
Left Corner Transforms and Finite State

Approximations

Mark Johnson

Rank Xerox Research Centre

Grenoble

DRAFT of 12th May, 1996

1 Introduction

This paper describes methods for approximating context-free grammars with finite
state machines. Unlike the method derived from the LR(k) parsing algorithm de-
scribed in Pereira and Wright (1991), these methods use grammar transformations
based on the left-corner grammar transform (Rosenkrantz and Lewis II, 1970; Aho
and Ullman, 1972). One advantage of the left corner methods is that they general-
ize straightforwardly to complex feature “unification based” grammars, unlike the
LR(k) based approach.

Left-corner based techniques are natural for this kind of application because
(with a simple optimization) they can parse pure left-branching or pure right-
branching structures with a stack depth of one (two if terminals are pushed and
popped from the stack). Higher stack depth occurs with center-embedded struc-
tures, which humans find difficult to comprehend. This suggests that we may get a
finite-state approximation to human performance by simply imposing a stack depth
bound, and ignoring any parses which require stack depths greater than this bound.
We provide a simple tree-geometric description of the configurations that cause an
increase in a left corner parser’s stack depth below.

We also take this opportunity to point out some simple extensions of this tech-
nique, which can capture using pure grammar transform techniques a range of
parsing strategies similiar to the generalized left-corner parsing strategies (Demers,
1977; Nijholt, 1980).

Finally, this paper discusses methods for using these finite state approximations
in actual parsing applications, showing how the finite state machine can be used as
an oracle to guide a left corner parser (and hence recover the tree structure) and
how to construct a transducer that produces partial brackettings.

1.1 Parsing strategies as grammar transformations

The parsing algorithms discussed here are presented as grammar transformations,
i.e., functions T that map a context-free grammar G into another context-free gram-
mar T (G). The transforms have the property that a top-down parse using the
transformed grammar is isomorphic to some other kind of parse using the original
grammar. Thus grammar transforms provide a simple, compact way of describing
various parsing algorithms, as a top-down parser using T (G) behaves identically to
the kind of parser we want to study using G.

One way to understand this is to recognize that a top-down parser using gram-
mar G is a one-state push-down automaton whose transitions are specified by G.

1

s

np

det

the

n1

n1

n

cheese

rc

comp

that

s/np

np

pn

Kim

vp/np

vt

likes

np/np

vp

vt

disappointed

np

pn

Sandy

Figure 1: The analysis tree used as a running example below. Note that the phono-
logical forms are treated here as annotations on the nodes drawn above them, rather
than independent nodes. That is, det (annotated with the) is a terminal node.

Thus a grammar transform is nothing more than a convenient, compact way of
specifying a one-state PDA parsing algorithm.

This observation points out an inherent limitation of this method: the LR(k)
parsing algorithms are essentially beyond the scope of these methods, as the LL(k)
languages are a strict subset of the LR(k) languages. We will see that we can come
tantalizing close, in that we can describe PLC(k) parsing in terms of grammar
transforms.

An advantage of presenting left corner parsing techniques as grammar transforms
is that the transformed grammars can be used with other parsing methods besides
the pure top down parsing algorithms discussed here. For example, memoized left
corner parsers can be constructed by using Earley’s algorithm with the left corner
transformed grammars.

1.2 Mappings from trees to trees

The transformations presented here can also be understood as isomorphisms from
the set of parse trees of the source grammar G to parse trees of the transformed
grammar which preserve terminal strings. Thus it is convenient to explain the
transforms in terms of their effect on parse trees. We call a parse tree with respect
to the source grammar G an analysis tree, in order to distinguish it from parse trees
with respect to some transform of G. The analysis tree in Figure 1 will be used as
an example throughout this paper.

1.3 Top-down parsers and parse trees

The “predictive” or “top-down” recognition algorithm is one of the simplest CFG
recognition algorithms. Given a CFG G = (V, P, T, S), a (top-down) stack state is
a sequence q ∈ (V ∪ T)∗. Let Q be the set of stack states for G. The start state
q0 ∈ Q is the sequence S, and the final state qf ∈ Q is the empty sequence ǫ. The
state transition function δ : Q × (T ∪ {ǫ}) 7→ 2Q maps a state and and a terminal
into a set of states. It is the smallest function δ that satisfies (1.a–1.b).

γ ∈ δ(aγ, a) for all a ∈ T, γ ∈ (V ∪ T)∗. (1.a)

2

βγ ∈ δ(Aγ, ǫ) for all A ∈ V, γ ∈ (V ∪T)∗, A → β ∈ P. (1.b)

A string w is accepted by the top-down recognition algorithm if qf ∈ δ∗(q0, w),
where δ∗ is the reflexive transitive closure of δ with respect to epsilon moves, as
standardly defined in the finite-state machine literature (Hopcroft and Ullman,
1979).

It is easy to read off the stack states of a top-down parser constructing a parse
tree from the tree itself. For any node X in the tree, the stack contents of a top-
down parser just before the construction of X consists of (the label of) X followed
by the sequence of labels on the right siblings of the nodes encountered on the path
from X back to the root. For example, the stack contents of a top-down parser
immediately before the construction of the pn annotated Kim in the tree depicted
in Figure 1 is pnvp/npvp, and it is easy to check that a top-down parser requires
a stack of depth 3 to construct this tree.

