
A TAG-based noisy channel model of
speech repairs

Mark Johnson and Eugene Charniak

Brown University

ACL, 2004

Supported by NSF grants LIS 9720368 and IIS0095940

1

Talk outline

• Goal: Apply parsing technology and “deeper” linguistic analysis to

(transcribed) speech

• Problem: Spoken language contains a wide variety of disfluencies and

speech errors

• Why speech repairs are problematic for statistical syntactic models

– Statistical syntactic models capture nested head-to-head

dependencies

– Speech repairs involve crossing “rough-copy” dependencies between

sequences of words

• A noisy channel model of speech repairs

– Source model captures syntactic dependencies

– Channel model introduces speech repairs

– Tree adjoining grammar can formalize the non-CFG dependencies in

speech repairs
2

Speech errors in (transcribed) speech

• Filled pauses

I think it’s, uh, refreshing to see the, uh, support . . .

• Parentheticals

But, you know, I was reading the other day . . .

• Speech repairs

Why didn’t he, why didn’t she stay at home?

• “Ungrammatical” constructions, i.e., non-standard English

My friends is visiting me?

(Note: this really isn’t a speech error)

Bear, Dowding and Schriberg (1992), Charniak and Johnson (2001), Heeman and Allen

(1997, 1999), Nakatani and Hirschberg (1994), Stolcke and Schriberg (1996)

3

Special treatment of speech repairs

• Filled pauses are easy to recognize (in transcripts)

• Parentheticals appear in our training data and our parsers identify

them fairly well

• Filled pauses and parentheticals are useful for identifying constituent

boundaries (just as punctuation is)

– Our parser performs slightly better with parentheticals and filled

pauses than with them removed

• “Ungrammaticality” and non-standard English aren’t necessarily fatal

– Statistical parsers learn how to map sentences to their parses from a

training corpus

• . . . but speech repairs warrant special treatment, since our parser never

recognizes them even though they appear in the training data . . .

Engel, Charniak and Johnson (2002) “Parsing and Disfluency Placement”, EMNLP

4

The structure of speech repairs

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• The Interregnum is usually lexically (and prosodically marked), but

can be empty

• Repairs don’t respect syntactic structure

Why didn’t she, uh, why didn’t he stay at home?

• The Repair is often “roughly” a copy of the Reparandum

⇒ identify repairs by looking for “rough copies”

• The Reparandum is often 1–2 words long (⇒ word-by-word classifier)

• The Reparandum and Repair can be completely unrelated

Shriberg (1994) “Preliminaries to a Theory of Speech Disfluencies”
5

Representation of repairs in treebank

ROOT

S

CC

and

EDITED

S

NP

PRP

you

VP

VBP

get

,

,

NP

PRP

you

VP

MD

can

VP

VB

get

NP

DT

a

NN

system

• Speech repairs are indicated by EDITED nodes in corpus

• The internal syntactic structure of EDITED nodes is highly unusual

6

Speech repairs and interpretation

• Speech repairs are indicated by EDITED nodes in corpus

• The parser does not posit any EDITED nodes even though the training

corpus contains them

– Parser is based on context-free headed trees and head-to-argument

dependencies
– Repairs involve rough copy dependencies that cross constituent

boundaries

Why didn’t he, uh, why didn’t she stay at home?

– Finite state and context free grammars cannot generate ww “copy

languages” (but Tree Adjoining Grammars can)

• The interpretation of a sentence with a speech repair is (usually) the

same as with the repair excised

⇒ Identify and remove EDITED words before parsing

– Use a classifier to classify each word as “EDITED” or “not

EDITED” (Charniak and Johnson, 2001)

– Use a noisy channel model to generate/remove repairs
7

The noisy channel model

Bigram/Parsing LM
Source model P(X)

Source signal x
a flight to Denver on Friday

Noisy channel P(U |X)
TAG transducer

Noisy signal u
a flight to Boston uh I mean to Denver on Friday

• argmax
x

P(x|u) = argmax
x

P(u|x)P(x)

• Train source language model on treebank trees with EDITED nodes

removed

8

“Helical structure” of speech repairs

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

Imean uh

a flight to Boston

to Denver on Friday

• Parser-based language model generates repaired string

• TAG transducer generates reparandum from repair

• Interregnum is generated by specialized finite state grammar in TAG

transducer

Joshi (2002), ACL Lifetime achievement award talk

9

TAG transducer models speech repairs

Imean uh

a flight to Boston

to Denver on Friday

• Source language model: a flight to Denver on Friday

• TAG generates string of u:x pairs, where u is a speech stream word and

x is either ∅ or a source word:

a:a flight:flight to:∅ Boston:∅ uh:∅ I:∅ mean:∅ to:to Denver:Denver

on:on Friday:Friday

– TAG does not reflect grammatical structure (the LM does)

