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Big picture” 1ssues

e Human language can be understood in terms of knowledge that
can be used in many ways
o What kinds of knowledge are involved in the use of human language?

— Linguistic knowledge about the surface form < “meaning”
relationship

— This relationship involves complex hidden syntactic structure
(described by a grammar)

— World knowledge and pragmatic knowledge are also involved



“Big picture” issues (cont.)

o Which components of this knowledge are innate, and which are learnt?

— The phonological components (sounds) of words are
arbitrary = relationship between phonological

representations and lexical meanings must be learnt (how?)

— The (abstract) syntactic structure of most languages seems
very similar, and no one knows how it might be learnt

= perhaps syntax is innate?

e How exactly is the knowledge learnt? (Can we learn it
explicitly?)

e How is all this knowledge used in production and

comprehension?



Stochastic Lexical-Functional Grammar

e A Lexical-Functional Grammar (LFG) models the relationship
between phonological, syntactic and semantic structures that
together form the parse of a sentence

e An LFG defines the set ) of parses possible in a language

e Most sentences are ambiguous (1 to 10,000 parses)

e A Stochastic LFG defines a (conditional) probability distribution
over )

e Organization of an SLFG:

— manually specify possible parses using an LFG
— manually specify conditioning features
— learn feature weights from training data

Q: What is the most effective way to describe a human language?
(grammar, corpus)



Representations of Lexical-Functional Grammar

SBAR PRED read(Sandy,book)
NG AL 5 FORM question

N SUBJ | PRED Sandy |

Det N did/ NP VP OBJ -«

] ) T
which  book Sandy/ V FOCUS [PRED book }
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read
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e Not depicted here: morphological structure, semantic structure
e This work focuses on disambiguating c-structure and f-structure
— Almost all ¢ and f-structure ambiguity is reflected in
semantic structure ambiguity
— Other semantic structure ambiguity (e.g., quantifier scope)

is very hard for humans to disambiguate
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How an LFG describes parses

/S\  PRED like(Sam,Sandy) __
NP VP SUBJ] |PRED Sam ]
| TN i |
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e Syntactic rules
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TSUBJ=] 1=| 1=] TOBJ=|

e [.exical entries

Sandy : NP likes : \VA
T PRED=Sandy T PRED=like(T SUBJ PRED,T OBJ PRED)
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Representations of Lexical-Functional Grammar
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Machine translation using LFG

C French sentence )

v
French LFG parser

C French f-structure )
v

French-English transfer

v
C English f-structure )

v
English LFG generator

C English sentence )

e Translation of f-structures seems easier than translation of words
e Ambiguity: each step of the procedure is multi-valued
= If each component is probabilistic, we can identify the most

likely translation .



Stochastic Lexical-Functional Grammars

e An LFG defines a set of possible parses Y (x) for each sentence z.

o Features f1,..., fm, are real-valued functions on parses

— Attachment location (high, low, argument, adjunct, etc.)

— Head-to-head dependencies
e Probability distribution defined by log-linear model
m m

W) = e A50m) = 1160

Pr(ylw) = W(y)/Z(w)

where 0; = exp \; > 0 are feature weights and
Z(w) =3 eyw) W(y) is the partition function.

Johnson et al (1999) “Parsing and estimation for SUBGs”, Proc ACL
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Features used in our SLFGs

Rule features: For every non-terminal X, fx(y) is the number of
times X occurs in c-structure of y

Attribute value features: For every attribute a and every atomic
value v, f,—,(y) is the number of times the pair a = v appears in

Y

Argument and adjunct features: For every grammatical function g,
f4(w) is the number of times that g appears in y

Other features: Dates, times, locations; right branching; attachment

location; parallelism in coordination; ...

Features are not independent, but dependency structure is

unknown.
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ML estimation of feature weights

Training data D = (y1,...,Yn)

A = argmax Lp()\)

AN A

Y n
Lp(A) = HPU(%‘)
Pry(y) = ngy) Waly) = expd Nifi(y) Zn = > Wiy
J y'ey

e ML estimation maximizes score W (y;) of correct parse y;

relative to sum Z of scores of all parses Y

e in general Z) and 0Lp/0\ are intractable analytically and
numerically (no effective means to sum over all ))

e Abney (1997) suggests a Monte-Carlo calculation method
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Conditional ML estimation of feature weights

D = ((x1,y1),---,(Tn,yn)), Where z; is a string and y; its parse

Maximize conditional likelihood of parses y; given their strings x;,
i.e., maximize score W (y;) of correct parse y; relative to sum Z(z;) of
scores of all parses ) (x;) of string x;

y\A /yz A = argl;\nax Lp(A)
Lp(A) = H Pra(yilz:)
Pra(ylz) = Wi(y)/Zx\(x)