1.4 Finite state approximations

It is immediate from the definition above that a top-down parser differs from a
finite-state machine (with epsilon transitions) only in that it possesses a possibly
unbounded set of accessible states. Finite state machine approximations to top-
down parsers can be obtained in at least two ways, both of which have the effect of
bounding the number of states. (Neither seems to be of much use unless one of the
left-corner transforms described below is applied to the grammar first).1

First, we can restrict attention to only a finite number of possible stack states.
One way to do this is to impose a stack depth restriction, i.e., the top down parser’s
transition function is modified so that there are no transitions leaving any stack state
whose size is larger than some prespecified limit. Alternatively, one can impose a
bound on the number of times any given non-terminal may appear on the stack.
Both of these restrictions ensure that there is only a finite number of possible stack
states, and hence that the top down parser is an finite state machine. The resulting
finite state machine accepts a subset of the language generated by the original
grammar G.

Second, we can divide the infinite number of distinct stack states into a finite
number of equivalence classes, and redefine the state transition function so that it
operates on these equivalence classes. For example, we might choose to make two
stacks equivalent if they share the same prefix of a certain length. The resulting
finite state machines accept a superset of the language generated by the original
grammar G.

1.5 Choice points in top down parsing

In general, several different top down parsing actions are possible from any given
stack state and next terminal symbol. A top down parser faces a choice point
whenever there is more than one production that can expand a nonterminal on
top of the parser’s stack (although look-ahead can sometimes rule out some of
these choices). In terms of the parse tree, this means that each local tree must be
identified by the parser when it has read the terminals up to the left edge of this
local tree.

1This may not be true. Analysing the 3,267 trees of the Penn Treebank (trees containing
punctuation, coordination, foreign words and headlines were discarded), the mean maximum stack
depth required for a top parse was 2.9, with a standard deviation of 0.4, while for a left corner parse
with the tail recursion optimization described below the mean maximum stack depth was 2.7, with
a standard deviation of 0.8. This probably reflects the paucity of left-recursion in English, and
suggests that it may be worthwhile attempting to develop explicit computational parsing models
based on top-down parsing algorithms.

3

X

β

A

Figure 2: The relationship between category A–X in the left-corner transform gram-
mar LC1(G) and categories in the original grammar G. The dotted part of the tree
is dominated by A–X.

2 The left-corner transform

This section presents the standard left-corner grammar transformation (Rosenkrantz
and Lewis II, 1970; Aho and Ullman, 1972) that serves as the basis for the further
transforms described in the next section. Given an input grammar G with nonter-
minals N and terminals T , these transforms produce grammars with an enlarged set
of nonterminals N ′ = V ∪ (V × (V ∪T)). The new “pair” categories in V × (V ∪T)
are written A–X, where A is a non-terminal in G and X is either a terminal or
nonterminal in G. It turns out that if A ⇒∗

G Xγ then A–X ⇒∗

LCi(G) γ, i.e., a
non-terminal A–X in the transformed grammar derives the difference between A

and X in the original grammar (the dotted part of the tree in Figure 2), and the
notation is meant to be suggestive of this.

The left-corner transform of a CFG G = (V, P, T, S) is a grammar LC1(G) =
(V ′, P1, T, S), where P1 contains all productions of the form (2.a–2.d). (In this
paper it is assumed that V ∩ T = ∅, as is standard).

A → aA–a for all A ∈ V, a ∈ T. (2.a)

A → A–C for all A ∈ V,C → ǫ ∈ P. (2.b)

A–X → β A–B for all A ∈ V,B → X β ∈ P. (2.c)

A–A → ǫ for all A ∈ V. (2.d)

Figure 3 depicts the effect of the different production schemata (2.a–2.d) in terms of
configurations of nodes of the analysis tree with respect to G, and Figure 4 sketches
the general structural relationship between analysis trees and parse trees of LC1(G).
Informally, the productions (2.a) and (2.b) start the left-corner recognition of A by
recognizing either a terminal a or an empty category C as a possible left-corner of
A. The actual left-corner recognition is performed by the productions (2.c), which
extend the left-corner from X to its parent B by recognizing β; these productions
are used repeatedly to construct increasingly larger left-corners. Finally, the pro-
ductions (2.c) terminate the recognition of A when this left-corner construction
process has constructed an A.

The effect of this transform on the analysis tree in Figure 1 is shown in Figure 5.
The transformed tree is considerably more complex: it has double the number
of nodes of the original tree. In order to understand this tree, pay attention to
the right-hand part of the pair categories, and notice that left-corner dominance
relationships in the analysis tree corresponds to right-corner inverse dominance
relationships in the transformed tree; e.g., the left-most left-corner chain in Figure 1,
namely detnp s, corresponds to the right-corner chain s s-det s-np s-s. In a top-
down parse of the tree in Figure 5 the maximum stack depth is 6, which occurs at
the recognition of the empty node np/np.

4

A

X

B

β

A

A

a or C

(2.a) A → aA–a

(2.b) A → A–C (2.c) A–X → β A–B

(2.d) A–A → ǫ

. . .

Figure 3: The configurations of nodes of the analysis tree in which the various
production schemata of LC1(G) apply. The tree fragments drawn in solid lines
would already have been recognized by a top-down recognizer using LC1(G) by
the time this production was used, while the dotted tree fragments correspond to
predictions still to be instantiated.

a
. . .
β0

A1

. . .
β1

A2

An

. . .
βn

A

A

a A–a

. . .
β′

0 A–A1

β′
1

. . .
A–A2

A–An

. . .
β′

n A–A

Figure 4: The structural relationship between analysis trees of G (on the left) and
parse trees of LC1(G) (on the right). In this diagram, the trees β′

i are obtained by
applying the left-corner transform to each of the trees βi.