– right branching finite state model of non-repairs and interregnum

– TAG adjunction used to describe copy dependencies in repair

10

TAG derivation of copy constructions

b

b′

c

c′

a

a′

Auxiliary trees

(α)

(β)

(γ)

Derived tree Derivation tree

11

TAG derivation of copy constructions

b

b′

c

c′

a

a′

Auxiliary trees

(α)

(β)

(γ)

Derived tree

(α)

Derivation tree

a

a′

12

TAG derivation of copy constructions

b

b′

c

c′

a

a′

Auxiliary trees

(α)

(β)

(γ)

Derived tree

(α)

(β)

Derivation tree

b

b′

a′

a

13

TAG derivation of copy constructions

b

b′

c

c′

a

a′

Auxiliary trees

(α)

(β)

(γ)

Derived tree

a

b

c

c′

b′

a′

(α)

(β)

(γ)

Derivation tree

14

Schematic TAG noisy channel derivation

. . . a flight to Boston uh I mean to Denver on Friday . . .

Boston:∅

to:to

to:∅

flight:flight

a:a

Denver:Denver

on:on

Friday:Friday

uh:∅

I:∅ mean:∅

15

Sample TAG derivation (simplified)

(I want) a flight to Boston uh I mean to Denver on Friday . . .

Start state: Nwant ↓

TAG rule: (α1)
Nwant

a:a Na ↓

, resulting structure:
Nwant

a:a Na ↓

TAG rule: (α2)
Na

flight:flight Rflight:flight

I↓

, resulting structure:

Nwant

a:a Na

flight:flight Rflight:flight

I↓

16

Sample TAG derivation (cont)

(I want) a flight to Boston uh I mean to Denver on Friday . . .

Nwant

a:a Na

flight:flight Rflight:flight

I↓

Rflight:flight

to:∅ Rto:to

R?

flight:flight to:to

Nwant

a:a Na

flight:flight Rflight,flight

to:∅ Rto:to

Rflight:flight

I↓

to:to

previous structure TAG rule (β1) resulting structure

17

(I want) a flight to Boston uh I mean to Denver on Friday . . .

Nwant

a:a Na

flight:flight Rflight,flight

to:∅ Rto:to

Rflight:flight

I↓

to:to

previous structure

Rto:to

Boston:∅ RBoston:Denver

R?

to:to Denver:Denver

TAG rule (β2)

Nwant

a:a Na

flight:flight Rflight:flight

to:∅ Rto,to

Boston:∅ RBoston,Denver

Rto,to

Rflight,flight

I↓

to:to

Denver:Denver

resulting structure

18

(I want) a flight to Boston uh I mean to Denver on Friday . . .

RBoston:Denver

R?

Boston:Denver NDenver ↓

TAG rule (β3)

Nwant

a:a Na

flight:flight Rflight:flight

to:∅ Rto:to

Boston:∅ RBoston:Denver

RBoston:Denver

Rto:to

Rflight:flight

I↓

to:to

Denver:Denver

NDenver ↓

resulting structure
19

Nwant

a:a Na

flight:flight Rflight:flight

to:∅ Rto:to

Boston:∅ RBoston:Denver

RBoston:Denver

Rto:to

Rflight:flight

I

uh:∅ I

I:∅ mean:∅

to:to

Denver:Denver

NDenver

on:on Non

Friday:Friday NFriday

. . .

20

Switchboard corpus data

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• TAG channel model trained on the disfluency POS tagged Switchboard

files sw[23]*.dps (1.3M words) which annotates reparandum,

interregnum and repair

• Language model trained on the parsed Switchboard files sw[23]*.mrg

with Reparandum and Interregnum removed

• 31K repairs, average repair length 1.6 words

• Number of training words: reparandum 50K (3.8%), interregnum 10K

(0.8%), repair 53K (4%), overlapping repairs or otherwise unclassified

24K (1.8%)

21

Training data for TAG channel model

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• Minimum edit distance aligner used to align reparandum and repair

words

– Prefers identity, POS identity, similar POS alignments

• Of the 57K alignments in the training data:

– 35K (62%) are identities

– 7K (12%) are insertions

– 9K (16%) are deletions

– 5.6K (10%) are substitutions

∗ 2.9K (5%) are substitutions with same POS

∗ 148 of the 352 substitutions (42%) in heldout data were not seen

in training
22

Decoding using n-best rescoring

• We don’t know of any efficient algorithms for decoding a TAG-based

noisy channel and a parser-based language model . . .

