
Dynamic Programming
for Parsing and Estimation of

Stochastic Unification-Based Grammars

Stuart Geman and Mark Johnson

Brown University

ACL’02, Philadelphia

Acknowledgements: Stefan Riezler (Parc)

NSF grants DMS 0074276 and ITR IIS 0085940

1



Talk outline

• Stochastic Unification-Based Grammars (SUBGs)

• Parsing and estimation of SUBGs

• Avoiding enumerating all parses

– Maxwell and Kaplan (1995) packed parse
representations

– Feature locality

– Parse weight is a product of functions of parse fragment
weights

– Graphical model calculation of argmax/sum

Related work: Miyao and Tsuji (2002) “Maximum Entropy Estimation for

Feature Forests” HLT
2



Lexical-Functional Grammar (UBG)

TURN

SEGMENT

ROOT

Sadj

S

VPv

V

let

NP

PRON

us

VPv

V

take

NP

DATEP

N

Tuesday

COMMA

,

DATEnum

D

the

NUMBER

fifteenth

PERIOD

.

SENTENCE ID BAC002 E

OBJ

9

ANIM +
CASE ACC
NUM PL
PERS 1
PRED PRO
PRON-FORM WE
PRON-TYPE PERS

PASSIVE −
PRED LET〈2,10〉9

STMT-TYPE IMPERATIVE

SUBJ
2

PERS 2
PRED PRO
PRON-TYPE NULL

TNS-ASP MOOD IMPERATIVE

XCOMP

10

OBJ

13

ANIM −

APP

NTYPE NUMBER ORD
TIME DATE

NUM SG
PRED fifteen

SPEC SPEC-FORM THE
SPEC-TYPE DEF

CASE ACC
GEND NEUT

NTYPE
GRAIN COUNT
PROPER DATE
TIME DAY

NUM SG
PERS 3
PRED TUESDAY

PASSIVE −
PRED TAKE〈9,13〉
SUBJ 9

3



Stochastic Unification-based Grammars

• A unification-based grammar defines a set of possible parses
Y(w) for each sentence w.

• Features f1, . . . , fm are real-valued functions on parses
– Attachment location (high, low, argument, adjunct, etc.)
– Head-to-head dependencies

• Probability defined by conditional log-linear model

W (y) = exp(
m

∑

j=1

λjfj(y)) =
m
∏

j=1

θ
fj(y)
j

Pr(y|w) = W (y)/Z(w)

where θj = eλj > 0 are feature weights and
Z(w) =

∑

y∈Y(w) W (y) is the partition function.

Johnson et al (1999) “Parsing and estimation for SUBGs”, Proc ACL
4



Estimating feature weights

• Several algorithms for maximum conditional likelihood
estimation

– Various iterative scaling algorithms
– Conjugate gradient and other optimization algorithms

• These algorithms are iterative
⇒ repeated reparsing of training data

• All of these algorithms require conditional expectations

E[fj|w] =
∑

y∈Y(w)

fj(y) Pr(y|w)

• Can we calculate these statistics and find the most likely
parse without enumerating all parses Y(w)? YES ?

5



Maxwell and Kaplan packed parses

• A parse y consists of set of fragments ξ ∈ y (MK algorithm)

• A fragment is in a parse when its context function is true

• Context functions are functions of context variables X1,X2, . . .

• The variable assignment must satisfy “not no-good” functions

• Each parse is identified by a unique context variable assignment

ξ = “the cat on the mat”

ξ1 = “with a hat”

X1 → “attach D to B”

¬X1 → “attach D to A” with a hat

the cat on

the mat
¬X1

X1

A

B

D

6



Feature locality

• Features must be local to fragments: fj(y) =
∑

ξ∈y fj(ξ)

• May require changes to UBG to make all features local

ξ = “the cat on the mat”

ξ1 = “with a hat”

X1 → “attach D to B” ∧ (ξ1 ATTACH) = LOW

¬X1 → “attach D to A” ∧ (ξ1 ATTACH) = HIGH

with a hat

the cat on

the mat
¬X1

X1

A

B

D

7



Feature locality decomposes W (y)

• Feature locality: the weight of a parse is the product of
weights of its fragments

W (y) =
∏

ξ∈y

W (ξ), where

W (ξ) =
m
∏

j=1

θ
fj(ξ)
j

W (ξ = “the cat on the mat”)

W (ξ1 = “with a hat”)

X1 → W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )

¬X1 → W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )

