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LDA topic models
• LDA topic models are generative models for documents

I identifies documents about similar topics
I identifies words characteristic of topics

• Each topic i is a distribution over words φi

• Each document j has a distribution θj over topics

• To generate document j :
I for each word position in document:

– choose a topic z according to θj , and then
– choose a word belonging to that topic according to φz

• “Sparse priors” on φ and θ

⇒ most documents have few topics
⇒ most topics have few words

• Bayesian inference (Gibbs sampling, Variational Bayes)

See: Blei, Ng and Jordan (2002), Griffiths and Steyvers (2004)
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LDA topic models: formal description

φi ∼ Dir(β) i = 1, . . . , ` = number of topics
θj ∼ Dir(α) j = 1, . . . ,m = number of documents

zj ,k ∼ θj j = 1, . . . ,m
k = 1, . . . , n = number of words in a document

wj ,k ∼ φzj,k
j = 1, . . . ,m

k = 1, . . . , n

WZθα

φβ

n m

`
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Context-Free Grammars
• A CFG (N ,W ,R , S) defines sets of trees TX for each X ∈ N ∪W :

I if X ∈ W then TX = {X} (the 1-node tree labelled X )
I if X ∈ N then:

TX =
⋃

X→B1...Bn∈RX

TreeX (TB1 , . . . , TBn)

where RA = {A→ β : A→ β ∈ R} for each A ∈ N , and

TreeX (TB1 , . . . , TBn) =

{
�� PP
X

t1 tn. . .
:

ti ∈ TBi
,

i = 1, . . . , n

}

That is, TreeX (TB1 , . . . , TBn) consists of the set of trees with
whose root node is labelled X and whose ith child is a member of
TBi

.
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Probabilistic Context-Free Grammars
• A PCFG is a CFG (N ,W ,R , S) and multinomials θX over RX for

each X ∈ N
I θX→β is the probability of X expanding to β

• A PCFG associates each X ∈ N ∪W with a distribution GX over
trees TX

I if X ∈ W then GX (X ) = 1
I if X ∈ N then:

GX (t) =
∑

X→B1...Bn∈RX

θX→B1...BnTDX (GB1 , . . . ,GBn)(t) (1)

where:

TDA(G1, . . . ,Gn)

(
�� PP
X

t1 tn. . .

)
=

n∏
i=1

Gi(ti).

That is, TDA(G1, . . . ,Gn) is a distribution over TA where
each subtree ti is generated independently from Gi .
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Bayesian PCFGs

• Place Dirichlet priors Dir(αX ) on each rule probability multinomial
θX for each X ∈ N

θX ∼ Dir(αX ) X ∈ N

• “Sparse priors” ⇒ prefer to use as few rules as possible

• Unsupervised Bayesian inference for PCFGs from strings:
I MCMC sampling
I Variational Bayes

See: Kurihara and Sato (2006), Johnson et al (2007)
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LDA topic models as PCFGs (1)

• Prefix strings from document j with a document identifier “ j”

Sentence→ Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , `

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , `

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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LDA topic models as PCFGs (2)

• Spine propagates document id up through tree

Sentence→ Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , `

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , `

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'
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Doc3

Topic4
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Doc3

Topic4

circuits

Doc3
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Doc3
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faster
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LDA topic models as PCFGs (3)

• Docj → Topici rules map documents to topics

Sentence→ Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , `

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , `

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'
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Doc3

Topic4

shallow
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Topic4
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Doc3

Topic4
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Doc3
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faster

10/29



LDA topic models as PCFGs (4)

• Topici → w rules map topics to words

Sentence→ Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , `

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , `

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'
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Doc3
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LDA topic models as PCFGs (5)

• Not suggesting blind use of PCFG inference for topic models
I One iteration of LDA inference is linear in document length
I One iteration of PCFG inference is cubic in document length

• Reduction of LDA topic models to PCFGs suggests ways of
extending both kinds of models
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“Sticky” topic models

