Finite-state Approximation of

Constraint-based Grammars
using Left-corner Grammar Transforms

Mark Johnson

Brown University

ACL-COLING 1998 >

Summary

e Approximating a Unification Grammar (UG) with a FSM
e 'S approximations of top-down parsers

e Grammar transformation

— Left-Corner (LC)
— Composition/e-removal

— Partial evaluation

Why approximate UGs with FSMs?

e F'SM processing is faster

— linear time recognition

— can be used as oracle to guide UG parser
e LC parsing has some psycholinguistic validity

e UG languages can be manipulated via F'S calculus

Why use LC approximation?

e LC parsing applies directly to UGs

e L.C parsers require only finite stack-depth to parse left linear or

right linear grammars

Non-deterministic top-down parsing

e Parser states are stacks of nonterminals and terminals (N UT)*

e State transition function o:

v €dlay,a):aeT,ve (NUT)*.
By € §(Avy,e): Ae Nyye (NUT)*,A— B € P.

q Remaining input

PN NP VP
NP VP NP VP

| | VP
Bill talks

€

FS approximations to TD states

e Unbounded state stack size
— ignore state stacks larger than some fixed bound
= approximation accepts a subset of UG language
— collapse all states sharing a common prefix
= approximation accepts a superset of UG language
e Unbounded UG categories
— Restriction (a.k.a. abstraction) (Shieber 1985)
= approximation accepts a superset of UG language

— Ignore categories whose complexity exceeds some bound

= approximation accepts a subset of UG language
x In many UGs, the syntactically potent features range over

finite values

States of a TD parser

e Just before X is expanded, the TD parser’s state consists of X
followed by the right siblings of it and all its ancestors.

= Right-linear grammars (A — w B) require finite state size

= Left-linear grammars (A — B w) require unbounded state size

VP

DET N \% ADV

the dog ran fast

Left-corner grammar transforms

e A Left-Corner (LC) parser exhibits finite state size on both
left-linear and right-linear CFGs (*)

e A LC parser for grammar G acts isomorphically to a top-down

parser using LC(G).

Grammar

7

Left-corner transform

7

e removal

7

composition / partial evaluation

7

Input string |—| Top-down Parser | —| Output

Left-corner grammar transform

e Left-corner of each production is recognized bottom-up,

everything else is predicted top-down

e Nonterminals of LC(G) = NUN x (NUT)

A=E XBif A X =50 0

e Productions of LC(G) =
A—ada : A€ N,aeT.
A-X -BA-B : A€N,B—XBeP
A-A e . AeN.

Parsing with £LC(G): start

DET S—DET

DET N V ADV the N S—NP

I N

the dog ran fast dog VP S-S

ran ADV VP-VP

fast

Parsing with £C(G): shift DET

V. ADV

the dog ran fast

ran ADV VP-VP

fast

Parsing with £C(G): NP

NP

2\

S

DET N A% ADV

the dog ran fast

ran ADV VP-VP

fast

Parsing with LC(G): S

NP VP
/N
DET N A% ADV

the dog ran fast

ran ADV VP-VP

fast

States of an LC parser

o Left-linear G = right-linear £LC(G) = finite states

States of an LC parser (cont.)

e Right-linear G = unbounded TD states in LC(G)

ao \wlb\o
= rc >
ol

ai x:wm:

‘@/SH

3 Hlxmwi 1

Epsilon-removal after £C transform
e Linear G = right-linear £LC'(G) = finite TD states

S S

N N

S DET S—DET DET S—DET

>§ 2 e AN

the N S—NP the N S—NP

>> VAN =

DET vV ADV dog VP | S-S dog(VP

7 7 7 7 \/ N \\//

the dog ran fast \ VP-V V. VP-V

N |

ran ADV |[VP-VP ran ADV

Jast fast

Partial evaluation/composition

e Converts binary branches into (almost) binary branches

S S

N N

g DET S-DET S—DET

T AT N

the N S—NP N S—NP

AN AN BN

DET N V ADV dog | VP S-S dog V VP—V

N - |
the dog ran fast VP-V ran ADV

VAN

ran ADV [VP-VP fast

fast

Special case of binary productions

S—aS-a : aeTl.

A-X —a A-B : Ae NB— Xac€P.

A-X —a . A—Xac€P.

A-X - aC-a . A—-XCeP

A-X -aC-aA-B : Ae NNB—-XCEeFP.
e All but one schema are right-linear

e Exactly one transformed rule per input item

e Such productions can be implemented as FSM arcs, e.g.:

A-BB € (A-XpB,a) : B— XacP.

Geometry of LC state complexity

Because only one production schema increases the stack state
size, LC state complexity is associated with a specific tree

geometry

Helps characterize the errors in a F'S approximation

k~»
.
.
.
.
.

A-X - aC-a A-B

Odds and ends

e (lassifying unification grammar categories
e Identifying useless productions in LC(G) (link table)
e Obtaining parse trees from FSM transitions

— FS transducer emits rule schema used at each transition,

— which guides LC parser for G

Conclusion

Left-corner grammar transforms convert left recursion into

right recursion

A finite-state approximation can be directly constructed from

transformed unification grammars
The approximation is exact for left linear and right linear CFGs

A characterization of LC state complexity identifies

constructions for which the approximation is inexact

