Detecting Speech Repairs Incrementally Using a Noisy Channel Approach

Simon Zwarts, Mark Johnson, Robert Dale

Department of Computing Macquarie University

COLING 2010

Research goals

- Spontaneous speech often contains disfluencies
 - *I want a flight to Boston, uh, I mean, to Denver on Friday* which we'd like to detect and delete in order to produce a more fluent transcript
- Current disfluency detection/correction systems process entire sentences at a time
- An *incremental speech disfluency detector/corrector* could better integrate with incremental speech recognition
 - and ultimately might not require sentence segmentation
- We describe an incremental version of the Charniak and Johnson (2004) TAG-based model
- We also propose two new metrics to measure how quickly and accurately an incremental disfluency system detects disfluencies

Speech errors in (transcribed) speech

• Filled pauses:

I think it's, uh, refreshing to see the, uh, support ...

Parentheticals:

But, you know, I was reading the other day ...

• Speech repairs:

Why didn't he, why didn't she stay at home?

• Ungrammatical constructions:

My friends is visiting me?

Why focus on speech repairs?

- *Filled pauses* are easy to recognize (in transcripts at least)
- Parentheticals are easy to detect (e.g., parsing)
- "Ungrammatical" constructions aren't necessarily fatal
 - Statistical parsers learn mapping of sentences to parses in training corpus
- *Speech repairs* warrant special treatment, since standard PCFG-based parsers misanalyse them

Shriberg's analysis of speech repairs

- The Interregnum is usually lexically (and prosodically marked), but can be empty
- Repairs can cross syntactic boundaries
 <u>Why didn't she</u>, uh, why didn't he stay at home?
 and interfere with syntactic parsing
- The Repair is often "roughly" a copy of the Reparandum
 identify repairs by looking for "rough copies"
- The Reparandum is often short (only 1–2 words long)
 ⇒ word-by-word classifiers can be quite successful
- The Reparandum and Repair can be completely unrelated

Noisy channel approach to disfluency detection

• Goal: recover the most likely source string \hat{x} given observed string u

$$\widehat{x} = \underset{x}{\operatorname{argmax}} \Pr(x|u) = \underset{x}{\operatorname{argmax}} \Pr(u|x) \Pr(x)$$

The language model

Given the observed sentence

u = I want a flight to Boston, uh, to Denver on Friday the (true) source sentence is

x = I want a flight to Denver on Friday

- The language model estimates Pr(x)
 - ▶ here we use a bigram language model

$$Pr(x) = Pr(I \mid \$) Pr(want \mid I) Pr(a \mid want) Pr(flight \mid a)$$

$$Pr(to \mid flight) Pr(Denver \mid to) Pr(on \mid Denver)$$

$$Pr(Friday \mid on) Pr(\$ \mid Friday)$$

TAG transducer channel model (1)

- Channel model is a transducer generating *surface:source* pairs $u_i: x_i$ *a:a flight:flight to:0 Boston:0 uh:0 I:0 mean:0 to:to Denver:Denver*
- Crossing dependencies ⇒ channel model is a TAG
 - ► TAG does not reflect grammatical structure (but LM can)
 - right branching finite state model of non-repairs and interregnum
 - adjunction used to describe copy dependencies in repair

Sample TAG derivation (simplified)

Sample TAG derivation (cont)

Training Data

• Switchboard corpus (1.3M training words) annotates reparandum, interregnum and repair (we ignore punctuation and partial words)

- ▶ 5.4% of words are in a reparandum
- ▶ 31K repairs, average length: 1.6 words
- Reparandum and repair word-aligned by minimum-edit-distance, prefers identity, POS identity, similar POS
- Of the 57K alignments in the training data:
 - ▶ 35K (62%) are identities
 - ▶ 7K (12%) are insertions
 - ▶ 9K (16%) are deletions
 - ▶ 5.6K (10%) are substitutions (5% with same POS)

Dynamic programming algorithm for noisy channel

- The most likely analysis \hat{x} generated by the noisy channel model (bigram language model + TAG channel model) can be found using dynamic programming
- Charniak and Johnson (2004) propose a $O(n^5)$ algorithm that involves updating a table with entries of the form

⟨reparandum start, reparandum end, repair start, repair end⟩

together with standard bigram trellis entries

- The table entries can be computed in bottom-up left-to-right order
- ⇒ an incremental version of the Charniak and Johnson model

Bottom-up restricts incrementality

- The model's two basic assumptions:
 - 1. The repair looks like the reparandum
 - 2. A sentence without the disfluency is fluent

don't hold until the disfluency has been completed

I want a flight to Boston, uh, I mean, to ...

- to Boston does not (yet) look very much like to
- taking the disfluency out, there is no fluent continuation (yet)
- Pure bottom-up computation delays until the disfluency has completed and the continuation seen

Increasing incrementality with speculative completion

- We modify the algorithm to speculatively complete an incomplete repair
 - incremental completion substitution assumes that unanalysed words in the reparandum are substitions of (as yet unseen) words in the repair
 - the probability is calculated by summing over all possible repair word substitions
- When the actual following words are observed, we replace the speculatively completed chart cells with their true values
- ⇒ A disfluency detected by speculative completion may be revised as following words are observed

Evaluating disfluency detection

- Fluent words are much more common than disfluent words
 - ⇒ percent correct is not very informative
 - ⇒ prior work reports *f-score* of fluent/disfluent labels (or other metrics)
- At the end of the sentence, the incremental algorithms produce same analyses as Charniak/Johnson algorithm
 - ⇒ Incremental algorithms achieve same f-score (0.778) as Charniak/Johnson algorithm

Time to detection evaluation

- Time to detection evaluates how quickly an algorithm proposes a disfluency
 - average time to detection: average number of words from start of reparandum to when repair is first detected
- Time to detection results:
 No speculation: 5.1 words, with speculation: 4.6 words
 - \Rightarrow speculation speeds disfluency detection by 0.5 words on average

Delayed f-score at *k* words

- Delayed f-score at k words forces the model to label each word as fluent/disfluent when it has seen k additional words
 - delayed f-score at k words: f-score evaluated when input is k words beyond word evaluated
- Delayed f-score results:

k tokens back	1	2	3	4	5	6
No speculation	0.500	0.558	0.631	0.665	0.701	0.714
With speculation	0.578	0.633	0.697	0.725	0.758	0.770

⇒ Speculation does not decrease accuracy of disfluency detection

Conclusion and future work

- It's possible to develop an incremental version of the Charniak/Johnson disfluency detection algorithm
 - Speculative completion speeds disfluency detection without decreasing accuracy
- Future work:
 - develop a version that does not require sentence-segmented input
 - develop models that detect disfluencies even earlier
 - replace the bigram language model with an incremental parsing model
 - develop methods for training disfluency models from data without disfluency annotations
 - couple this with an incremental speech recogniser

Interested in statistical models for computational linguistics? We're recruiting PhD students!.

Contact Mark.Johnson@mq.edu.au or Katherine.Demuth@mq.edu.au for more information.

