A TAG-based noisy channel model of
speech repairs

Mark Johnson and Eugene Charniak

Brown University

ACL, 2004

Supported by NSF grants LIS 9720368 and 11S0095940

Talk outline

Goal: Apply parsing technology and “deeper” linguistic analysis to
(transcribed) speech

Problem: Spoken language contains a wide variety of disfluencies and
speech errors
Why speech repairs are problematic for statistical syntactic models

— Statistical syntactic models capture nested head-to-head

dependencies

— Speech repairs involve crossing “rough-copy” dependencies between
sequences of words

A noisy channel model of speech repairs

— Source model captures syntactic dependencies

— Channel model introduces speech repairs

— Tree adjoining grammar can formalize the non-CFG dependencies in

speech repairs

Speech errors in (transcribed) speech

e Filled pauses

I think it’s, uh, refreshing to see the, uh, support ...

e Parentheticals

But, you know, I was reading the other day ...

e Speech repairs

Why didn’t he, why didn’t she stay at home?

e “Ungrammatical” constructions, i.e., non-standard English
My friends is visiting me?
(Note: this really isn’t a speech error)

Bear, Dowding and Schriberg (1992), Charniak and Johnson (2001), Heeman and Allen
(1997, 1999), Nakatani and Hirschberg (1994), Stolcke and Schriberg (1996)

3

Special treatment of speech repairs

e Filled pauses are easy to recognize (in transcripts)

e Parentheticals appear in our training data and our parsers identify

them fairly well
o Filled pauses and parentheticals are useful for identifying constituent
boundaries (just as punctuation is)
— QOur parser performs slightly better with parentheticals and filled
pauses than with them removed
o “Ungrammaticality” and non-standard English aren’t necessarily fatal
— Statistical parsers learn how to map sentences to their parses from a

training corpus

e ...but speech repairs warrant special treatment, since our parser never

recognizes them even though they appear in the training data ...

Engel, Charniak and Johnson (2002) “Parsing and Disfluency Placement”, EMNLP
4

The structure of speech repairs

...a flight to Boston, uh, I mean, to Denver on Friday ...
L | | |

\ - S \\ 2 \u 7
~" ~" ~"

Reparandum Interregnum Repair

e The Interregnum is usually lexically (and prosodically marked), but
can be empty

e Repairs don’t respect syntactic structure
Why didn’t she, uh, why didn’t he stay at home?
e The Repair is often “roughly” a copy of the Reparandum
= identify repairs by looking for “rough copies”
e The Reparandum is often 1-2 words long (= word-by-word classifier)
e The Reparandum and Repair can be completely unrelated

Shriberg (1994) “Preliminaries to a Theory of Speech Disfluencies”
5

Representation of repairs in treebank

ROOT
|
S
CC EDITED NP VP
I NN
and S , PRP MD VP
PN |
NP VP , you can VB NP
| |
PRP VBP get DT NN
| | | |
you get a system

e Speech repairs are indicated by EDITED nodes in corpus

e The internal syntactic structure of EDITED nodes is highly unusual

Speech repairs and interpretation

e Speech repairs are indicated by EDITED nodes in corpus
e The parser does not posit any EDITED nodes even though the training

corpus contains them
— Parser is based on context-free headed trees and head-to-argument

dependencies
— Repairs involve rough copy dependencies that cross constituent
boundaries

Why didn’t he, uh, why didn’t she stay at home?

— Finite state and context free grammars cannot generate ww “copy
languages” (but Tree Adjoining Grammars can)
e The interpretation of a sentence with a speech repair is (usually) the
same as with the repair excised
= Identify and remove EDITED words before parsing
— Use a classifier to classify each word as “EDITED” or “not
EDITED” (Charniak and Johnson, 2001)

— Use a noisy channel model to generate /remove repairs
7

The noisy channel model

Source model P(X)
Bigram/Parsing LM

t

Source signal x
a flight to Denver on Friday

t

Noisy channel P(U|X)
TAG transducer

t

Noisy signal u
a flight to Boston uh I mean to Denver on Friday

e argmax, P(x|u) = argmax, P(u|z)P(z)

e Train source language model on treebank trees with EDITED nodes

removed

“Helical structure” of speech repairs

...a flight to Boston, uh, I mean, to Denver on Friday ...
L | | |

\ - S 4 7 \ 7
~" ~" ~"

Reparandum Interregnum Repair

ueow J — Un

— a — flight ———— to — Boston
™~ I |
" to — Denver — on — Friday —

e Parser-based language model generates repaired string
o TAG transducer generates reparandum from repair

e Interregnum is generated by specialized finite state grammar in TAG

transducer

Joshi (2002), ACL Lifetime achievement award talk

9

TAG transducer models speech repairs

ueow J — yn

— a — flight ——— to — Boston

to — Denver — on — Friday —
e Source language model: a flight to Denver on Friday

e TAG generates string of u:x pairs, where u is a speech stream word and
x is either () or a source word:

a:a flight:flight to:) Boston:) uh:0 I:0) mean:() to:to Denver:Denver
on:on Friday:Friday

