Note (May 30, 2008): The results in this paper for the bigram model were obtained using an implementation that was later discovered
to contain a small bug. Updated results (which are qualitatively similar) can be found in “A Bayesian framework for word segmentation:
Exploring the effects of context” (Goldwater et al., in submission). Please cite results from that paper in future publications.
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1. Introduction

Word segmentation, or identifying word boundaries in amndius speech, is
one of the first problems that infants must solve as they agaidng language.
A number of different weak cues to word boundaries are ptésdiuent speech,
and there is evidence that infants are able to use many & thretuding phono-
tactics (Mattys et al., 1999), allophonic variation (Jyscet al., 1999a), metrical
(stress) patterns (Morgan et al., 1995; Jusczyk et al.,li9@%¥ects of coarticula-
tion (Johnson and Jusczyk, 2001), and statistical regi@s@mongst sequences
of syllables (Saffran et al., 1996a). The kinds of stat#tiegularities studied
by Saffran et al. (1996a) allow for the possibility of langeaindependent word
segmentation strategies, and seem to be used by infanier ¢han other kinds
of cues (Thiessen and Saffran, 2003). These facts have lix toroposal that
strategies exploiting the statistical patterns found umgbsequences are a crucial
first step in bootstrapping word segmentation (ThiessenSafiian, 2003), and
have provoked a great deal of research into statistical weginentation using
both human subjects and computational models.

Most previous work on statistical word segmentation is dasethe obser-
vation that transitions from one syllable or phoneme to tkxet tend to be less
predictable at word boundaries than within words (HarrBh3; Saffran et al.,
1996a). This observation has led to proposals that infasg¢sstatistics such
as transitional probabilities or mutual information in erdo segment words
from speech. A number of models have been developed in angitte explain
how these kinds of statistics can be used procedurally wtifgevords or word
boundaries. Here, we take a different approach: we seelettifgd the assump-
tions the learner must make about the nature of languagedier do correctly
segment natural language input.

Observations about predictability at word boundaries arssistent with two
different kinds of assumptions about what constitutegoed: either a word is
a unit that is statistically independent of other units,tas ia unit that helps to
predict other units (but to a lesser degree than the begjrofia word predicts
its end). In most artificial language experiments on wordrsagation, the first
assumption is adopted implicitly by creating stimuli thghurandom concatena-
tion of nonce words. In this paper, we use simulations to éxarearning from
natural, rather than artificial, language input. We ask wads of words are
identified by a learner who assumes that words are statlgtinodependent, or
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(alternatively) by a learner who assumes that words areafigrpredictive of
later words. We investigate this question by developing difi@rent Bayesian
models of word segmentation incorporating each of thesdifferent assump-
tions. We present the results of simulations using eachesitimodels to segment
a corpus of phonemically transcribed child-directed spe€@ur simulations in-
dicate that a learner who assumes that words are statigticdependent units
will tend to undersegment the corpus, whereas assumingvtras predict other
words leads to a more accurate segmentation. These resgifsst that even in
the initial stages of acquisition, language learners magne account for more
subtle statistical effects than have typically been disedsn the literature.

2. The Bayesian approach

Our approach differs from that of many other researcherg) inhestigate
the kinds of statistical information that humans are sesmsib (Saffran et al.,
1996b; Saffran et al., 1996a; Aslin et al., 1998; Johnson Amstzyk, 2001;
Thiessen and Saffran, 2003) or the kinds of architecturesadgorithms that
might emulate human learning (Christiansen et al., 1998aa] 1990; Swing-
ley, 2005). We focus here on trying to identify some of theuagstions an ideal
learner must make about the nature of language in order tessfully solve the
word segmentation problem, in the spirit of Marr's (1982)nputational level
of analysis. In this case, the ideal learner uses Bayesfareimce to combine
expectations about the structure of language with the nmébion provided by
linguistic data. A previous Bayesian model of word segmtgamds presented in
Brent (1999); we discuss this model in more detail in Sec3idn Venkataraman
(2001) and Batchelder (2002) also propose models basedywsBa ideas, but
their goals are different (focusing on algorithmic desigther than the assump-
tions of the learner), and the algorithms they use introdiigsificant learning
biases independent of their models.

