Learning and parsing stochastic

unification-based grammars

Mark Johnson
Brown University

(BLLP)
COLT’03 talk

Joint work with Stuart Geman and Stefan Riezler

Supported by NSF grants LIS 9720368 and 1150095940

Talk outline

Lexical Functional Grammars

Stochastic Lexical Functional Grammars

Supervised training from parsed corpora
Semi-supervised training from partially labelled data

Dynamic programming using MRF graphical models

441 < < {2
Big picture” 1ssues

e Human language can be understood in terms of knowledge that
can be used in many ways
o What kinds of knowledge are involved in the use of human language?

— Linguistic knowledge about the surface form < “meaning”
relationship

— This relationship involves complex hidden syntactic structure
(described by a grammar)

— World knowledge and pragmatic knowledge are also involved

“Big picture” issues (cont.)

o Which components of this knowledge are innate, and which are learnt?

— The phonological components (sounds) of words are
arbitrary = relationship between phonological

representations and lexical meanings must be learnt (how?)

— The (abstract) syntactic structure of most languages seems
very similar, and no one knows how it might be learnt

= perhaps syntax is innate?

e How exactly is the knowledge learnt? (Can we learn it
explicitly?)

e How is all this knowledge used in production and

comprehension?

Stochastic Lexical-Functional Grammar

e A Lexical-Functional Grammar (LFG) models the relationship
between phonological, syntactic and semantic structures that
together form the parse of a sentence

e An LFG defines the set) of parses possible in a language

e Most sentences are ambiguous (1 to 10,000 parses)

e A Stochastic LFG defines a (conditional) probability distribution
over)

e Organization of an SLFG:

— manually specify possible parses using an LFG
— manually specify conditioning features
— learn feature weights from training data

Q: What is the most effective way to describe a human language?
(grammar, corpus)

Representations of Lexical-Functional Grammar

SBAR PRED read(Sandy,book)
NG AL 5 FORM question

N SUBJ | PRED Sandy |

Det N did/ NP VP OBJ -«

]) T
which book Sandy/ V FOCUS [PRED book }

‘ SPEC which
read

c(onstituent) structure f(unctional) structure

e Not depicted here: morphological structure, semantic structure
e This work focuses on disambiguating c-structure and f-structure
— Almost all ¢ and f-structure ambiguity is reflected in
semantic structure ambiguity
— Other semantic structure ambiguity (e.g., quantifier scope)

is very hard for humans to disambiguate
6

How an LFG describes parses

/S\ PRED like(Sam,Sandy) __
NP VP SUBJ] |PRED Sam]
| TN i |
Sam |V NP OB] |PRED Sandy |

likes '« Sandy

e Syntactic rules

S — NP VP VP — Vv NP
TSUBJ=] 1=| 1=] TOBJ=|

e [.exical entries

Sandy : NP likes : \VA
T PRED=Sandy T PRED=like(T SUBJ PRED,T OBJ PRED)

7

Representations of Lexical-Functional Grammar

TU
SEGMENT
RO|OT PER‘IOD
Sadj .

j J

T

VPv
| T N
let PRT)N Y I\NP

us take DATEP
ITT COMMA DATEnum
Tuesday , NUMBER

the fifteenth

SENTENCE_ID

OB] | PERS 1

9
PASSIVE —
PRED LET

OB]J
XCOMP

ANIM +
CASE ACC
NUM PL

PRED PRO

PRON-FORM ~ WE
| PRON-TYPE

PASSIVE — -
8 PRED

10 SUBJ [9]

BAC002_E

PERS |

(21009
STMT-TYPE '~ IMPERATIVE
PERS 2
SUB] | PRED PRO
, | PRON-TYPE ~ NULL
TNS-ASP | MOOD

IMPERATIVE]

[ANIM —

NUMBER _ ORD
NTYPE |:TIME DATE]
NUM SG

PRED fifteen

SPEC-FORM THE
SPEC [SPEC-TYPE ~DEF]

APP

CASE ACC -
GEND NEUT

GRAIN COUNT
NTYPE | PROPER DATE
TIME DAY
NUM SG
PERS 3
13 L PRED

TUESDAY

TAKE(9,13)

Machine translation using LFG

C French sentence)

v
French LFG parser

C French f-structure)
v

French-English transfer

v
C English f-structure)

v
English LFG generator

C English sentence)

e Translation of f-structures seems easier than translation of words
e Ambiguity: each step of the procedure is multi-valued
= If each component is probabilistic, we can identify the most

likely translation .