5

s

det

the

s-det

n1

n

cheese

n1-n

n1-n1

rc

comp

that

rc-comp

s/np

pn

Kim

s/np-pn

s/np-np

vp/np

vt

likes

vp/np-vt

np/np

np/np-np/np

vp/np-vp/np

s/np-s/np

rc-rc

n1-n1

s-np

vp

vt

disappointed

vp-vt

np

pn

Sandy

np-pn

np-np

vp-vp

s-s

Figure 5: The result of applying the transform LC1 to the tree in Figure 1.

6

2.1 Choice points in left-corner parsing

The left corner transform changes the location in the input string of the choice
points corresponding to local trees in the original parse tree. Specifically, a choice
point corresponding to the different possible instantiations of a local tree is located
immediately after the recognition of the leftmost subtree of that local tree. This can
be significantly further to the right in the terminal string than the corresponding
choice point in top down parsing, and there are grammars that are deterministically
left corner parsable, but not deterministically top down parsable. (In grammar
transform terms LC1(G) ∈ LL(k), i.e., is deterministically top down parsable, with
lookahead k, even though G is not).

Left-corner parsing also introduces a new sort of choice point not present in
top-down parsing: when the left-corner subtree X is recognized as completing the
category A predicted top-down in the pair categories A–X. In standard left corner
parsing this choice point is reached immediately after the entire subtree (including
all of the children) corresponding to the prediction has been been constructed. In
terms of top down parsing using the transformed grammar LC1(G), this corresponds
to the fact that the productions of schema A–A → ǫ are used immediately after the
node A has been recognized bottom up.

2.2 Filtering useless categories

In general the grammar produced by the transform LC1(G) contains a large number
of useless nonterminals, i.e., non-terminals which can never appear in any complete
derivation, even if the grammar G is fully pruned (i.e., contains no useless non-
terminals or productions). While the grammars LC1(G) can be pruned using the
standard algorithms, given the observation about the relationship between the pair
non-terminals in LC1(G) and non-terminals in G presented in Figure 2, it is clear
that certain productions can be discarded immediately as useless. Define the left
corner relation ⊳ ⊆ (V ∪ T) × V as follows:

X ⊳ A iff ∃β. A → Xβ ∈ P, (3)

Let ⊳∗ be the reflexive and transitive closure of ⊳. It is easy to show that a
category A–X is useless in LC1(G) (i.e., derives no sequence of terminals) unless
X ⊳∗ A. Thus we can restrict the productions in (2.a–2.d) without affecting the
language (strongly) generated to those that only contain pair categories A–X where
X ⊳∗ A.

2.3 Unification grammars

One of the main advantages of left-corner parsing algorithms over LR(k) based
parsing algorithms is that they extend straight-forwardly to complex feature based
“unification” grammars: the transformations listed above are applied directly to
the annotated phrase structure rules, and the feature “unification” constraints with
phrase structure rules are copied directly into the corresponding rules of the trans-
formed grammar. The transformation LC1 itself can be encoded in several lines of
Prolog (Matsumoto et al., 1983; Pereira and Shieber, 1987).

This contrasts with the LR(k) methods. In LR(k) parsing a single LR state
may correspond to several items or dotted rules, so it is not clear how the feature
“unification” constraints should be associated with transitions from LR state to LR
state (see Nakazawa (1995) for one proposal). Pereira and Wright (1996) pose the
extension of their technique for constructing finite-state approximations of CFGs
using an LR-based method to unification grammars as an open problem for further

7

research. in contrast, extending the techniques described here to complex feature
based “unification” grammar is in principle straight-forward.

The main complication is the filter on useless nonterminals and productions
discussed in subsection 2.2 above. Generalizing the left corner closure filter on
pair categories to complex feature “unification” grammars in an efficient way is
complicated, and is the primary difficulty in using left-corner methods with complex
feature based grammars.

It is easy to construct unification grammars for which the closure ⊳∗ of the left
corner relation ⊳ is not a recursive set. However, this set can be finitely approxi-
mated by using restriction (Shieber, 1985) to restrict attention to a finite subset of
categories (this method is called generalization in the logic programming literature).
One constructs a finite set F of possibly partially instantiated pair categories such
that if X ⊳∗ A then there is some A′–X ′ ∈ F such that A′–X ′ subsumes A–X.

A naive way of applying this filter to the transformed grammar is to unify
each pair category A–X in the productions of the transformed category with each
A′–X ′ ∈ F . This results in a grammar that is correct, but typically introduces
massive spurious ambiguities, as in general a pair category A–X occuring in a
production produced by the transform can unify with several distinct categories in
F , resulting in “overlapping” productions.

There seem to be at least two ways of dealing with this; neither method is a
totally satisfactory solution to the problem, and both can be applied together.

First, one can apply the filter at run time during the parsing process, and merely
test each freshly constructed pair category for unifiability with at least one member
of F , but not actually perform the unification. This run-time compatability test
is computationally expensive, and because unification is not actually performed
no feature dependencies are progagated between the top-down component A and
bottom-up component X in pair categories A–X. This can dramatically weaken
the effectiveness of the filter for certain grammars.

Second, one can further weaken the left corner closure relation so that distinct
pair categories in F never unify with each other. One way of doing this is to replace
with their generalization U1 ⊔ U2 any two pair categories U1, U2 ∈ F where U1 and
U2 unify. This also dramatically weakens the power of the filter, but the resulting
filter can be applied off-line, and it may permit at least some feature percolation
through the filter.