To apply Bayesian learning to the domain of language, werasghat the
learner is exposed to an input corpus of natural language.pfbcess of learn-
ing consists of determining some internalized represiemtge.g., a grammar or
lexicon) that provides a good explanation of how the obskdeta was gener-
ated, and also allows the learner to generate novel lingdicsms. In a statistical
setting, we can state this idea formally using Bayes’ rule:

P(dh)P(h)

POl = =50

o P(d|h)P(h)

whered is the observed data aids the hypothesized grammad?(d|h) (known
as thelikelihood) is the probability of the observed data given a particular h
pothesis, and tells us how well that hypothesis explainsi#te. P(h) (theprior
probability of i) tells us how good a linguistic hypothegiss, regardless of any
data. The prior can be viewed as a learning bias: hypotheihshigh prior
probability may be adopted based on less evidence than lgged with low
prior probability. Bayes’ rule states th&(h|d) (the posterior probability of i)

is proportional to the product of the likelihood and the prigith P(d) (the prob-
ability of the data) acting as a normalizing constant to em$lnatP(h|d) sums



to one over all hypotheses. The learner can compare therjpostebabilities of
different hypotheses by evaluating each one according texiplanatory power
(likelihood) and the learner’s prior expectations.

Before defining a Bayesian model of word segmentation, we rieed to
decide what units of representation will be used. In the risodescribed here,
the input is represented in terms of phonemes, and the octmsists of words
(which are sequences of phonemes). Neither of these repatieas is uncon-
troversial; on the output side, for example, connecticayigiroaches typically do
not learn or represent words explicitly; instead, they atitppundary prediction
probabilities, from which words may be reconstructed. V¢ tieat explicit iden-
tification and representation of words is important, sik@hers must eventually
assign meanings to words and recombine them in novel wayd$orAke input
side, Swingley (2005) argues in favor of a syllable-basguaiimepresentation,
while the connectionist model of Christiansen et al. (1988s a distributed rep-
resentation based on phonetic features. The phoneme-ingpsgdepresentation
we have chosen makes our model insensitive to feature-Isaddrity between
sounds, and also abstracts away from many details of plocenadi acoustic vari-
ation. Nevertheless, it is useful because it allows us tadhessame input corpus
as several previous researchers (Brent, 1999; Venkatara2081; Batchelder,
2002), and compare our results directly to theirs. In tharijtwe plan to work
towards using input data with more phonetic detalil.

With this choice of input and output representations, we foamulate the
problem of word segmentation in Bayesian terms as followsrgan input cor-
pusd of unsegmented utterances (i.e., strings of phonemed), lgguothesis)
consists of a possible segmentation of the corpus into wdrke learner’s task
is to identify the posterior distribution of segmentati@igen the observed data
(or perhaps to choose a single high-probability segmeamtatNotice that in this
particular taskP(d|h) is always 1, because for any particular segmentation, the
observed data can be generated deterministically by siogulgatenating all the
words in the segmentation. Therefore, the posterior priityabf a segmenta-
tion is directly proportional to its prior probability. Intleer words, the learner
will prefer exactly those segmentations that best matcHethmer's concept of
linguistic naturalness.

Using this kind of Bayesian framework, we can examine thdkiof assump-
tions that lead to successful learning by developing difiemodels that define
“naturalness” in different ways. Here, we consider two ty/pé learners that
make different assumptions about how words behave in ddaurguage. One
type of learner assumes that the probability of observingraqular word is sta-
tistically independent of its context (or, equivalentlyat all orderings of a given
set of words are equally probable). While this assumptioarttedoes not hold
true for natural language, it yields an intuitively simplenceptual approach to
word segmentation which can be roughly stated as “look fdependent units of
speech and identify these as words”. The assumption o$statiindependence
between words is known in computational linguistics asigram assumption,
because the probability of a corpus can be computed by nyfigp together
the probabilities of its unigrams, or individual words. Wélwefer to learners
making this assumption as unigram learners.