Sentence→ Docj ,i i ∈ 1, . . . , `;
j ∈ 1, . . . ,m

Docj ,1 → j j ∈ 1, . . . ,m
Docj ,i → Docj ,i ′ Topici i , i ′ ∈ 1, . . . , `;

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , `;

w ∈ V

• Prefer adjacent words to have
same topic

Sentence

Doc3,7

Doc3,4

Doc3,4

Doc3,4

Doc3,1

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster

• Docj ,i means “document j , topic i”
• Non-uniform Dirichlet prior disprefers topic shift

I αDocj,i→Docj,i Topici
� αDocj,i→Docj,i′ Topici

for i ′ 6= i

y
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From Multinomials to Dirichlet Processes
• Dirichlet Processes (DPs) are the infinite-dimensional

generalisation of Dirichlet-Multinomials
• Predictive distribution: predict zn+1 given observations
z = (z1, . . . , zn)

I Finite set of outcomes (1, . . . ,m):
Dirichlet-multinomial with prior α = (α1, . . . , αm)

P(Zn+1 = k | z) ∝ nk(z) + αk

where nk(z) is the number of times k appears in
z = (z1, . . . , zn)

I Infinite set of outcomes Ω:
Dirichlet process DP(α,P0) with base distribution P0(Z ) and
concentration parameter α

P(Zn+1 = z ′ | z) ∝ nz ′(z) + αP0(z ′)
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Dirichlet Processes as Adaptors
• DPs generalise Dirichlet-multinomials

P(Zn+1 = z ′ | z) ∝ nz ′(z) + αP0(z ′)

• DPs follow a “rich get richer” law
I frequent outcomes are increasingly likely to be predicted

• The DP is stochastic:
in general, every sample z = (z1, z2, . . .) is different

⇒ DPs map a base distribution P0 to a distribution over
distributions DP(α,P0)

• Pitman-Yor Processes (PYPs) generalise Dirichlet Processes

• An adaptor is a function that maps a base distribution P0 to a
distribution over distributions with the same support as P0

I Dirichlet Processes and Pitman-Yor Processes are adaptors
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Adaptor grammars as generalised PCFGs
• An adaptor grammar is a PCFG with a set A ⊆ N of adapted

nonterminals, and adaptors CX for each X ∈ A
• Dirichlet Process Adaptor Grammar:

I If X ∈ W then GX (X ) = 1 (all mass on singelton tree X )
I If X ∈ N \A is not adapted then X expands as in PCFG, i.e.,:

GX =
∑

X→Y1...Ym∈RX

θX→Y1...YmTDX (GY1 , . . . ,GYm)

I If X ∈ A is adapted, then PCFG distribution is adapted:

GX ∼ DP(α,HX )

HX =
∑

X→Y1...Ym∈RX

θX→Y1...YmTDX (GY1 , . . . ,GYm)

• Other kinds of adaptor grammars use different adaptors
I Pitman-Yor adaptor grammars use Pitman-Yor Processes as

adaptors
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Predictive distribution of DP adaptor grammars

• Predictive distribution: predict next tree tn+1 given previously
generated trees t = (t1, . . . , tn)

• Predictive model “caches” adapted subtrees:
I An unadapted nonterminal B expands using B → β with

probability θB→β
I Each adapted nonterminal B is associated with a DP that

caches previously generated subtrees in TB
I An adapted nonterminal B expands:

– to a subtree t ′ ∈ TB probability proportional to the
number of times t ′ was previously generated

– using B → β with probability proportional to α θB→β
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Adaptor grammars for word segmentation
• Input: phoneme sequences with sentence boundaries (Brent)
• Task: identify word boundaries, and hence words

y Mu Nw Ma Mn Mt Nt Mu Ns Mi ND M6 Nb MU M

Words→Word
Words→Word Words
Word→ Phonemes
Phonemes→ Phoneme Phonemes
Phonemes→ Phoneme
Phoneme→ a | . . . | z