3 Extended left-corner transforms

This section presents some simple extensions to the basic left corner transform pre-
sented above. The tail-recursion optimization discussed immediately below permits
bounded-stack parsing of both left and right recursive structures. Further manipu-
lation of this transform puts it into a form in which we can identify precisely the tree
configurations in the original grammar which cause the stack size of a left corner
parser to increase. These observations motivate the special binarization methods
described in the next section, which minimize stack depth in grammars that contain
productions of length greater than two.

3.1 A tail-recursion optimization

If G is a left-linear grammar, a top-down parser using LC1(G) can recognize any
string generated by G with a constant-bounded stack size. (The parse trees are
as sketched in Figure 4, with all of the β′

i terminals). However, the corresponding
operation with right-linear grammars requires a stack of size proportional to the

8

length of the string, since the stack fills with paired categories A–A for each non-
terminal node in the analysis tree. These paired categories will only be popped at
the end of the string using the epsilon productions in schema (2.d).

The “tail recursion” or “composition” optimization (Abney and Johnson, 1991;
Resnik, 1992) permits right-branching structures to be parsed with bounded stack
depth. It is the result of epsilon removal applied to the output of LC1, and can be
described in terms of resolution or partial evaluation of the transformed grammar
with respect to productions (2.d). In effect, each of the schemata (2.b–2.c) is split
into two cases, depending on whether or not the rightmost nonterminal A–B is
expanded by the epsilon rules produced by schema (2.d). This expansion yields a
grammar LC2(G) = (V ′, P2, T, S), where P2 contains all productions of the form
(4.a–4.e).

A → aA–a for all A ∈ V, a ∈ T. (4.a)

A → A–C for all A ∈ V,C → ǫ ∈ P. (4.b)

C → ǫ for all C → ǫ ∈ P. (4.c)

A–X → β A–B for all A ∈ V,B → X β ∈ P. (4.d)

A–X → β for all A → X β ∈ P. (4.e)

The parse trees of LC2(G) stand in the same relationship to analysis trees sketched
in Figure 4, except that the empty subtree A–A at the bottom right of that diagram
is no longer present. Figure 6 shows the effect of the transform LC2 on the example
parse tree. The maximum stack depth required for this tree is 3 (just as for the
untransformed grammar). It seems that the stack depth required by a top-down
parser on any grammar G is never less than the stack depth required by LC2(G).

When this “tail recursion” optimization is applied, pair categories in the trans-
formed grammar encode proper left-corner relationships between nodes in the anal-
ysis tree. This lets us strengthen the useless category filter described above as
follows. Let ⊳+ be the transitive closure of the left-corner relation defined in (3). It
is easy to show that a category A–X is useless in LC2(G) (i.e., derives no sequence
of terminals) unless X ⊳+ A. Thus we can restrict the productions in (4.a–4.d)
without affecting the language (strongly) generated to just those that only contain
pair categories A–X where X ⊳+ A.

This transform also affects the location of the parser’s choice points associated
with the completion of the top down prediction. Because productions of type (2.d)
have been resolved into the other productions, productions (4.c) and (4.e) have this
completion operation “built in”, whereas (4.b) and (4.d) can only be used if the
top down prediction is incomplete. Thus the tail recursion optimization moves the
completion choice point forward to just after the left corner has been recognized (in-
stead of just after all of the children have been recognized, as in standard left corner
parsing). It is easy to construct grammars G for which LC1(G) is deterministically
(top down) parsable, but LC2(G) is not deterministically parsable.

3.2 The special case of binary productions

We can get a better idea of the properties of transformation LC2 if we investigate
the special case where the productions of G have at most two symbols on the right
hand-side (i.e., all productions are nullary, unary or binary). In this situation,
transformation LC2(G) can be more explicitly written as LC3(G) = (V ′, P3, T, S),
where P3 contains all instances of the production schemata (5.a–5.g).

A → aA–a for all A ∈ V, a ∈ T. (5.a)

9

s

det

the

s-det

n1

n

cheese

n1-n

n1-n1

rc

comp

that

rc-comp

s/np

pn

Kim

s/np-pn

s/np-np

vp/np

vt

likes

vp/np-vt

np/np

s-np

vp

vt

disappointed

vp-vt

np

pn

Sandy

np-pn

Figure 6: The result of applying the transform LC2 to the tree in Figure 1.

A → A–C for all A ∈ V,C → ǫ ∈ P. (5.b)

C → ǫ for all C → ǫ ∈ P. (5.c)

A–X → A–B for all A ∈ V,B → X ∈ P. (5.d)

A–X → ǫ for all A → X ∈ P. (5.e)

A–X → Y A–B for all A ∈ V,B → X Y ∈ P. (5.f)

A–X → Y for all A → X Y ∈ P. (5.g)

Productions (5.b–5.c) in LC3(G) correspond to empty productions in the original
grammar G, while (5.d–5.e) and (5.f–5.g) correspond to unary and binary produc-
tions respectively.

Now, note that nonterminals from V only appear in productions of type (5.f)
and (5.g). Moreover, any such nonterminals must be immediately expanded by a
production of type (5.a–5.c).

Thus the non-terminals in V in the output of LC3 are eliminable by resolving
them with (5.a–5.c); the only remaining occurence of a nonterminal from V is the
start symbol S. This expansion yields a new transform LC4, where LC4(G) =
({S} ∪ (V × (V ∪ T)), P4, T, S). P4, defined in (6.a–6.m), still contains productions
of type (5.a–5.c), but these only directly expand the start symbol, as all occurences
of other categories from V have been resolved away.