Stochastic Lexical-Functional Grammars

e An LFG defines a set of possible parses Y (x) for each sentence z.

o Features f1,..., fm, are real-valued functions on parses

— Attachment location (high, low, argument, adjunct, etc.)

— Head-to-head dependencies
e Probability distribution defined by log-linear model
m m

W) = e A50m) = 1160

Pr(ylw) = W(y)/Z(w)

where 0; = exp \; > 0 are feature weights and
Z(w) =3 eyw) W(y) is the partition function.

Johnson et al (1999) “Parsing and estimation for SUBGs”, Proc ACL

10

Features used in our SLFGs

Rule features: For every non-terminal X, fx(y) is the number of
times X occurs in c-structure of y

Attribute value features: For every attribute a and every atomic
value v, f,—,(y) is the number of times the pair a = v appears in

Y

Argument and adjunct features: For every grammatical function g,
f4(w) is the number of times that g appears in y

Other features: Dates, times, locations; right branching; attachment

location; parallelism in coordination; ...

Features are not independent, but dependency structure is

unknown.

11

ML estimation of feature weights

Training data D = (y1,...,Yn)

A = argmax Lp()\)

AN A

Y n
Lp(A) = HPU(%‘)
Pry(y) = ngy) Waly) = expd Nifi(y) Zn = > Wiy
J y'ey

e ML estimation maximizes score W (y;) of correct parse y;

relative to sum Z of scores of all parses Y

e in general Z) and 0Lp/0\ are intractable analytically and
numerically (no effective means to sum over all))

e Abney (1997) suggests a Monte-Carlo calculation method

12

Conditional ML estimation of feature weights

D = ((x1,y1),---,(Tn,yn)), Where z; is a string and y; its parse

Maximize conditional likelihood of parses y; given their strings x;,
i.e., maximize score W (y;) of correct parse y; relative to sum Z(z;) of
scores of all parses) (x;) of string x;

y\A /yz A = argl;\nax Lp(A)
Lp(A) = H Pra(yilz:)
Pra(ylz) = Wi(y)/Zx\(x)

Conditional ML versus ML

The conditional partition function Z)(x) is much easier to compute
than the partition function 72

— Z) requires a sum over all parses)

— Z)(x) requires a sum over Y(x) (parses of string z)
Maximum likelihood estimates full joint distribution

— learns distribution of both strings and parses given strings

Maximum conditional likelihood estimates a conditional
distribution

— learns distribution of parses given yields, but not yields
— conditional distribution is all you need for parsing

Conditional estimator is consistent for the conditional distribution
only

14

Conditional likelihood estimation

Correct
parse’s | Features of other parses of same string
features

sentence1 | [1,3,2] | [2,2,3][3,1,5] [2,6,3]
sentence 2 | [7,2,1] | [2,5,5]
sentence 3 | [2,4,2] | [1,1,7][7,2,1]

e Training data is fully observed (i.e., parsed data)

e Choose) to maximize (log) likelihood of correct parses relative
to all parses of same string

e Distribution of strings is ignored

15

Pseudo-constant features are uninformative

Correct
parse’s
features

Features of other parses of same string

sentence 1 | [1,3, 2]

sentence 2 | [7,2, 5]

sentence 3 | (2,4, 4]

2,2,2] 3,1, 2] [2,6, 2]
2,5, 5]
1,1,4] 17,2, 4]

e Pseudo-constant features are identical within every set of parses

e They contribute the same constant factor to each parses’

likelihood

e They do not distinguish parses of any sentence =-irrelevant

16

Pseudo-maximal features =unbounded)T]