• Adapted nonterminals
(e.g., Word) highlighted
and underlined

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k
19/29



Outline

LDA topic models as PCFGs

Adaptor grammars

Finding topic-specific collocations

Learning the structure of proper nouns

Conclusion

20/29



Topic model with collocations

• Combines PCFG topic model and segmentation adaptor grammar

Sentence→ Docj j ∈ 1, . . . ,m
Docj → j j ∈ 1, . . . ,m
Docj → Docj Topici i ∈ 1, . . . , `;

j ∈ 1, . . . ,m
Topici →Words i ∈ 1, . . . , `

Words→Word
Words→Words Word
Word→ w w ∈ V

Sentence

Doc3

Doc3

Doc3

_3

Topic5

Words

Words

Word

polynomial

Word

size

Topic15

Words

Words

Word

threshold

Word

circuits
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Finding topical collocations in NIPS abstracts

• Run topical collocation adaptor grammar on NIPS corpus

• Run with ` = 20 topics (i.e., 20 distinct Topici nonterminals)

• Corpus is segmented by punctuation
I terminal strings are fairly short
⇒ inference is fairly efficient

• Used Pitman-Yor adaptors
I sampled Pitman-Yor a and b parameters
I flat and “vague Gamma” priors on Pitman-Yor a and b

parameters

See: Griffiths et al (2007), Johnson and Goldwater (2009)
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Sample output on NIPS corpus, 20 topics
• Multiword subtrees learned by adaptor grammar:

T 0 → gradient descent T 1 → associative memory
T 0 → cost function T 1 → standard deviation
T 0 → fixed point T 1 → randomly chosen
T 0 → learning rates T 1 → hamming distance
T 3 → membrane potential T 10 → ocular dominance
T 3 → action potentials T 10 → visual field
T 3 → visual system T 10 → nervous system
T 3 → primary visual cortex T 10 → action potential

• Sample skeletal parses:
3 (T 5 polynomial size) (T 15 threshold circuits)
4 (T 11 studied) (T 19 pattern recognition algorithms)
4 (T 2 feedforward neural network) (T 1 implements)
5 (T 11 single) (T 10 ocular dominance stripe) (T 12 low)

(T 3 ocularity) (T 12 drift rate)
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Learning the structure of proper nouns

• Grammars offer structural and positional sensitivity not captured in
topic models: can we use this somehow?

• The Penn WSJ assigns flat structures to names and other base NPs

• Identifying structure within names can be useful
I Bill Clinton and Hillary Clinton are unlikely to corefer because

Bill and Hillary are both first names
I Secretary Clinton and Hillary Clinton can corefer because

Secretary is an honorific

• There are many different types of names (e.g., company names,
person names)

• Some components of a name can be filled by multi-word sequences
I In Jean-Claude van Damme, van Damme is the surname
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An adaptor grammar for names
NP→ (A0) (A1) . . . (A6) NP→ (B0) (B1) . . . (B6)
A0→Word+ B0→Word+

. . . . . .
A6→Word+ B6→Word+

NP→ Unordered+ Unordered→Word+

• Sample parses:

(A0 barrett) (A3 smith)
(A0 albert) (A2 j.) (A3 smith) (A4 jr.)
(A0 robert) (A2 b.) (A3 van dover)
(B0 aim) (B1 prime rate) (B2 plus) (B5 fund) (B6 inc.)
(B0 balfour) (B1 maclaine) (B5 international) (B6 ltd.)
(B0 american express) (B1 information services) (B6 co)
(U abc) (U sports)
(U sports illustrated)
(U sports unlimited)

See: Elsner, Charniak and Johnson (2009)
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Conclusion

• LDA topic models can be expressed as Bayesian PCFGs
I makes it easier to combine grammars and topic models
I may help us to design new topic models that incorporate

configurational sensitivity that is easy to express with
grammars

• Adaptor grammars are a non-parametric extension of PCFGs which
associate probabilities with entire subtrees

• Adaptor grammars can be used to express generalised topic models
I learning topical collocations
I learning the structure of names
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Interested in Bayesian Inference and Language?

We’re recruiting PhD students and post-docs.

Contact Mark.Johnson@mq.edu.au for more information.
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