Conditional ML versus ML

The conditional partition function Z)(x) is much easier to compute
than the partition function 72

— Z) requires a sum over all parses )

— Z)(x) requires a sum over Y(x) (parses of string z)
Maximum likelihood estimates full joint distribution

— learns distribution of both strings and parses given strings

Maximum conditional likelihood estimates a conditional
distribution

— learns distribution of parses given yields, but not yields
— conditional distribution is all you need for parsing

Conditional estimator is consistent for the conditional distribution
only
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Conditional likelihood estimation

Correct
parse’s | Features of other parses of same string
features

sentence1 | [1,3,2] | [2,2,3][3,1,5] [2,6,3]
sentence 2 | [7,2,1] | [2,5,5]
sentence 3 | [2,4,2] | [1,1,7][7,2,1]

e Training data is fully observed (i.e., parsed data)

e Choose ) to maximize (log) likelihood of correct parses relative
to all parses of same string

e Distribution of strings is ignored
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Pseudo-constant features are uninformative

Correct
parse’s
features

Features of other parses of same string

sentence 1 | [1,3, 2]

sentence 2 | [7,2, 5]

sentence 3 | (2,4, 4]

2,2,2] 3,1, 2] [2,6, 2]
2,5, 5]
1,1,4] 17,2, 4]

e Pseudo-constant features are identical within every set of parses

e They contribute the same constant factor to each parses’

likelihood

e They do not distinguish parses of any sentence =-irrelevant
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Pseudo-maximal features =unbounded )T]

Correct
parse’s
features

Features of other parses of same string

sentence1 | [1, 3, 2]

sentence 2 | (2, 7,4]

sentence 3 | (2, 4,4]

2,3,4] [3,1,1] [2,1,1]
3,7,2)
1,1,1][1, 2, 4]

o A pseudo-maximal feature always reaches its maximum value

within a parse on the correct parse

o If f; is pseudo-maximal, 5\; — 00 (hard constraint)

—

o If f; is pseudo-minimal, A\; — —oo (hard constraint)
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Regularization helps avoid overlearning

e f;is pseudo-maximal over training data
# f; is pseudo-maximal over all strings

e overlearning because of sparse data

e Regularization: Multiply the conditional likelihood by a

zero-mean Gaussian with diagonal covariance

m 2
A = argmaxlog Lp(A 2—32
A j=179]

e Optimize o; on heldout data
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Optimization of conditional likelihood

e Several algorithms for maximum conditional likelihood estimation

— Various iterative scaling algorithms

— Conjugate gradient, L-BFGS and other numerical
optimization algorithms

e These numerical algorithms require partial derivates of the
conditional likelihood

Olog Lp(A
Og@)\f() — Zf] yz EAf]’:BZ]
Exlfjlz] = Z fi(y) Pra(y|x)
yeY(x)
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Stochastic LFG experiment

e Two parsed LFG corpora provided by Xerox PARC
e Grammars unavailable, but corpus contains all parses and
hand-identified correct parse

e Features chosen by inspecting Verbmobil corpus only

Verbmobil corpus | Homecentre corpus
# of sentences 540 980
# of ambiguous sentences 324 424
Av. length of ambig. sentences 13.8 13.1
# of parses 3245 2865
# of features 191 227
# of rule features 59 57
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Pseudo-likelihood estimator evaluation

Verbmobil corpus Homecentre corpus
324 sentences 424 sentences
C —log Lp(A) C —log Lp (M)
Baseline estimator 88.8 533.2 136.9 590.7
Conditional ML estimator | 180.0 401.3 283.25 580.6

e Test corpus only contains sentences with more than one parse

e (' is the number of sentences of the ambiguous held-out test
sentences that the model selected correct parses for

e 10-fold cross-validation evaluation

e Combined system performance: 75% of MAP parses are correct
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Scaling up: training from partially labeled data

o Coverage of hand-written grammars is poor
— Move constraints from base LFG to stochastic component
= parses 95% of heldout Penn treebank test corpus

= massive increase in ambiguity

e Lack of labeled training data

— Can we use the Penn WSJ treebank? (40,000 sentences with
hand-constructed parse trees)

— LFG parses contain much more information than Penn
treebank trees

+ The Penn treebank only contains c-structure information,
but no f-structure information
= No purely mechanical way of obtaining LFG training trees