The second type of learner we consider here treats wordssriotlapendent
units, but as predictive units. This type of learner assuthasthe probability
of a worddoes depend on its context: words provide information that can be
used to help predict future words. There are, of course, mays in which
context could be used to help predict words; the learner we Hdaveloped is
based on the simplifying assumption that a word’s probgiigiaffected by only
one preceding word of context. That is, each word can be wasieelp predict the
following word, but has no statistical effect upon later d&r This assumption
is known as eiigram assumption, because frequencies of bigrams, or pairs of
words, must be used when computing the probability of a corpbe describe
our bigram learner in more detail in Section 4, but first wenttar the simpler
case of unigram word segmentation.

3. Unigram word segmentation
3.1. Model description

To motivate our unigram model of word segmentation, we hyriegview
a previous Bayesian model of word segmentation describdgirémt (1999).
Brent's model assumes that the goal of the learner is toifgethe segmenta-
tion of the input corpus with the highest posterior probigbil As in our own
model, this is equivalent to finding the segmentation withlilghest prior prob-
ability. Under Brent’s model, the prior probability of a segntation is defined
in terms of four properties of that segmentation: the nundetistinct lexical
types in the segmentation, the phonemic form of each typdréiguency of each
type, and the probability of the particular ordering of weollens found in that
segmentation. Crucially, this model assumes a unifornriligton over token
orderings, so that the probability of any ordering of a paitir set of tokens is
the same as the probability of any other ordering. Since waddr is irrelevant,
this is a unigram learner.

Here, we propose a new unigram Bayesian model of word segwi@mt Our
model has some deep mathematical similarities to Brentdehdut has two
major advantages over his model. First, in Brent's framé&wibis not clear how
to replace the learner’'s unigram assumption with the assamghat context is
important. Our own framework makes this relatively easyitsd we are able
to develop both unigram and bigram models, and compare thdtse A sec-
ond problem with Brent's model is that there is no known althon that can
efficiently identify the best segmentation of the input. Bthbut the tiniest cor-
pora, choosing the best segmentation by exhaustively @iaduthe probability
of every possible segmentation would be infeasible. ImstBaent describes an
approximate algorithm that is intended to identify a relatively highspability
segmentation, but has no guarantees of optimality. It torigas we show in
Section 3.2) that the segmentations found by this algordheractually far from
optimal under Brent's model. In contrast, there are wethwn techniques for
finding near-optimal solutions under models like ours, ardpnovide evidence
that the algorithm we use does identify these solutions.

In our model, as in Brent's, the learner assumes that thenadsdunseg-
mented) corpus was created according to a probabilistiergéime process. The



specifics of this process, and thus the probabilities asdigny the model to dif-
ferent segmentations, are somewhat different from Brefisr model assumes
that the corpus was generated by generating a sequence @ wor. . wy in
order and then removing the boundaries between the woFtieith word in the
sequencey;, is generated as follows:

(1) Decide ifw; is a novel lexical item.

(2) a. Ifso, generate a phonemic form (phonemes. . x /) for w;.
b. If not, choose an existing lexical fortrior w;.

Since this is a probabilistic process, we must assign piititiedto each possible
choice. We do so as follows:

(1) P(w;is nove) = P(w; is not nove) = 22—

n+ao
(@ a Plw;=u1...ay|wisnove) = TjL, Pla))
b. P(w; = l|w; is not nove) = %

T
n+o’

where« is a parameter of the model, is the number of previously generated
words & ¢ — 1), andn; is the number of times lexical itefinhas occurred in
thosen words. This model is known in Bayesian statistics as a Digighrocess
(Ferguson, 1973).