Correct
parse’s
features

Features of other parses of same string

sentence1 | [1, 3, 2]

sentence 2 | (2, 7,4]

sentence 3 | (2, 4,4]

2,3,4] [3,1,1] [2,1,1]
3,7,2)
1,1,1][1, 2, 4]

o A pseudo-maximal feature always reaches its maximum value

within a parse on the correct parse

o If f; is pseudo-maximal, 5\; — 00 (hard constraint)

—

o If f; is pseudo-minimal, A\; — —oo (hard constraint)

17

Regularization helps avoid overlearning

e f;is pseudo-maximal over training data
f; is pseudo-maximal over all strings

e overlearning because of sparse data

e Regularization: Multiply the conditional likelihood by a

zero-mean Gaussian with diagonal covariance

m 2
A = argmaxlog Lp(A 2—32
A j=179]

e Optimize o; on heldout data

18

Optimization of conditional likelihood

e Several algorithms for maximum conditional likelihood estimation

— Various iterative scaling algorithms

— Conjugate gradient, L-BFGS and other numerical
optimization algorithms

e These numerical algorithms require partial derivates of the
conditional likelihood

Olog Lp(A
Og@)\f() — Zf] yz EAf]’:BZ]
Exlfjlz] = Z fi(y) Pra(y|x)
yeY(x)

19

Stochastic LFG experiment

e Two parsed LFG corpora provided by Xerox PARC
e Grammars unavailable, but corpus contains all parses and
hand-identified correct parse

e Features chosen by inspecting Verbmobil corpus only

Verbmobil corpus | Homecentre corpus
of sentences 540 980
of ambiguous sentences 324 424
Av. length of ambig. sentences 13.8 13.1
of parses 3245 2865
of features 191 227
of rule features 59 57

20

Pseudo-likelihood estimator evaluation

Verbmobil corpus Homecentre corpus
324 sentences 424 sentences
C —log Lp(A) C —log Lp (M)
Baseline estimator 88.8 533.2 136.9 590.7
Conditional ML estimator | 180.0 401.3 283.25 580.6

e Test corpus only contains sentences with more than one parse

e (' is the number of sentences of the ambiguous held-out test
sentences that the model selected correct parses for

e 10-fold cross-validation evaluation

e Combined system performance: 75% of MAP parses are correct

21

Scaling up: training from partially labeled data

o Coverage of hand-written grammars is poor
— Move constraints from base LFG to stochastic component
= parses 95% of heldout Penn treebank test corpus

= massive increase in ambiguity

e Lack of labeled training data

— Can we use the Penn WSJ treebank? (40,000 sentences with
hand-constructed parse trees)

— LFG parses contain much more information than Penn
treebank trees

+ The Penn treebank only contains c-structure information,
but no f-structure information
= No purely mechanical way of obtaining LFG training trees

« Train from partially labelled data
22

Partially labelled data

o Fully labelled training data identifies the correct parse y; for each
sentence x;

o Partially labelled training data identifies a (small!) set of LFG
parses YV (w;) which contain y;

e Obtained mechanically from the WSJ treebank w;

e)V(w) the set of LFG parses that:
— have matching terminal and POS labels
— have no crossing brackets with the Penn treebank tree w;
— agree in the locations of maximal NP, VI’ and S constituents
Riezler et al (2002) “Parsing the Wall Street Journal using a LFG and Discriminative

Estimation Techniques”, Proc ACL
23

Estimation from partially labelled data

D = ((z1,w1),...,(zn,w,)), where z; is a string and w; a Penn tree.

Y(w;) is the set of LFG parses compatible with w;; y; € Y(w;).