8



Not No-goods

• “Not no-goods” identify the variable assignments that
correspond to parses

ξ = “I read a book”

ξ1 = “on the table”

X1 ∧ X2 → “attach D to B”

X1 ∧ ¬X2 → “attach D to A”

¬X1 → “attach D to C”

X1 ∨ X2

on the table

a book X1 ∧ ¬X2

X1 ∧ X2

¬X1

I read

D

A
B

C

9



Identify parses with variable assignments

• Each variable assignment uniquely identifies a parse

• For a given sentence w, let W ′(x) = W (y) where y is the
parse identified by x

⇒ Argmax/sum/expectations over parses can be computed
over context variables instead

Most likely parse: x̂ = argmaxx W ′(x)

Partition function: Z(w) =
∑

x W ′(x)

Expectation:? E[fj|w] =
∑

x fj(x)W ′(x)/Z(w)

10



W ′ is a product of functions of X

• Then W ′(X) =
∏

A∈A A(X), where:

– Each line α(X) → ξ introduces a term W (ξ)α(X)

– A “not no-good” η(X) introduces a term η(X)

...

α(X) → ξ

...

η(X)

...

...

× W (ξ)α(X)

×
...

× η(X)

×
...

⇒ W ′ is a Markov Random Field over the context variables X

11



W ′ is a product of functions of X

W ′(X1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )X1

× W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )¬X1

with a hat

the cat on

the mat
¬X1

X1

A

B

D

12



Product expressions and graphical models

• MRFs are products of terms, each of which is a function of
(a few) variables

• Graphical models provide dynamic programming algorithms
for Markov Random Fields (MRF) (Pearl 1988)

• These algorithms implicitly factorize the product

• They generalize the Viterbi and Forward-Backward
algorithms to arbitrary graphs (Smyth 1997)

⇒ Graphical models provide dynamic programming
techniques for parsing and training Stochastic UBGs

13



Factorization example

W ′(X1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )
X1

× W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )¬X1

max
X1

W ′(X1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× max
X1





W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )X1 ,

W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )
¬X1





14



Dependency structure graph GA

Z(w) =
∑

x

W ′(x) =
∑

x

∏

A∈A

A(x)

• GA is the dependency graph for A

– context variables X are vertices of GA

– GA has an edge (Xi, Xj) if both are arguments of some
A ∈ A

A(X) = a(X1, X3)b(X2, X4)c(X3, X4, X5)d(X4, X5)e(X6, X7)

X1 X3 X5 X6

X2 X4 X715



Graphical model computations

Z =
∑

x a(x1, x3)b(x2, x4)c(x3, x4, x5)d(x4, x5)e(x6, x7)

Z1(x3) =
∑

x1
a(x1, x3)

Z2(x4) =
∑

x2
b(x2, x4)

Z3(x4, x5) =
∑

x3
c(x3, x4, x5)Z1(x3)

Z4(x5) =
∑

x4
d(x4, x5)Z2(x4)Z3(x4, x5)

Z5 =
∑

x5
Z4(x5)

Z6(x7) =
∑

x6
e(x6, x7)

Z7 =
∑

x7
Z6(x7)

Z = Z5Z7

=
(
∑

x5
Z4(x5)

) (
∑

x7
Z6(x7)

)

See: Pearl (1988) Probabilistic Reasoning in Intelligent Systems

X1 X3 X5 X6

X2 X4 X7

16



Graphical model for Homecentre example

Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner

plastic window and rollers.

17



Computational complexity

• Polynomial in m = the maximum number of variables in the
dynamic programming functions ≥ the number of variables
in any function A

• m depends on the ordering of variables (and G)

• Finding the variable ordering that minimizes m is
NP-complete, but there are good heuristics

⇒ Worst case exponential (no better than enumerating the
parses), but average case might be much better

– Much like UBG parsing complexity

18



Conclusion

• There are DP algorithms for parsing and estimation from
packed parses that avoid enumerating parses

– Generalizes to all Truth Maintenance Systems (not
grammar specific)

• Features must be local to parse fragments

– May require adding features to the grammar

• Worst-case exponential complexity; average case?

• Makes available techniques for graphical models to
packed parse representations

– MCMC and other sampling techniques
19



Future directions

• Reformulate “hard” grammatical constraints as “soft”
stochastic features

– Underlying grammar permits all possible structural
combinations

– Grammatical constraints reformulated as stochastic
features

• Is this computation tractable?

• Comparison with Miyao and Tsujii (2002)

20