We now provide some intuition for the assumptions that aiié lmio this
model. First, notice that in Step 1, whers small, the probability of generating
a novel lexical item is fairly large. As more word tokens asmegrated ana
increases, the relative probability of generating a ndeehidecreases, but never
disappears entirely. This part of the model means that se@tiens with too
many different lexical items will have low probability, priding pressure for the
learner to identify a segmentation consisting of relagivielv lexical items. In
Step 2a, we define the probability of a novel lexical item aspghoduct of the
probabilities of each of its phonemes. This ensures that leerg lexical items
will be strongly dispreferred. Finally, in Step 2b, we sagttithe probability
of generating an instance of the lexical itéris proportional to the number of
times! has already occurred. In effect, the learner assumes thew dekical
items will tend to occur very frequently, while most will agconly once or
twice. In particular, our model assigns high probabilitysegmentations where
the frequencies of lexical items follow a power-law (Zipfiadistribution, the
kind of distribution that is found in natural language (@tiifs, 2006).

3.2. Simulations

All of the simulations described in this paper were perfailnoa the same
corpus used by Brent (1999), which was derived from the BRemmdRatner cor-
pus (Bernstein-Ratner, 1987) in CHILDES (MacWhinney andv6ri®85). The

1. In our descriptions here of both the unigram and bigrametsydve omit
certain details that are required to account for the presehatterance bound-
aries in the input corpus. These details can be found in Gatlelvet al. (2006).




@)

yu want tu si D6 bUk
IlUk D*z 6 b7 wIT hlz h&t

(b)

yuwant tu si D6bUk
IUk D*z 6b7 wiT hiz h&t

(©

yu want tu si D6 bUk
IUk D*z 6 b7 wiT hlz h&t

&nd 6 dOgi &nd 6dOgi &nd 6 dOgi

yu want tu IUk &t Dls yu wanttu [Uk&tDIs yu want tu |lUk&t Dls
Uk &t Dls |Uk&tDIs IUk&t DlIs

h&v 6 driNk h&v6 drINk h&v 6 drINk

oke nQ oke nQ oke nQ

WAts Dls WALtsDIs WAts Dls

WAts D&t WAtsD&t WAts D&t

WAL 1z It WALIzIt WALz It

IlUk k&n yu tek It Qt IUk k&nyu tek ItQt IUk k&nyu tek It Qt
tek It Qt tek ItQt tek It Qt

yu want It In yuwant It In yuwan t It In

pUt D&t an pUt D&t an pUt D&t an

D&t D&t D&t

Figure 1: Segmentation of the first 15 utterances in the corps, according
to (a) the correct segmentation, (b) our unigram model, andg) our bigram
model. See the Appendix for a key to the ASCIl phoneme encodin

original corpus contains orthographic transcriptionstténances directed at 13-
to 23-month-olds; Brent removed disfluencies and non-wardsused a phone-
mic dictionary to convert the remaining words into a phoreneipresentation.
The resulting corpus consists of 9790 utterances, with & tdt33399 word
tokens belonging to 1321 types. The average number of waedsifferance
is 3.41, and the average number of phonemes per word is 2r8Thelinput
to the model, utterance boundaries (corresponding to paase provided, but
utterance-internal word boundaries are removed. Theamberinternal word
boundaries are used only to evaluate the performance of#ters.

In order to evaluate the performance of our unigram modelnaed to in-
troduce a procedure that can identify high-probabilityrsegtations of the in-
put corpus. We used a stochastic search procedure knowanbas sampling,
which works by iteratively performing small random pertatibns to the current
segmentation (inserting or removing one boundary at a tinfd)is algorithm
produces samples from the posterior distribution of segatiems defined by
the model. A good approximation to the optimal segmentatemmbe found by
collecting a large number of samples and choosing the ortetiéthighest prob-
ability; in practice, we found that different samples proed qualitatively and
guantitatively similar results. Our evaluation is therefbased on a single sam-
ple taken after 20,000 iterations of the sampler. In theltgsiiscussed here, the
parametery was set to 20; other values afyielded qualitatively similar results.
For more details of the sampling algorithm and results foeovalues ofy, see
Goldwater et al. (2006).