LD()\) = H PrA(wi]:Bz—)

y@‘ /y(wi) Pri(wlz) = 7:1()/ZA()
v (@ ® Z)(x) = yg}%x Wi (y
® o Wi(y) = eszj:)\jij
0%2\5) = éEA(fj\wz‘)—EA(fj!iBz‘)

24

Estimation from partially labelled data (cont.)

e Parse each sentence z; in the training data to obtain set J(z;) of
possible parses

e Discard all parses inconsitent with the Penn WSJ treebank parse
w;, producing Y (w;)

e Numerically optimize a regularized log likelihood based on
Pr(w|x)

— Very similiar to likelihood maximized by EM algorithms

25

Experiment using Penn WS]J Treebank

Discarded unambiguous sentences and sentences longer than 25 words

50% of sentences received a full parse = 20,000 training

sentences
500,000 parses from strings alone

150,000 parses after treebank filtering

— Penn WSJ treebank does not add that much information
over base LFG grammar

— Perhaps there are better ways of extracting information
from treebank?

26

Evaluation using Penn WS]J Treebank

500 randomly-chosen sentences from section 23 of length < 25

words

PRED values were extracted by hand from parses produced by

the grammar

Evaluated on PRED head-argument matches

Parser produced 411 full parses and 89 partial parses

Precision | Recall
Lower bound 75% 79%
Our model 78% 81%
Upper bound 80% 85%

27

Dynamic programming for parsing and estimation

e As grammar coverage increases, so does ambiguity

= How can we improve computational efficiency?
o Maxwell and Kaplan packed parse representations
e Feature locality (e.g., a f-structure constant)
e Parsing/estimation statistics are sum/max of products
e Graphical representation of product expressions
e Sum/max computations over graphs

Geman and Johnson (2002) “Dynamic programming for parsing and estimation of

stochastic unification-based grammars”, Proc ACL

28

Reparameterization of log linear models

0, = expA
Woly) = expd Nfily) = [[67Y
J=1 j=1
Wo(y)
P -
ro(y|z) Zo ()
ZQ(CC) — Z WQ
y'e)(x)

e Change of variables permits zero probability events
e /y(x) involves summing over all possible parses

e Same kind of technique finds most likely parse and calculates

Eg|fj|x]
29

Maxwell and Kaplan packed parses

A parse y consists of set of fragments ¢ € y (MK algorithm)

A fragment is in a parse when its context function is true

Context functions are functions of context variables V1, Vs, . ..

The variable assignment must satisfy “no-good” functions

Each parse is identified by a unique context variable assignment

& = "“the cat on the mat”

A
&1 = “with a hat the cat on 5 <N -V
“attach D to B” the mat » ///\fN
“attach D to A” Vi with a hat

30

Feature locality

e Features must be local to fragments: f;(y) = Y ¢c, f3(€)

e May require changes to UBG to make all features local

& = "“the cat on the mat”

& = “with a hat”

“attach D to B” N ({1 ATTACH) = LOW
“attach D to A” A (£&1 ATTACH) = HIGH

A
the cat
e ca onBv\ =
the mat v _ ///\f\

Vi with a hat

31

Feature locality decomposes W (y)

e Feature locality: the weight of a parse is the product of weights

of its fragments

%1
=V

Wiy) = HW(f), where
£€Y

W(E) = H@fy‘(ﬁ)

g=1

W (& = “the cat on the mat”)
W& = “with a hat”)

— W (“attach D to B” A (&1 ATTACH) = LOW)
— W

(
(

“attach D to A” A (&1 ATTACH) = HIGH)

32

No-goods and impossible variable assignments

e Not all variable assignments correspond to parses

e A no-good is a function n(v) that is false when v doesn’t correspond to
a parse

e 7(v) = 0 — v has zero probability

¢ = “lread a book”

&1 = “on the table”
ViNVe, — “attach D to B”
ViAn=V, — “attach Dto A”
-V, — “attach D to C”

VivVs I read 1; $ - %"C_
abook « ViA=Vo,)
v A 41
TTViAV, Y
33 D

on the table

Identify parses with variable assignments

e For a given sentence x, a variable assignment v to V' uniquely
identifies a parse y

o Let W (v) = W(y) where y is the parse identified by v

= Argmax/sum/expectations over parses can be computed over
context variables V instead of over complete parses