« Train from partially labelled data
22



Partially labelled data

o Fully labelled training data identifies the correct parse y; for each
sentence x;

o Partially labelled training data identifies a (small!) set of LFG
parses YV (w;) which contain y;

e Obtained mechanically from the WSJ treebank w;

e )V(w) the set of LFG parses that:
— have matching terminal and POS labels
— have no crossing brackets with the Penn treebank tree w;
— agree in the locations of maximal NP, VI’ and S constituents
Riezler et al (2002) “Parsing the Wall Street Journal using a LFG and Discriminative

Estimation Techniques”, Proc ACL
23



Estimation from partially labelled data

D = ((z1,w1),...,(zn,w,)), where z; is a string and w; a Penn tree.

Y(w;) is the set of LFG parses compatible with w;; y; € Y(w;).

LD()\) = H PrA(wi]:Bz—)

y@‘ /y(wi) Pri(wlz) = 7:1( )/ZA()
v (@ ® Z)(x) = yg}%x Wi (y
® o Wi(y) = eszj:)\jij
0%2\5) = éEA(fj\wz‘)—EA(fj!iBz‘)
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Estimation from partially labelled data (cont.)

e Parse each sentence z; in the training data to obtain set J(z;) of
possible parses

e Discard all parses inconsitent with the Penn WSJ treebank parse
w;, producing Y (w;)

e Numerically optimize a regularized log likelihood based on
Pr(w|x)

— Very similiar to likelihood maximized by EM algorithms
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Experiment using Penn WS]J Treebank

Discarded unambiguous sentences and sentences longer than 25 words

50% of sentences received a full parse = 20,000 training

sentences
500,000 parses from strings alone

150,000 parses after treebank filtering

— Penn WSJ treebank does not add that much information
over base LFG grammar

— Perhaps there are better ways of extracting information
from treebank?
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Evaluation using Penn WS]J Treebank

500 randomly-chosen sentences from section 23 of length < 25

words

PRED values were extracted by hand from parses produced by

the grammar

Evaluated on PRED head-argument matches

Parser produced 411 full parses and 89 partial parses

Precision | Recall
Lower bound 75% 79%
Our model 78% 81%
Upper bound 80% 85%
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Dynamic programming for parsing and estimation

e As grammar coverage increases, so does ambiguity

= How can we improve computational efficiency?
o Maxwell and Kaplan packed parse representations
e Feature locality (e.g., a f-structure constant)
e Parsing/estimation statistics are sum/max of products
e Graphical representation of product expressions
e Sum/max computations over graphs

Geman and Johnson (2002) “Dynamic programming for parsing and estimation of

stochastic unification-based grammars”, Proc ACL
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Reparameterization of log linear models

0, = expA
Woly) = expd Nfily) = [[67Y
J=1 j=1
Wo(y)
P -
ro(y|z) Zo ()
ZQ(CC) — Z WQ
y'e)(x)

e Change of variables permits zero probability events
e /y(x) involves summing over all possible parses

e Same kind of technique finds most likely parse and calculates

Eg|fj|x]
29



Maxwell and Kaplan packed parses

A parse y consists of set of fragments ¢ € y (MK algorithm)

A fragment is in a parse when its context function is true

Context functions are functions of context variables V1, Vs, . ..

The variable assignment must satisfy “no-good” functions

Each parse is identified by a unique context variable assignment

& = "“the cat on the mat”

A
&1 = “with a hat the cat on 5 <N -V
“attach D to B” the mat » ///\fN
“attach D to A” Vi with a hat
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Feature locality

e Features must be local to fragments: f;(y) = Y ¢c, f3(€)

e May require changes to UBG to make all features local

& = "“the cat on the mat”

& = “with a hat”

“attach D to B” N ({1 ATTACH) = LOW
“attach D to A” A (£&1 ATTACH) = HIGH

A
the cat
e ca onBv\ =
the mat v _ ///\f\

Vi with a hat
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Feature locality decomposes W (y)

e Feature locality: the weight of a parse is the product of weights

of its fragments

%1
=V

Wiy) = HW(f), where
£€Y

W(E) = H@fy‘(ﬁ)

g=1

W (& = “the cat on the mat”)
W& = “with a hat”)

— W (“attach D to B” A (&1 ATTACH) = LOW )
— W

(
(

“attach D to A” A (&1 ATTACH) = HIGH )

32



No-goods and impossible variable assignments

e Not all variable assignments correspond to parses

e A no-good is a function n(v) that is false when v doesn’t correspond to
a parse

e 7(v) = 0 — v has zero probability

¢ = “lread a book”