Some example utterances showing the segmentation foundirynigram
model are given in Figure 1(b). As these utterances illtestthe units identified
as words by our unigram model often consist of sequencesmbtwnore actual
words concatenated together. The system seems to be quiteawhen it
proposes a boundary, it simply doesn’t propose enough. dotdy these results,
we computed the system’s accuracy in termpretision andrecall (also known



Table 1: Accuracy of the two unigram models.

P R BP BR LP LR
Brent 67.0 69.4 80.3 84.3 53.6 513
GGJ 619 476 924 622 570 575

Note: Measures are precision and recall on word tokens (P, R)daoes (BP, BR), and
lexicon entries (LP, LR). In all tables, bold indicates the best scoringeinod

asaccuracy andcompleteness):

number of correct items found

number of items found
number of correct items found

number of true items

For example, the recall on word tokens is the percentagekentin the true
segmentation that were correctly identified in the modedgnsentation (where
a token is counted as correct only if both boundaries areectrWe calculated
precision and recall on ambiguous boundaries (i.e., aliptesboundary loca-
tions except at utterance boundaries), word tokens, and types (i.e., lexicon
entries). The results are shown in Table 1, with scores froem& model pro-
vided as a comparisohThe scores confirm our qualitative observations: bound-
ary precision is very high for our model, but boundary recallery low. As a
result, overall token precision and recall are both lowantim Brent’s model.
Lexicon precision and recall are actually better than Bsebut our low token
accuracy is an indication that errors are often made on tts¢ frejuent words.

Precision = 100 x

Recall = 100 x

3.3. Discussion

Upon reflection, we should not be surprised at the kind of ssgation found
by our model. Recall that a basic assumption of this modéias words have
the same probabilityegardiess of context. However, this assumption is clearly
violated in the corpus. For example, the empirical proligtilf the wordthat in
our data is .024 (i.e., 2.4% of word tokens are the wbat). Following the word
what's, the probability ofthat rises to .46, but after the wotd, the probability
of that is only .0019. In other words, a single word of context caraterearia-
tions in probability of more than two orders of magnitudehc these variations
are contrary to the unigram assumption of the model, the waly the system
can capture strong word-to-word dependencies is by asgutimith sequences of
strongly non-independent words are actually single wofdg system tends to
make this kind of error on the most frequent words preciselyelose their high
frequency provides a great deal of evidence against indispee.

Of course, this analysis raises the question of why Brentigram model
does not produce the same kinds of errors as our own modelafi$wer lies

2. Results from Brent’s system were obtained using an implgation by
Anand Venkataraman available at http://www.speechari/people/anand/.



Table 2: Negative log probabilities (x 1000) under each uniggm model of
the true segmentation and the segmentation found by each algthm.

Seg: True Brent GGJ
Brent 208.2 217.0 189.8
GGJ 2224 231.2 200.6

Table 3: Accuracy of the two unigram models on the permuted cpus.

P R BP BR LP LR
Brent 77.0 86.1 837 97.7 608 53.0
GGJ 942 97.1 0957 998 86,5 622

in the algorithm used to identify a good segmentation. Ihsusut that Brent's
algorithm finds a segmentation that is actually very far frgptimal under his
model. While we do not know exactly what segmentaf®aptimal, we can at
least compare the probabilities of the two segmentationsave (the one found
by our system and the one found by his), as calculated un@stBmodel. Table
2 shows the results of these calculations, which indicatelibth of the unigram
models assign higher probability to the undersegmentadisnlthan to either
the solution found by Brent’s algorithm, or the correctlgsented corpus.