Most likely parse: & = argmax W (v)

veV(x)
Partition function: Z(z Z W (v
veV(x)
Expectation:* E|[f;lz] = > f;(v /Z(x)
veV(x)

34

W (v) is a product of functions of v

o W(v)=11l4caA(v), where:
— Each line a(v) — ¢ introduces a term W (£)®®)

— Each “no-good” n(v) introduces a term n(v) (which is zero
on variable assignments that do not correspond to parses)

a(w) — ¢ x W(E)w
X
n(v) X n(v)

= W is a Markov Random Field over the context variables V'

35

W is a product of functions of VV

W (& = “the cat on the mat”)
x W& = "witha hat”)

x W (“attach D to B” A (£ ATTACH) = LOW)"
x W (“attach D to A” A (£; ATTACH) = HIGH) !
A
the caton _w_

B~~~

Wi
the mat v_ ///\m

Vi with a hat

36

Product expressions and graphical models

MRFs are products of terms, each of which is a function of (a
few) variables

Graphical models provide dynamic programming algorithms for
Markov Random Fields (MRF) (Pearl 1988)

These algorithms implicitly factorize the product

They generalize the Viterbi and Forward-Backward algorithms
to arbitrary graphs (Smyth 1997)

Graphical models provide dynamic programming techniques
for parsing and training Stochastic UBGs

37

Factorization example

W'(Vi) = W (& = “the cat on the mat”)
x W& = “witha hat”)
W (“attach D to B” A (£1 ATTACH) = LOW)V1
x W (“attach D to A” A (£ ATTACH) = HIGH)~/

max W'(V1) = W (¢ = “the cat on the mat”)

< W(& = “withahat”)

(W (“attach D to B” A (£&1 ATTACH) = LOW)", >
X max

Vi W (“attach D to A” A (& ATTACH) = HIGH)~ "

38

Dependency structure graph G 4

Z(x) = ZW(?)) = Z H A(v)

v AcA
o (G4 is the dependency graph for A
— context variables X are vertices of G 4
— G 4 has an edge (v;, v;) if both are arguments of some A € A
A(V) = a(V1, V3)b(Va, Va)e(Vs, Va, V5)d(Va, Vs)e(Ve, Vr)

Wi Vs Vs Ve

7

Va Vy V7

39

Graphical model computations

Z = > a(vi,v3)b(va, va)c(vs, va, vs)d(va, v5)e(ve, v7)
= >, a(vi,v3)

= D, b(v2,v4)

= D, c(vs,v4,v5)Z1(v3)

Za(vs) = >, d(v4,v5)Zz(U4)ng}i4,U5) v, V. Ve
Zs = Dy Za(vs) .

Ze(vr) = >, e(ve,v7)
Zr =). Ze(vr)
7 = ZsZy V2 Va Ve

= (X Za(vs)) (2., Zo(vr))

See: Pearl (1988) Probabilistic Reasoning in Intelligent Systems

40

Graphical model for Homecentre example

Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner plastic

window and rollers.

41

Computational complexity

e Polynomial in m = the maximum number of variables in the
dynamic programming functions > the number of variables in any
function A

e m depends on the ordering of variables (and G)

e Finding the variable ordering that minimizes m is NP-complete,
but there are good heuristics

= Worst case exponential (no better than enumerating the parses),
but average case might be much better

— Much like UBG parsing complexity

42

Summary

e Parse selection can be formulated as a classification problem

= Virtually any classification algorithm can be used

e The training data often only partially identifies the correct parse
= Classification algorithms that can train from partially labeled
data
e Combinatorial explosion in number of parses

= Reformulate parsing and estimation problems as MRF

graphical model problems

43

Future directions

e Reformulate “hard” grammatical constraints as “soft” stochastic
features

— Underlying grammar permits all possible structural
combinations

— Grammatical constraints reformulated as stochastic features

= computationally efficiency will be even more important

o Better methods for learning from partially labeled data (e.g.,
co-training)

e Feature selection, automatic feature induction

o Applications such as machine translation and automatic
summarization

44

