Dynamic Programming
for Parsing and Estimation of

Stochastic Unification-Based Grammars

Stuart Geman and Mark Johnson

Brown University

ACL'02, Philadelphia

Acknowledgements: Stefan Riezler (PParc)
NSF grants DMS 0074276 and ITR IIS 0085940

Talk outline

e Stochastic Unification-Based Grammars (SUBGs)
e Parsing and estimation of SUBGs

o Avoiding enumerating all parses

— Maxwell and Kaplan (1995) packed parse
representations

— Feature locality

— Parse weight is a product of functions of parse fragment
weights

— Graphical model calculation of argmax/sum

Related work: Miyao and Tsuji (2002) “Maximum Entropy Estimation for

Feature Forests” HLT
2

Lexical-Functional Grammar (UBG)

TU

SEGMENT

PER‘IOD

ROOT
Sidj

T

VPv

| T
let PRT)N Y I\WP

us take DATEP

N COMMA

Tuesday

, NUMBER

the fifteenth

SENTENCE_ID

ANIM +

NUM PL
OB] | PERS 1

PASSIVE —
PRED LET

OB]J
XCOMP

3 L -
PASSIVE —

PRED

CTTRT

CASE ACC

PRED PRO
PRON-FORM WE
9 L PRON-TYPE

BAC002_E

PERS |

(21009
STMT-TYPE '~ IMPERATIVE
PERS 2
SUB] | PRED PRO
, | PRON-TYPE ~NULL
TNS-ASP | MOOD IMPERATIVE |

[ANIM — i

NUMBER _ ORD
NTYPE |:TIME DATE]

NUM SG
PRED fifteen

SPEC-FORM _THE
SPEC [SPEC-TYPE DEF]

CASE ACC -
GEND NEUT

GRAIN COUNT
NTYPE PROPER DATE

APP

TIME DAY
NUM SG

PERS 3
5 L PRED

TUESDAY

TAKE(9,13)
—

Stochastic Unification-based Grammars

o A unification-based grammar defines a set of possible parses
Y(w) for each sentence w.

e Features fi,..., f,, are real-valued functions on parses

— Attachment location (high, low, argument, adjunct, etc.)
— Head-to-head dependencies

e Probability defined by conditional log-linear model
W(y) = ep(XNfhiw) = 1677
j=1 j=1
Prylw) = W(y)/Z(w)
where 0; = e’ > (are feature weights and
Z(w) = 3 eyw) Wy) is the partition function.

Johnson et al (1999) “Parsing and estimation for SUBGs”, Proc ACL
4

Estimating feature weights

Several algorithms for maximum conditional likelihood
estimation

— Various iterative scaling algorithms
— Conjugate gradient and other optimization algorithms

These algorithms are iterative
= repeated reparsing of training data

All of these algorithms require conditional expectations

Elfjlw] = > f]) Pr(y|w)

yeY(w

Can we calculate these statistics and find the most likely

parse without enumerating all parses V(w)? YES *
5

Maxwell and Kaplan packed parses

A parse y consists of set of fragments ¢ € y (MK algorithm)

A fragment is in a parse when its context function is true

Context functions are functions of context variables X1, X, ...

The variable assignment must satisfy “not no-good” functions

Each parse is identified by a unique context variable assignment

X1
- X,

¢ = “the cat on the mat” 7)
& = “with a hat” the cat on 5 < - X
“attach D to B” the mat »_ I
~-~_ "D
Xq

“attach D to A” with a hat

Feature locality

e Features must be local to fragments: f;(y) = Y¢e, fi(€)

e May require changes to UBG to make all features local

X
- X,

¢ = "the cat on the mat”

& = “with a hat”

“attach D to B” A (&, ATTACH) = LOW
“attach D to A” A (&5 ATTACH) = HIGH

A
the caton _»_ X,

B~--~%
~

the mat v\\’////f\

X1 with a hat

-~

7

Feature locality decomposes 1V (y)

e Feature locality: the weight of a parse is the product of
weights of its fragments

W) = [[W(©), where
£y

W) = H@;j(@

j=1

W (& = “the cat on the mat”)

W& = “with a hat”)
X1
-X;

— W (“attach D to B” A ({4 ATTACH) = LOW)
— W (“attach D to A” A (£, ATTACH) = HIGH)

8

Not No-goods

e “Not no-goods” identity the variable assignments that
correspond to parses

¢ = “Iread a book”