To provide evidence that our own algorithm is able to idgrdaihear-optimal
segmentation, we created an artificial corpus consistiadj tie same words and
utterance lengths as the original corpus, but with the wpedtsuted at random.
Since word order has been randomized, this corpus confartietmodel’s ex-
pectation that context has no effect on word probabilitiéghen we used this
corpus as input to our algorithm, we found that segmentgienformance im-
proved markedly, as shown in Table 3. Brent's system impt@rethis corpus as
well, but to a much lesser extent, again indicating probleitis his algorithm.

So far, we have provided evidence that, for two differenguenin models of
word segmentation, the optimal segmentation of a natungllage corpus iden-
tifies many common sequences of words as single words. lttigalado ask
whether undersegmentation is the result of an optimal setatien strategy un-
der any model that assumes independence between wordsjlesgaof other
properties of the model. A thorough discussion of this qoast beyond the
scope of this paper, but we have shown elsewhere using f@amadysis that un-
dersegmentation is indeed a general property of unigranetad@riffiths et al.,
2006). For all but tiny corpora, any reasonable assumpadiosit word shapes,
lexicon size, and token frequencies have less influence emprbbabilities of
different segmentations than the assumption of indeperedeetween words.

4. Bigram word segmentation
In the previous section, we discussed empirical and thieatetvidence that

defining words as statistically independent units leadsnidetsegmentation of
natural language. We now ask whether modifying this assiomuian lead to



better segmentation. We address this question by develapilifferent model in
which words are assumed to help predict other words. Inqudati, this model
assumes that the probability of a word depends on a singiéopie word of
context, so the unit of dependency is a pair of words, or bigra

4.1. Model description

Like our unigram model, our bigram model defines the prolitsiof a seg-
mentation by assuming that it was generated as a sequencaagay, . .. wy
using a probabilistic process. Unlike the unigram modsljs generated using
a process that takes into account the previous (alreadyrafexdg word in the
sequencew;_1:

(1) Decide whether the paitf_1,w;) will be a novel bigram type.
(2) a. Ifso,
i. Decide whethetw; will be a novel unigram type.
i. a. Ifso, generate a phonemic form (phonemes. . z,,) for w;.
b. If not, choose an existing lexical fortrior w;.

b. Ifnot, choose a lexical forifor w; from among those that have already
been observed following); .

Notice that Step 2a, which creates the second word of a nayedr, invokes
the unigram generative process described in Section 3.&.uhfgram process
in Step 2a generates a set of word types which the bigram ggoneSteps 1-2
assembles into bigrams.

The probabilities associated with the bigram generatioegss are

(1) P((w;_1,w;) is a novel bigranw;_, = 1') = —2—

nyr 46
P((w;_1,w;) is not a novel bigramw,; ; =1') = n,mw
(2) a. i. P(w;isanovelword (w;—1,w;) is a novel bigram= ;-

P(w is not a novel word (w; -1, w;) is & novel bigram= ;7
i. a P(w;=uz1...2m|w;isanovel word = H?il P(x;)
b. P(w; = 1| w;, is nota novel worgi= %
b. P(w; =1]|(w;—1,w;) is not a novel bigram and; _, =1') = ey

nl/

where and~ are parameters of the mod&lis the lexical form ofw; 1, n; and
n(v 1y are the number of occurrences in the first1 words of the unigranf and
the bigram(!’, 1), b is the number of bigram types in the figst 1 words, and,
is the number of those types whose second woid This model is known as a
hierarchical Dirichlet process (Teh et al., 2005).

The intuition behind this model is similar to that of the uaigh model. Step
1 says that the more timéshas been generated, the less likely a new word will
be generated following it; this limits the number of bigraypes. Step 2a is like



Table 4: Accuracy of our bigram model as compared to the unigam models.