S → aS–a for all a ∈ T. (6.a)

S → S–C for all C → ǫ ∈ P. (6.b)

S → ǫ if S → ǫ ∈ P. (6.c)

10

s

det

the

s-det

n

cheese

n1-n

n1-n1

comp

that

rc-comp

pn

Kim

s/np-pn

s/np-np

vt

likes

vp/np-vt

s-np

vt

disappointed

vp-vt

pn

Sandy

np-pn

Figure 7: The result of applying the transform LC4 to the tree in Figure 1.

A–X → A–B for all A ∈ V,B → X ∈ P. (6.d)

A–X → ǫ for all A → X ∈ P. (6.e)

A–X → aA–B for all A ∈ V, a ∈ T,B → X a ∈ P. (6.f)

A–X → a for all a ∈ T,A → X a ∈ P. (6.g)

A–X → aC–a A–B for all A,C ∈ V, a ∈ T,B → X C ∈ P. (6.h)

A–X → aC–a for all C ∈ V, a ∈ T,A → X C ∈ P. (6.i)

A–X → C–D A–B for all A,C ∈ V,B → X C,D → ǫ ∈ P. (6.j)

A–X → C–D for all C ∈ V,A → X C,D → ǫ ∈ P. (6.k)

A–X → A–B for all A ∈ V,B → X C,C → ǫ ∈ P. (6.l)

A–X → ǫ for all A → X C,C → ǫ ∈ P. (6.m)

In the production schemata defining LC4, (6.a–6.e) are copied directly from (5.a–5.e)
respectively. The schemata (6.f–6.g) are obtained by instantiating Y in (5.f–5.g) to a
terminal a ∈ T , while the other six schemata (6.h–6.m) are obtained by instantiating
Y in (5.f–5.g) with the right hand sides of (5.a–5.c), renaming variables if necessary.
Figure 7 shows the result of applying the transformation LC4 to the analysis tree
of Figure 1.

The schemata (6.a–6.c) produce productions that can be viewed as initializing
the left-corner parsing process by constructing the appropriate paired category. The
instances of (6.d–6.e) each correspond to a single unary productions in the original
grammar. The instances of the remaining schemata (6.f–6.m) each correspond to a
single binary production; the different schemata correspond to all the ways in which
the local tree corresponding to this production might be related to the predicted
category A and the right subtree.

The transform also simplifies the specification of finite state machine approx-
imations. Because all terminals are introduced as the left-most symbols in their
productions, there is no need for terminal symbols to appear in the parser’s stack,
saving an epsilon transition associated with a stack push and an immediately stack

11

A

B

X C

a

A

B

X C

D

A–X → aC–a A–B (6.h) A–X → C–D A–B (6.j)

Figure 8: The highly distinctive “zig-zag” or “lightning bolt” configuration of nodes
in the analysis tree characteristic of the use of production schemata (6.h) and (6.j)
in transform LC4. This is the only configuration which causes an increase in stack
depth in a top-down parser using a grammar transformed with LC2, LC3 or LC4.

pop with respect to the standard left corner algorithm. Productions (6.a) and (6.f–
6.i) can be understood as transitions over a terminal a that replace the top stack
element with a sequence of other elements, while the other productions can be
interpreted as epsilon transitions that manipulate the stack contents accordingly.

An interesting thing here is that the right hand sides of all of these productions
except for schemata (6.h) and (6.j) are linear, i.e., contain at most one nonterminal.
Thus instances these schemata are the only productions that can increase the stack
size of a top-down parse with LC4(G). Figure 8 sketches the configuration of nodes
in the analysis trees in which instances of schemata (6.h) and (6.j) would be used in
a parse using LC4(G). This highly distinctive “zig-zag” or “lightning bolt” pattern
occurs once in the example tree in Figure 1 (with A = s, B = np, C = n1 and
a = n), so the maximum required stack depth is 3. (Recall that in a traditional top-
down parser terminals are pushed onto the stack and popped later, so initialization
productions (6.a) cause two symbols to be pushed onto the stack).

4 Binarization

The observations just made about the configurations in which stack size increases
suggest that it may be worthwhile reconsidering how productions in G of length
greater than two are treated.

In the grammar transforms discussed above that can deal with productions of
arbitrary length (namely LC1 and LC2), n-ary productions in G correspond to n-ary
or n− 1-ary productions of the transformed grammar LC(G). Thus in a finite-state
approximation with a stack-depth bound of m, only productions of length m+1 or
greater can possibly be used. Moreover, the length of useful productions decreases as
the depth of embedding increases. This seems highly unrealistic in natural language
parsing applications.

One natural way to deal with this problem is to reduce all productions of length
greater than 2 to sequences of binary productions. This is often done “on the fly”
in the parser, but we present binarization methods as grammar transforms here.

There are an extremely large number of ways to convert n-ary branching nodes
into binary branching structures (even purely left branching or purely right branch-
ing structures), and the effects that the different methods have on the behaviour
of even well-known parsing algorithms is still largely unexplored. In the context
of the various left corner transforms discussed above, binarization can applied ei-
ther before or after the left corner transform, yielding even more possibilities for
exploration.

12

Standard methods for converting n-ary branching nodes into left associative or
right associative binary branching structures can be presented as grammar trans-
forms. Given an input grammar G = (V, P, T, S), we define new grammars L(G)
and R(G), which are G’s left binarization and right binarization respectively. The
non-terminals of L(G) are those of G together with all non-empty proper prefixes
of the right hand sides of G’s productions, while the non-terminals of R(G) are
those of G together with all non-empty proper suffixes of the right hand sides of
G’s productions.