&1 = “on the table”
X1 ANXy — "attach D to B”
X1 AN—=Xy — ™attach D to A”
-X7 — “attach Dto C”

X1V Xo A o
lread 3 - s
abook a X{A=Xo,)
N L7 X
X AXe Y
9 D~

on the table

Identify parses with variable assignments

e Each variable assignment uniquely identifies a parse

e For a given sentence w, let W'(z) = W (y) where y is the
parse identified by z

= Argmax/sum/expectations over parses can be computed
over context variables instead

Most likely parse: & = argmax, W'(z)
Partition function: Z(w) = >, W'(x)

Expectation:* E|f;|w] =X, fi(x)W'(x)/Z(w)

10

W'is a product of functions of X

e Then W/ (X) = [T4cq A(X), where:

— Each line a(X) — ¢ introduces a term W (£)(X)
— A “not no-good” n(X) introduces a term 7n(X)

a(X) — & x W (€)*X)

n(X) X n(X)

= W'1is a Markov Random Field over the context variables X

11

W'is a product of functions of X

W(X,) = W (¢ = “the cat on the mat”)
x W(& = “witha hat”)

x W (“attach D to B” A (& ATTACH) = LOW)™
x W (“attach D to A” A (& ATTACH) = HIGH) !
A
the cat onBv\ LX)

~

~

the mat » _ ////m

X1 with a hat

12

Product expressions and graphical models

e MRFs are products of terms, each of which is a function of
(a few) variables

e Graphical models provide dynamic programming algorithms
for Markov Random Fields (MRF) (Pearl 1988)

e These algorithms implicitly factorize the product

e They generalize the Viterbi and Forward-Backward
algorithms to arbitrary graphs (Smyth 1997)

= Graphical models provide dynamic programming
techniques for parsing and training Stochastic UBGs

13

Factorization example

W' (X;) = W (& = “the cat on the mat”)
x W& = “witha hat”)
X “attach D to B” A (£ ATTACH) = LOW)™

W (
x W (“attach D to A” A (£ ATTACH) = HIGH) !

max W'(X1) = W (¢ = “the cat on the mat”)
x W& = “witha hat”)

X max

(W (“attach D to B” A (£ ATTACH) = LOW)",
X1

W (“attach D to A” A (& ATTACH) = HIGH) !

14

Dependency structure graph G 4

Zw) = Y Wi(zx) = >][] A=)

r AeA

o (G, is the dependency graph for A
— context variables X are vertices of G4

— G4 has an edge (X;, X;) if both are arguments of some

Ac A
A(X) — CL(Xl,X3)b(X2,X4)C(X3,X4,X5)d(X4,X5)€(X6,X7)

X1 X3 X5 X6
®

7

Xo X4 . X7

Graphical model computations

A4
Z1(x3)
Z>(x4)

Z3(x4, x5)
Zy(x5)

Zs5
Z6(7)
Z7

A4

S o.a(xy, x3)b(ze, x4)c(x3, T4, T5)d(24, 5)e(T6, T7)
>, a1, T3)

D, U(T2,74)

D ws €T3, %4, T5) Z1(3)

Dy W4, w5) Z2(24) Z3(24, T5)

D zs Za(T5) X1 X3 X5 X6
> o €(6, 7) '

D L6(T7)

77 X, X, X

See: Pearl (1988) Probabilistic Reasoning in Intelligent Systems

16

Graphical model for Homecentre example

Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner

plastic window and rollers.

Computational complexity

Polynomial in m = the maximum number of variables in the
dynamic programming functions > the number of variables
in any function A

m depends on the ordering of variables (and &)

Finding the variable ordering that minimizes m is
NP-complete, but there are good heuristics

Worst case exponential (no better than enumerating the
parses), but average case might be much better

— Much like UBG parsing complexity

18

Conclusion

There are DP algorithms for parsing and estimation from
packed parses that avoid enumerating parses

— Generalizes to all Truth Maintenance Systems (not
grammar specific)
Features must be local to parse fragments

— May require adding features to the grammar
Worst-case exponential complexity; average case?

Makes available techniques for graphical models to
packed parse representations

— MCMC and other sampling techniques

19

Future directions

e Reformulate “hard” grammatical constraints as “soft”
stochastic features

— Underlying grammar permits all possible structural
combinations

— Grammatical constraints reformulated as stochastic
features

e Is this computation tractable?

e Comparison with Miyao and Tsujii (2002)

20