P R BP BR LP LR
Brent 670 694 80.3843 536 513
GGJ (unigram) 61.9 476924 622 57.0 575
GGJ (bigram) 79.4 74.0 924 835 67.9 589

the unigram generative process, except that the prohbebiéite defined in terms
of bigram types instead of unigram tokens. The idea is thaeseords combine
more promiscuously into bigrams than othersi las been generated in many
different contexts already, it is more likely to be genedatethis new context.
Finally, in Step 2b, the probability of generatindollowing I’ is proportional
to the number of times this pair has been generated alredughvieads to a
preference for power-law distributions over the seconahiite each bigram.

4.2. Simulations and discussion

For our simulations, we used the same input corpus as in tiggain sim-
ulations, and a similar Gibbs sampling algorithm to idgn&fhigh-probability
solution. The results reported here are witk 10 andy = 1000. As illustrated
in Figure 1(c), the segmentation found by our bigram modetaias far fewer
errors than the segmentation found by our unigram modeluadeérsegmenta-
tion is much less prevalent. Table 4 shows that our bigramemhaodtperforms
both unigram models on almost all measures, in several tgsasvide margin.
This improvement can be attributed to a large increase inthaty recall relative
to the unigram model, with no loss in precision. In other veptte bigram model
proposes more word boundaries and is just as accurate wik ffroposals.

When the bigram model does make errors, they often fall int® @ntwo
categories. First, a few multi-word sequences are stifité@ as single words.
Second, oversegmentation often occurs at morpheme baesdahe 100 most
frequent lexical items found by the model includes, IN, i, andt, which
correspond to plural, progressive, diminutive/adjedtigad past tense suffixes.
These kinds of errors are not surprising given the similatistical properties
of word boundaries and morpheme boundaries. It is posdilaiethe kind of
information used by this model (patterns of sound sequengasl frequencies,
etc.) is sufficient to distinguish between morphemes andisyaf used in the
proper way. However, it is plausible that additional soaratinformation (e.g.,
semantics) may be required.

5. Conclusion

In this paper, we have investigated the problem of word segmtien us-
ing a Bayesian modeling approach. We have presented tweretliff kinds of
models, each of which can be seen as an ideal learner whosésgoaden-
tify words in continuous speech. The difference betweesehmodels lies in
their assumptions about how words behave. The unigram nasdeimes that all



possible word orderings are equally likely, i.e., that tieatrword is statistically
independent of the previous word. In contrast, the bigrardehassumes that the
identity of the previous word can be used to help predict threemit word. In sim-
ulations using these models, we found that the unigram mudglosed far too
few boundaries, often identifying common word sequenceasdigidual words.
We have argued that this behavior results from a mismatohdszt the inde-
pendence assumptions in the model and the strong word-td-t&pendencies
that are found in realistic input corpora. When these depweide are taken into
account, as in our bigram model, word segmentation impravakedly. The
importance of considering word-to-word dependencies badeen revealed by
previously proposed unigram models because of biaseslirdeal by their learn-
ing algorithms, which prevent these models from findingroptisegmentations.
Our results are not incompatible with the possibility thafants use transi-
tional probabilities or other local statistics to identifprd boundaries. However,
they do imply that statistics and strategies that are safftdior segmenting the
kinds of stimuli found in most behavioral experiments wititmecessarily be
sufficient for completely segmenting natural language. fdwlings suggest the
possibility that human learners may exploit statisticéimation in more sub-
tle ways than have typically been investigated, and we hbaethis work will
provide a source of further hypotheses that can be testedghrexperiments.

Appendix: phoneme encoding

Consonants Vowels Rhotic Vowels
[ ASCII [ EX. [ ASCII [ EX. ] [ ASCII [ EXx. ] [ ASCII [ EX. ]
D THe h Hat & thAt # ARe
G Jump k Cut 6 About % fOR
L bottLe | Lamp 7 bOY ( hERE
M rhythM m Man 9 fly ) IURE
N SING n Net A bUt * hAIR
S SHip p Pipe E bEt 3 bIRd
T THin r Run | blt R buttER
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