&1 = “on the table”
ViNVe, —  “attach D to B”
ViAn=V, — “attach Dto A”
-V, — “attach D to C”

VivVs I read 1; $ - %"C_
abook « ViA=Vo, )
v A 41
TTViAV, Y
33 D
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Identify parses with variable assignments

e For a given sentence x, a variable assignment v to V' uniquely
identifies a parse y

o Let W (v) = W(y) where y is the parse identified by v

= Argmax/sum/expectations over parses can be computed over
context variables V instead of over complete parses

Most likely parse: & = argmax W (v)

veV(x)
Partition function: Z(z Z W (v
veV(x)
Expectation:* E|[f;lz] = >  f;(v /Z(x)
veV(x)

34



W (v) is a product of functions of v

o W(v)=11l4caA(v), where:
— Each line a(v) — ¢ introduces a term W (£)®®)

— Each “no-good” n(v) introduces a term n(v) (which is zero
on variable assignments that do not correspond to parses)

a(w) — ¢ x W(E)w
X
n(v) X n(v)

= W is a Markov Random Field over the context variables V'
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W is a product of functions of VV

W (& = “the cat on the mat”)
x W& = "witha hat”)

x W (“attach D to B” A (£ ATTACH) = LOW )"
x W (“attach D to A” A (£; ATTACH) = HIGH ) !
A
the caton _w_

B~~~

Wi
the mat v_ ///\m

Vi with a hat
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Product expressions and graphical models

MRFs are products of terms, each of which is a function of (a
few) variables

Graphical models provide dynamic programming algorithms for
Markov Random Fields (MRF) (Pearl 1988)

These algorithms implicitly factorize the product

They generalize the Viterbi and Forward-Backward algorithms
to arbitrary graphs (Smyth 1997)

Graphical models provide dynamic programming techniques
for parsing and training Stochastic UBGs
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Factorization example

W'(Vi) = W (& = “the cat on the mat”)
x W& = “witha hat”)
W (“attach D to B” A (£1 ATTACH) = LOW )V1
x W (“attach D to A” A (£ ATTACH) = HIGH )~/

max W'(V1) = W (¢ = “the cat on the mat”)

< W(& = “withahat”)

( W (“attach D to B” A (£&1 ATTACH) = LOW )", >
X max

Vi W (“attach D to A” A (& ATTACH) = HIGH )~ "
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Dependency structure graph G 4

Z(x) = ZW(?)) = Z H A(v)

v AcA
o (G4 is the dependency graph for A
— context variables X are vertices of G 4
— G 4 has an edge (v;, v;) if both are arguments of some A € A
A(V) = a(V1, V3)b(Va, Va)e(Vs, Va, V5 )d(Va, Vs )e(Ve, Vr)

Wi Vs Vs Ve

7

Va Vy V7
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Graphical model computations

Z = > a(vi,v3)b(va, va)c(vs, va, vs)d(va, v5)e(ve, v7)
= >, a(vi,v3)

= D, b(v2,v4)

= D, c(vs,v4,v5)Z1(v3)

Za(vs) = >, d(v4,v5)Zz(U4)ng}i4,U5) v, V. Ve
Zs = Dy Za(vs) .

Ze(vr) = >, e(ve,v7)
Zr = ). Ze(vr)
7 = ZsZy V2 Va Ve

= (X Za(vs)) (2., Zo(vr))

See: Pearl (1988) Probabilistic Reasoning in Intelligent Systems
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Graphical model for Homecentre example

Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner plastic

window and rollers.
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Computational complexity

e Polynomial in m = the maximum number of variables in the
dynamic programming functions > the number of variables in any
function A

e m depends on the ordering of variables (and G)

e Finding the variable ordering that minimizes m is NP-complete,
but there are good heuristics

= Worst case exponential (no better than enumerating the parses),
but average case might be much better

— Much like UBG parsing complexity
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Summary

e Parse selection can be formulated as a classification problem

= Virtually any classification algorithm can be used

e The training data often only partially identifies the correct parse
= Classification algorithms that can train from partially labeled
data
e Combinatorial explosion in number of parses

= Reformulate parsing and estimation problems as MRF

graphical model problems
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Future directions

e Reformulate “hard” grammatical constraints as “soft” stochastic
features

— Underlying grammar permits all possible structural
combinations

— Grammatical constraints reformulated as stochastic features

= computationally efficiency will be even more important

o Better methods for learning from partially labeled data (e.g.,
co-training)

e Feature selection, automatic feature induction

o Applications such as machine translation and automatic
summarization
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