The left associative tranform L(G) = (Vl, Pl, T, S) is defined as follows:

Vl = V ∪ {β : A → β γ, β, γ ∈ (V ∪ T)+} (7)

Pl = {A → β : A → β ∈ P, |β| ≤ 2} ∪
{A → ‘β’ X : A → β X ∈ P, |β| ≥ 2} ∪
{‘βX’ → ‘β’ X : X ∈ V ∪ T, X ∈ V ∪ T, β ∈ (V ∪ T)+}

(8)

In (8) and below, ‘β’ notates a single nonterminal in a transformed grammar
which consists of a sequence of categories from the source grammar; note thar ‘X’
and X are the same if X ∈ V ∪ T .

The right associative tranform R(G) = (Vr, Pr, T, S) essentially a mirror image
of L(G), as would be expected.

Vr = V ∪ {γ : A → β γ, β, γ ∈ (V ∪ T)+} (9)

Pr = {A → β : A → β ∈ P, |β| ≤ 2} ∪
{A → X ‘β’ : A → X β ∈ P, |β| ≥ 2} ∪
{‘Xβ’ → X ‘β’ : X ∈ V ∪ T, X ∈ V ∪ T, β ∈ (V ∪ T)+}

(10)

The left associative binarization transform L has the property that the trans-
formed grammar when used with a standard left corner parser behaves as a PLC
parser (Nijholt, 1980), i.e., the choice point for the category of node in the analysis
tree is delayed in a top-down parse using LC1(L(G)) until its left edge has been
reached in the input stream. (In standard left corner parsing an entire production
is chosen once its left corner has been recognized, which may entail prediction of
many categories to the right). Because this left binarization transform delays some
of the choice points, there are grammars G such that LC1(L(G)) is deterministically
top down parsable, even though LC1(G) is not. Thus the left associative binariza-
tion transform is a reasonable choice if the goal is to delay choice points as long as
possible (i.e., to make parsing as deterministic as possible).

Interestingly, neither uniform right nor uniform left association seems to be
optimal in terms of minimizing stack depth requirements.

Figure 9 shows the result of the two different binarization strategies of a local
tree consisting of a parent labelled A itself on a left branch and children X0 b1 X2,
with b1 ∈ T . As that figure shows, right association in such a situation causes an
instance of the “zig-zag” pattern that is not present in the tree produced by left
association that indicates an increase in stack depth.

The situation is reversed if the local tree being binarized lies on a right branch
and the second subtree is a non-empty nonterminal. As Figure 10 shows, left associ-
ation in such a situation induces the “zig-zag” pattern here that signals an increase
in stack depth.

Thus the optimal binarization strategy seems to be to use a left associative
binarization strategy on subtrees lying on a left branch, and a right associative
binarization strategy on subtrees lying on a right branch. It is straight-forward,
but tedious, to define a grammar transform that achieves this.

Finally, it is worth remembering that simply minimizing stack depth is not an
appropriate goal in isolation: stack depth can be reduced by an arbitrary constant

13

A

X2X0 b1

A

X2X0 b1

Figure 9: The result of left association and right association applied to a local tree
with parent labelled A, itself lying on a left branch, and children X0 b1 X2, where
b1, is a terminal. Right association induces an instance of the “zig-zag” pattern not
present in the tree produced by left association.

A

X2X0

A

X2X0B1 B1

Figure 10: The result of left association and right association applied to a local
tree with parent labelled A, itself lying on a right branch, and whose second child,
B1, is a non-empty non-terminal. Here, left association induces an instance of the
“zig-zag” pattern not present in the tree produced by right association.

14

factor by simply collapsing adjacent sequences of stack symbols into a single complex
symbol. If the goal is the construction of finite state approximations to CFGs, then
the primarily practical limitation is that the number of different accessible stack
configurations that satisfy the stack depth bound may be astronomical, and it might
be more reasonable to choose a binarization strategy that reduces the total number
of accessible stack configurations, even at the price of larger stack depths.

5 Reporting parse trees

This paper has concentrated so far on recognition algorithms. This section discusses
how information about the structure of the input can be obtained by these tech-
niques as well. This research is still in progress, and this section should be read as
a progress report. It should be noted that finite state approximation are still useful
even in the absence of techniques for extracting structure; e.g., Pereira and Wright
(1996) use similar finite state approximations purely as a filter in a pre-processing
stage before parsing proper begins.

5.1 Constructing analysis trees from left corner derivations

In a non-deterministic stack based implementation a parsing algorithm can be ob-
tained by constructing an analysis tree in tandem with the recognition process. A
simple way to do this is to express the grammar as a Definite Clause Grammar,
and add an additional argument to each category that encodes the analysis tree
rooted at the node that instantiates this category, e.g., in the manner described by
Pereira and Shieber (1987). At the end of the recognition process this argument
will be instantiated to the parse tree generated by the original grammar, even if the
recognizer itself applies one or more of the grammar transforms discussed here.

However, this method for extracting analysis trees cannot be used directly if the
CFG is to be compiled into a finite state approximation: a finite number of states
cannot encode the infinite number of distinct analysis trees. This section considers
ways of recovering analysis trees from finite state analyses.

Kay (1996) suggests the construction of a finite state transducer that maps the
string to be analysed into a sequence of symbols (say, the stack states) recording the
steps that a left corner parser would take analysing this string. This transducer’s
output is then used as an oracle for a conventional left corner parser which actually
produces the analysis trees that are the output of the parsing process.

