (which is suffi-
cient for many application purposes) could be performed correctly in over 90%
of test cases.

6 Conclusion and further directions

Because log-linear models make no assumptions about relationships between
features, they provide a general framework for defining probability distributions
over linguistic structures from virtually any linguistic theory (Abney, 1997).
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Maximum likelihood estimation is an optimal method for estimating the param-
eter vectors for such models from data, but precisely because log-linear models
are so general, maximum likelihood estimation is typically computationally in-
feasible because it requires us to calculate expectations over all possible linguis-
tic structures. This lead us to develop techniques based on pseudo-likelihood
(Besag, 1975) for estimating parameter vectors from fully visible (parsed) data
(Johnson et al., 1999; Johnson and Riezler, 2000) and partially visible (phono-
logical form) data (Riezler et al., 2000).

This work is still in its infancy, and many interesting avenues remain to be
explored. As we explained above, in order to study language acquisition the
set of possible linguistic structures Ω should be the set of universally possible
structures, but currently we lack a “universal grammar” with which to conduct
our experiments. As we explained in the text, it seems that basic conceptual
issues still need to be addressed before such a universal grammar can be con-
structed. Sticking to the framework used in the experiments described in this
paper where Ω is the set of possible linguistic structures of a particular lan-
guage, we believe there is interesting empirical linguistic research to be done
in investigating the trade-off between the “hard” grammatical constraints in-
corporated in the grammar that determines Ω and the “soft” preferences that
can be encoded using features fj in the statistical model. The grammars we
used in our experiments were not written with our statistical models in mind,
and we might obtain a more robust system with broader coverage by removing
some of the grammatical constraints from the grammar and re-expressing them
as features in the statistical model.

Turning to more mathematical issues, it would be valuable to investigate
other ways for estimating the partition function and the expectations required
for maximum likelihood estimation from both parsed and phonological form
data. Techniques for approximating these quantities have been developed in
other fields (e.g., mean field approximations), and it may be possible to apply
them in computational linguistics as well (Saul and Jordan, 1999).

A problem left unaddressed in our applications is efficient searching for most
probable parses. This question becomes crucial if higher coverage is desired and
traded in for more superficial parses and for higher ambiguity. Clearly, for such
cases it is desirable to adapt techniques such as Viterbi’s algorithm (Viterbi,
1967) to searching efficiently for most probable parses in probabilistic LFG
grammars. Here a closer look at generalized dynamic-programming techniques
as developed for graphical models (Frey, 1998) seems promising.

Finally, we believe that there may be other ways of applying pseudo-likelihood
to language learning besides the ways described in this paper. The pseudo-
likelihood estimation approach from visible (parsed) data is seems highly un-
realistic in one respect: such a learner learns nothing from unambiguous sen-
tences in its training data, even though such sentences are intuitively most
informative of all. This is because the pseudo-likelihood we used conditioned
on phonological form; i.e., P(X |W ). Suppose instead we adopt a “generation-
oriented” pseudo-likelihood, where we condition on the semantic interpretation
S(x) of each linguistic structure x, so the likelihood is the product of terms

19



P(X = xi|S = si). Such a learner would learn from each sentence in its train-
ing data whose semantic interpretation can be expressed in more than one way
universally.
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