— TAG does not reflect grammatical structure (the LM does)
— right branching finite state model of non-repairs and interregnum

— TAG adjunction used to describe copy dependencies in repair

10

TAG derivation of copy constructions

~

C

Auxiliary trees Derived tree Derivation tree

11

TAG derivation of copy constructions

~

C

Auxiliary trees Derived tree Derivation tree

12

TAG derivation of copy constructions

~

C

Auxiliary trees Derived tree Derivation tree

13

TAG derivation of copy constructions

~

C

Auxiliary trees Derived tree Derivation tree

14

Schematic TAG noisy channel derivation

... a flight to Boston uh I mean to Denver on Friday ...
[I | |

a:a

flight:flight
to:0)

Boston:

Denver:Denve

Friday:Friday

I:() mean:()

15

Sample TAG derivation (simplified)

(I want) a flight to Boston uh I mean to Denver on Friday ...

Start state: Nyant |

Nwant Nwant
TAG rule: () JANE resulting structure: yaN
a:a Ny | a:a Ng|
Nwant
TAG rule: (OQV\I&\ , resulting structure: Qa\
flight:flight Raight:flight flight:flight Raight:flight
L L

16

Sample TAG derivation (cont)

(I want) a flight to Boston uh I mean to Denver on Friday ...

Nwant
a:a Ny
Nwant ﬂzghtﬂzght Rﬂight,ﬂight
Na Rﬂlght Hight to) Rto:to
ﬂlghtﬂlght Rﬂlght.ﬂlght tO.‘@ Rto.to Rﬂight:ﬂight to:to
I ﬁight:ﬂight to:to I
previous structure TAG rule (61) resulting structure

17

(I want) a flight to Boston uh I mean to Denver on Friday ...

Nwant

Nwant

a:a Ny /\
| /\ o Na
flight:flight Rﬂight’ﬂight /\

flight:flight Rajight:fight

tO-@ Rto:to /\
/\

tO'.(Z) Rto to
Rﬂight:ﬂight to:to /\
I| BOStOn"@ RBoston,Denver
l /\
previous structure Rio,to Denver:Denver

Rto:t /\

BOStO’ﬂ.’@ RBoston:Denver |

P]

* . .
Rio:to Denver:Denver resulting structure

TAG rule (32) '8

(I want) a flight to Boston uh I mean to Denver on Friday ...

Nwant

/N

a:a Ny
flight:flight Raight:Aight

tO-'(D 1%130:130

I%Boston:Denve]r /\
/\ BOStOn.'@ RBoston:Denver
*

Boston:Denver NDenver 1 /\

RBoston:Denver NDenver 1

TAG rule (B3) P

Rioto Denver:Denver

T

RAight:fight to:to

1

resulting structure
19

flight:flight Rajight:fight

N

tO:(Z) Rto:to

/\

BOStO’ﬂ.’@ RBoston:Denver

/\

RBoston:Denver NDenver

T N

Rioto Denver:Denver on:on Ngp

/\ /\

RAight:fight to:to Friday:Friday Ngriday

20

Switchboard corpus data

...a flight to Boston, uh, I mean, to Denver on Friday ...

\ s s 4
N/ Vo Vo

Reparandum Interregnum Repair

TAG channel model trained on the disfluency POS tagged Switchboard
files sw[23]*.dps (1.3M words) which annotates reparandum,

interregnum and repair

Language model trained on the parsed Switchboard files sw|23|*.mrg

with Reparandum and Interregnum removed
31K repairs, average repair length 1.6 words

Number of training words: reparandum 50K (3.8%), interregnum 10K

(0.8%), repair 53K (4%), overlapping repairs or otherwise unclassified
24K (1.8%)

21

Training data for TAG channel model

...a flight to Boston, uh, I mean, to Denver on Friday ...

\ . s A 4
N/ Vo Vo

Reparandum Interregnum Repair

e Minimum edit distance aligner used to align reparandum and repair

words

— Prefers identity, POS identity, similar POS alignments

e Of the 57K alignments in the training data:
— 35K (62%) are identities
— 7K (12%) are insertions
— 9K (16%) are deletions

— 5.6K (10%) are substitutions
x 2.9K (5%) are substitutions with same POS
* 148 of the 352 substitutions (42%) in heldout data were not seen
in training
22

Decoding using n-best rescoring

e We don’t know of any efficient algorithms for decoding a TAG-based
noisy channel and a parser-based language model ...

e but the intersection of an n-gram language model and the TAG-based

noisy channel is just another TAG

= Use the parser language model to rescore the 20-best bigram language
model results:

— Use the bigram language model with a dynamic programming search
to find the 20 best analyses of each string

— Parse each of these using the parser-based language model

— Select the overall highest-scoring analysis using the parser
probabilities and the TAG-based noisy channel scores

See: Collins (2000) “Discriminative Reranking for Natural Language Parsing”, Collins

and Koo (to appear) “Discriminative Reranking for Natural Language Parsing”

23

Modified labeled precision/recall evaluation

e Goal: Don’t penalize misattachment of EDITED nodes

e String positions on either side of EDITED nodes in the gold-standard
corpus tree are equivalent (just like punctuation in PARSEVAL)

ROOT
é
CC EDITED NP VP
PRP VB ., PRP MD VP
v~ Re
DT/\NN
and you get : you can get z|1 Syslem

Charniak and Johnson (2001) “Edit detection and parsing for transcribed speech”

24

Empirical results

Training and testing data has partial words and punctuation removed

CJ01’ is the Charniak and Johnson 2001 word-by-word classifier

trained on new training and testing data

Bigram is the Viterbi analysis using dynamic programming decoding

with bigram language model

Trigram and Parser are results of 20-best reranking using trigram and

parser language models

CJ01” Bigram Trigram Parser
Precision | 0.951 0.776 0.774 0.820
Recall 0.631 0.736 0.763 0.778
F-score 0.759 0.756 0.768 0.797

25

Conclusion and future work

It is possible to detect and excise speech repairs with reasonable

accuracy

We can incorporate the very different syntactic and repair structures in

a single noisy channel model
Using a better language model improves overall performance

It might be interesting to make the channel model sensitive to
syntactic structure to capture the relationship between syntactic

context and the location of repairs

A log-linear model should permit us to integrate a wide variety of

interacting syntactic and repair features

There are lots of interesting ways of combining speech and parsing!

26

Estimating the model from data

...a flight to Boston, uh, I mean, to Denver on Friday ...

\ . s A 4
N/ Vo Vo

Reparandum Interregnum Repair
P, (repair|flight) The probability of a repair beginning after flight

P(m/|Boston, Denver), where m € {copy, substitute, insert, delete, nonrepair }:
The probability of repair type m when the last reparandum word was

Boston and the last repair word was Denver

P, (tomorrow| Boston, Denver) The probability that the next reparandum
word is tomorrow when the last reparandum word was Boston and last

repair word was Denver

27

The TAG rules and their probabilities

Nwant
Pl = (1 — P,,(repair|a))
a:a Ny
(N,)
/\

P | flight:flight Raight-fight P, (repair|flight)

|
\ L)

e These rules are just the TAG formulation of a HMM.

28

The TAG rules and their probabilities (cont.)

P tO-'@ RtO'to —

P Boston:{)

\ Rﬁight:ﬂight to:to)

I%130:130 \

/\

RBoston:Denver

T

* .
R}, .+, Denver:Denver)

P..(copy|flight, flight)

= P, (substitute|to, to)
P, (Boston|to, to)

e (Copies generally have higher probability than substitutions

29

The TAG rules and their probabilities (cont.)

(RBoston,Denver \
/\
P tOmOTTOU}-'@ Rtomorrow,Denver
|
\ : /
Boston,Denver
(I%Boston,Denvelr \
|
P RBoston,tomorrow
/\
\Rf%oston,Denver tomormw:tomorfmw)

RBoston:Denver

P /\

x N
Boston:Denver Denver |

30

P..(insert| Boston, Denver)

P, (tomorrow|Boston, Denver)

P..(delete| Boston, Denver)

P..(nonrepair| Boston, Denver)

Decoding with a bigram language model

e We could search for the most likely parses of each sentence ...

e or alternatively interpret the dynamic programmang table directly:

1. compute the probability that each triple of adjacent substrings can
be analysed as a reparandum /interregnum /repair

2. divide by the probability that the substrings do not contain a repair

3. if these odds are greater than a fixed threshold, identify this
reparandum as EDITED.

4. find most highly scoring combination of repairs

e Advantages of the more complex approach:

— Doesn’t require parsing the whole sentence (rather, only look for
repairs up to some maximum size)

— Adjusting the odds threshold trades precision for recall

— Handles overlapping repairs (where the repair is itself repaired)

[[What did 4+ what does he | + what does she | want?
31

(Standard) labeled precision/recall

Precision = # correct nodes/# nodes in parse trees

Recall = # correct nodes/# nodes in corpus trees

A parse node p is correct iff there is a node c in the corpus tree such

that

— label(p) = label(c) (where ADVP = PRT)
— left(p) =, left(c) and right(p) =, right(c)

=, 1s an equivalence relation on string positions

|

like

)

but

Sandy

32

hates

)

beans