Now, because the number of transducer states is finite, a chart-like graph rep-
resenting all the possible transductions can be constructed in time linear in the
length of the input string. The standard method for computing this transduction
involves a forward “construction” phase and a backward “pruning” phase, both of
which may require time proportional to the number of transducer states. Since this
number of states is proportional to the number of distinct bounded stack states, it
may be quite large, and although a constant factor, might never the less dominate
parsing time.

There is a simple extension of Kay’s idea, based on the idea of a sequential
bimachine (Reutenauer and Schutzenberger, 1991) that avoids this constant factor.
One reverses, determinizes and then minimizes a finite state machine approximation
of the left corner parser constructed as described in subsection 1.4. Now, note that
the states of this machine can be interpreted as sets of stack states of the original
left corner parser, and that we can construct a table that identifies whether a given
parser stack state is a member of the set of stack states associated with a state of
the finite state automaton.

15

Moreover, running this automaton on a reversed input string associates each
string position in that string with one of the finite state machine’s states, and
therefore a set of stack states of the left-corner parser. By construction, the left
corner parser stack states associated with each string position have at least one
non-deterministic path over the remaining input that leads to a final parser state.
Thus the single states assigned to each string position by the reversed, minimized
automaton together with the table mapping automaton states to sets of left corner
parser stack states serves as a quickly constructed oracle that restricts the left corner
parser to successful parses.

However both Kay’s original proposal and the extension just proposed suffer
from another difficulty: the number of different bounded stack left corner parses
can grow exponentially with the length of the string to be parsed. It is possible to
pack this set of left corner derivations into a chart-like graph whose size is linear in
the length of the input string, but the problem of interpreting it still remains.

One can map this packed representation of left-corner parses into a standard
chart representation of (standard) parse trees. Unfortunately, it is easy to show that
the set of standard parse trees corresponding to such a packed representation of left
corner derivations cannot be exactly represented by a standard chart representation,
as the left corner stack depth bound can introduce non-local constraints in parse
trees. However, it is possible to construct a standard chart representation from the
packed left corner parses which includes all of the standard parse trees corresponding
to the left corner parses, and for which the “extra” standard parse trees present in
the standard chart that do not correspond to any left corner parse are in fact well
formed parses with respect to the original grammar. This chart’s size is a quadratic
function of input sentence length, and its construction from the packed left corner
derivations can be done in cubic time, i.e., it has the same time requirements as
parsing the original input string with the original grammar. However, the constant
factors may be much better here than in standard CFG parsing algorithms, since
all parse-time search has been eliminated.

5.2 A left corner bracketting transduction

The previous subsection concentrated on retrieving standard analysis trees from
left corner derivations. This subsection shows how a transducer can be constructed
from a left corner parser or a finite state approximation thereof that produces
partially bracketted representations of standard analysis trees that can be extended
to standard fully bracketted analysis trees as described below.

First, note that no finite state transducer can produce fully bracketted repre-
sentations of standard parse trees for the full range of bounded stack left corner
parsable grammars. For example, a recursive right linear grammar (i.e., one that
generates purely right branching structures) is bounded stack left corner parsable
(and hence defines a finite state language), yet no finite state transducer can pro-
duce fully bracketted analysis trees for such a grammar, as that involves producing
|w| closing brackets at the end of the input string w.

Thus we must content ourselves with a weaker bracketted representation. The
bracketting transduction proposed here produces at least either an opening or a
closing bracket for each constituent. It is based on the subset of production schemata
(6.a) and (6.f–6.i) of LC4 that deal with only binary productions: extending it to
non-binary productions requires further research. The bracketting scheme is based
on the idea of “superbrackets” sometimes used in Lisp programs, which can close
off an arbitrary number of ordinary brackets.

Given a grammar G = (V, P, T, S) where all productions in P are binary, we
specify a new grammar LCb(G) = ({S} ∪ (V × (V ∪ T)), Pb, Tb, S) as follows. The
terminal symbols Tb are pairs w : a, where a ∈ T and w ∈ (V ∪ T ∪ {〈, [, 〈〈, 〉,]})+.

16

s

np

det

the

n1

n

cheese

rc

comp

that

s/np

pn

Kim

vt

likes

vp

vt

disappointed

pn

Sandy

Figure 11: A pure binary branching tree used to demonstrate the left corner repre-
sentation

A terminal w : a should be viewed as mapping the symbol a in the input to the
string w, which constitutes part of the bracketted representation of the input. This
representation contains three different kinds of left brackets, viz., ‘〈’, ‘[’ and ‘〈〈’,
and two kinds of right brackets ‘〉’ and ‘]’. Their interpretation in terms of standard
analysis trees will be defined below.

The productions Pb are the instances of the production schemata (11.a–11.e).
These are exactly the same as (6.a) and (6.f–6.i), except that the terminal a in these
latter production schemata has been replaced with a terminal of the form w : a.
Thus the stack states of the transducer LCb(G) are exactly the same as for the
recognizer LC4(G).

S → ‘[S’: a S–a for all a ∈ T. (11.a)

A–X → ‘X〉〈a’: a A–B for all A ∈ V, a ∈ T,B → X a ∈ P. (11.b)

A–X → ‘X〉〈a]’: a for all a ∈ T,A → X a ∈ P. (11.c)

A–X → ‘X〉[C’: a C–a A–B for all A,C ∈ V, a ∈ T,B → X C ∈ P. (11.d)

A–X → ‘X〉〈〈C’: a C–a for all C ∈ V, a ∈ T,A → X C ∈ P. (11.e)

In the transduction, a ‘[’ indicates a stack push, i.e., an increase in the left corner
stack depth, while a ‘]’ indicates a stack pop, or a decrease in stack depth. The
‘〈’ introduces a terminal lying on a right branch, while the ‘〈〈’ introduces a non-
terminal lying on a right branch. Finally, the ‘〉’ closes a node lying on a left branch
(not necessarily a terminal).