• but the intersection of an n-gram language model and the TAG-based

noisy channel is just another TAG

⇒ Use the parser language model to rescore the 20-best bigram language

model results:

– Use the bigram language model with a dynamic programming search

to find the 20 best analyses of each string

– Parse each of these using the parser-based language model

– Select the overall highest-scoring analysis using the parser

probabilities and the TAG-based noisy channel scores

See: Collins (2000) “Discriminative Reranking for Natural Language Parsing”, Collins

and Koo (to appear) “Discriminative Reranking for Natural Language Parsing”

23

Modified labeled precision/recall evaluation

• Goal: Don’t penalize misattachment of EDITED nodes

• String positions on either side of EDITED nodes in the gold-standard

corpus tree are equivalent (just like punctuation in parseval)

ROOT

S

CC EDITED

PRP VB ,

NP

PRP

VP

MD VP

VB NP

DT NN

and you get , you can get a system

Charniak and Johnson (2001) “Edit detection and parsing for transcribed speech”

24

Empirical results

• Training and testing data has partial words and punctuation removed

• CJ01′ is the Charniak and Johnson 2001 word-by-word classifier

trained on new training and testing data

• Bigram is the Viterbi analysis using dynamic programming decoding

with bigram language model

• Trigram and Parser are results of 20-best reranking using trigram and

parser language models

CJ01′ Bigram Trigram Parser

Precision 0.951 0.776 0.774 0.820

Recall 0.631 0.736 0.763 0.778

F-score 0.759 0.756 0.768 0.797

25

Conclusion and future work

• It is possible to detect and excise speech repairs with reasonable

accuracy

• We can incorporate the very different syntactic and repair structures in

a single noisy channel model

• Using a better language model improves overall performance

• It might be interesting to make the channel model sensitive to

syntactic structure to capture the relationship between syntactic

context and the location of repairs

• A log-linear model should permit us to integrate a wide variety of

interacting syntactic and repair features

• There are lots of interesting ways of combining speech and parsing!

26

Estimating the model from data

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

Pn(repair|flight) The probability of a repair beginning after flight

P(m|Boston,Denver), where m ∈ {copy, substitute, insert, delete, nonrepair}:

The probability of repair type m when the last reparandum word was

Boston and the last repair word was Denver

Pw(tomorrow|Boston,Denver) The probability that the next reparandum

word is tomorrow when the last reparandum word was Boston and last

repair word was Denver

27

The TAG rules and their probabilities

P






Nwant

a:a Na ↓




 = (1 − Pn(repair|a))

P










Na

flight:flight Rflight:flight

I↓










= Pn(repair|flight)

• These rules are just the TAG formulation of a HMM.

28

The TAG rules and their probabilities (cont.)

P










Rflight:flight

to:∅ Rto:to

R?

flight:flight to:to










= Pr(copy|flight,flight)

P










Rto:to

Boston:∅ RBoston:Denver

R?

to:to Denver:Denver










= Pr(substitute|to, to)

Pw(Boston|to, to)

• Copies generally have higher probability than substitutions

29

The TAG rules and their probabilities (cont.)

P










RBoston,Denver

tomorrow:∅ Rtomorrow,Denver

R?

Boston,Denver










= Pr(insert|Boston,Denver)

Pw(tomorrow|Boston,Denver)

P










RBoston,Denver

RBoston,tomorrow

R?

Boston,Denver tomorrow:tomorrow










= Pr(delete|Boston,Denver)

P






RBoston:Denver

R?

Boston:Denver NDenver ↓




 = Pr(nonrepair|Boston,Denver)

30

Decoding with a bigram language model

• We could search for the most likely parses of each sentence . . .

• or alternatively interpret the dynamic programming table directly:

1. compute the probability that each triple of adjacent substrings can

be analysed as a reparandum/interregnum/repair

2. divide by the probability that the substrings do not contain a repair

3. if these odds are greater than a fixed threshold, identify this

reparandum as EDITED.

4. find most highly scoring combination of repairs

• Advantages of the more complex approach:

– Doesn’t require parsing the whole sentence (rather, only look for

repairs up to some maximum size)

– Adjusting the odds threshold trades precision for recall

– Handles overlapping repairs (where the repair is itself repaired)

[[What did + what does he] + what does she] want?
31

(Standard) labeled precision/recall

• Precision = # correct nodes/# nodes in parse trees

• Recall = # correct nodes/# nodes in corpus trees

• A parse node p is correct iff there is a node c in the corpus tree such

that

– label(p) ≡ label(c) (where ADVP ≡ PRT)

– left(p) ≡r left(c) and right(p) ≡r right(c)

• ≡r is an equivalence relation on string positions

I like , but Sandy ,hates beans

32