We demonstrate the left corner representation using the tree in Figure 11 (which
is just the result of unary and nullary rule removal applied to the tree in Figure 1).
The output given the terminal string of this tree produced by the transduction
defined by LCb is shown in (12).

[s thedet〉 [n1 cheesen〉 〈〈rc thatcomp〉 〈〈s/np Kimpn〉

〈vt likes]np〉 〈〈vp disappointedvt〉 〈pn Sandy]
(12)

This left corner bracketting contains sufficient information to recover the standard
analysis tree. The following operations show how to obtain a standard analysis tree
bracketted only with ‘[’ and ‘]’.

17

1. A right ‘]’ bracket closes off the matching left ‘[’ bracket, plus any number of
open left ‘〈〈’ brackets. Changing all ‘〈〈’ brackets into ‘[’ brackets and adding
matching ‘]’ brackets converts (12) into (13).

[s thedet〉 [n1 cheesen〉 [rc thatcomp〉 [s/np Kimpn〉

〈vt likes]]]np〉 [vp disappointedvt〉 〈pn Sandy]]
(13)

2. Right ‘〉’ brackets take as wide a scope as possible, consistent with the ‘[’,
‘]’ bracketting just established. (In terms of the original bracketting, left ‘[’
and ‘〈〈’ brackets both close an arbitrary number of ‘〉’ brackets). To make the
display more readable, the nonterminal immediately before the right‘〉’ bracket
can be moved to subscript the newly introduced left ‘[’ bracket. Closing off
‘〉’ brackets in this way converts (13) into (14).

[s[np[det the] [n1[n cheese] [rc[comp that] [s/np[pn Kim]

〈vt likes]]]] [vp[vt disappointed] 〈pn Sandy]]
(14)

3. Finally, ‘〈’ brackets are closed off taking as wide a scope as possible, consistent
with the ‘[’, ‘]’ bracketting already established. This converts (14) into (15).

[s[np[det the] [n1[n cheese] [rc[comp that] [s/np[pn Kim]

[vt likes]]]]] [vp[vt disappointed] [pn Sandy]]]
(15)

6 Conclusion

This paper surveyed the issues arising in the construction of finite state approxi-
mations of various kinds of left corner parsers. The different kinds of parsers were
presented as grammar transforms, which let us abstract away from the algorithmic
details of parsing algorithms themselves. We derived the various forms of the left
corner parsing algorithms in terms of grammar transformations from the original left
corner grammar transform. The last section of the paper discussed how finite state
approximations might be extended to provide a partial bracketting representing the
analysis trees.

References

Abney, Stephen and Mark Johnson. 1991. Memory requirements and local ambigu-
ities of parsing strategies. Journal of Psycholinguistic Research, 20(3):233–250.

Aho, Alfred V. and Jeffery D. Ullman. 1972. The Theory of Parsing, Transla-
tion and Compiling; Volume 1: Parsing. Prentice-Hall, Englewood Cliffs, New
Jersey.

Demers, A. 1977. Generalized left-corner parsing. In Conference Record of the
Fourth ACM Symposium on Principles of Programming Languages, 1977 ACM
SIGACT/SIGPLAN, pages 170–182.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley.

Kay, Martin. 1996. Limited parsing in linear time. Technical report, Xerox PARC.

Matsumoto, Yuji, Hozumi Tanaka, Hideki Hirakawa, Hideo Miyoshi, and Hideki Ya-
sukawa. 1983. BUP: A bottom-up parser embedded in Prolog. New Generation
Computing, 1(2):145–158.

18

Nakazawa, Tsuneko. 1995. Construction of LR parsing tables for grammars using
feature-based syntactic categories. In Jennifer Cole, Georgia M. Green, and
Jerry L. Morgan, editors, Linguistics and Computation, number 52 in CSLI
Lecture Notes Series, pages 199–219, Stanford, California. CSLI Publications.

Nijholt, Anton. 1980. Context-free Grammars: Covers, Normal Forms, and Pars-
ing. Springer Verlag, Berlin.

Pereira, Fernando C. N. and Rebecca N. Wright. 1991. Finite state approximation
of phrase structure grammars. In The Proceedings of the 29th Annual Meeting
of the Association for Computational Linguistics, pages 246–255.

Pereira, Fernando C. N. and Rebecca N. Wright. 1996. Finite state approximation
of phrase structure grammars. Appeared as cmp-lg/9603002.

Pereira, Fernando C.N. and Stuart M. Shieber. 1987. Prolog and Natural Language
Analysis. Number 10 in CSLI Lecture Notes Series. Chicago University Press,
Chicago.

Resnik, Philip. 1992. Left-corner parsing and psychological plausibility. In The
Proceedings of the fifteenth International Conference on Computational Linguis-
tics, COLING-92, volume 1, pages 191–197.

Reutenauer, Christophe and Marcel-Paul Schutzenberger. 1991. Minimization of
rational word functions. SIAM Journal of Computing, 20(4):669–685.

Rosenkrantz, Stanley J. and Philip M. Lewis II. 1970. Deterministic left corner
parser. In IEEE Conference Record of the 11th Annual Symposium on Switching
and Automata, pages 139–152.

Shieber, Stuart M. 1985. Using Restriction to extend parsing algorithms for
unification-based formalisms. In Proceedings of the 23rd Annual Meeting of
the Association for Computational Linguistics, pages 145–152, Chicago.

19

