Detecting Speech Repairs Incrementally
Using a Noisy Channel Approach

Simon Zwarts, Mark Johnson, Robert Dale

Department of Computing
Macquarie University

COLING 2010

MACQUARIE
UNIV%RSITY ‘))/

1/22

Research goals

e Spontaneous speech often contains disfluencies
I want a flight to Boston, uh, I mean, to Denver on Friday

which we’d like to detect and delete in order to produce a more
fluent transcript

e Current disfluency detection/correction systems process entire
sentences at a time

e An incremental speech disfluency detector/corrector could better
integrate with incremental speech recognition

» and ultimately might not require sentence segmentation

e We describe an incremental version of the Charniak and Johnson
(2004) TAG-based model

e We also propose two new metrics to measure how quickly and
accurately an incremental disfluency system detects disfluencies

MACQUARIE
UNIV%RSITY ‘)}l

Speech errors in (transcribed) speech

Filled pauses:
I think it’s, uh, refreshing to see the, uh, support ...
Parentheticals:

But, you know, I was reading the other day . ..

Speech repairs:
Why didn’t he, why didn’t she stay at home?
e Ungrammatical constructions:

My friends is visiting me?

MACQUARIE
UNIV%RSITY ‘))/

N

Why focus on speech repairs?

Filled pauses are easy to recognize (in transcripts at least)

Parentheticals are easy to detect (e.g., parsing)

“Ungrammatical” constructions aren’t necessarily fatal

» Statistical parsers learn mapping of sentences to parses in
training corpus

Speech repairs warrant special treatment, since standard PCFG-based
parsers misanalyse them

MACQUARIE
UNIV%RSITY ‘))/

Shriberg’s analysis of speech repairs

MACQUARIE
UNIV%RSITY ‘)}I

I want a flight to Boston, uh, I mean to Denver on Friday
———

reparandum interregnum repair

The Interregnum is usually lexically (and prosodically marked), but
can be empty

Repairs can cross syntactic boundaries
Why didn’t she, uh, why didn't he stay at home?
and interfere with syntactic parsing
The Repair is often “roughly” a copy of the Reparandum
= identify repairs by looking for “rough copies”
The Reparandum is often short (only 1-2 words long)
= word-by-word classifiers can be quite successful

The Reparandum and Repair can be completely unrelated

N
>

Noisy channel approach to disfluency detection

Source Pr(X
language model

.

Source signal x
a flight to Denver on Friday

¥

Noisy channel Pr(U|X)
introduces disfluencies

¥

‘ Observed noisy signal u
a flight to Boston uh I mean to Denver on Friday

¢ Goal: recover the most likely source string X given observed string u

X = argmaxPr(x|u) = argmaxPr(u|x)Pr(x)
X X

MACQUARIE
UNIV%RSITY ‘))/

The language model

e Given the observed sentence
u = lwant aflight to Boston, uh, to Denver on Friday
the (true) source sentence is
x = Twanta flight to Denver on Friday

e The language model estimates Pr(x)
» here we use a bigram language model

Pr(x) = Pr(I|$)Pr(want |I)Pr(a|want)Pr(flight | a)

Pr(to | flight) Pr(Denver | to) Pr(on | Denver)
Pr(Friday | on) Pr($ | Friday)

MACQUARIE
UNIV%RSITY ‘)}I

TAG transducer channel model (1)

¢ Channel model is a transducer generating surface:source pairs u; : x;
a:a flight:flight to:0 Boston:0 uh:0 I:0 mean:0 to:to Denver:Denver
e Crossing dependencies = channel model is a TAG

» TAG does not reflect grammatical structure (but LM can)

» right branching finite state model of non-repairs and
interregnum

» adjunction used to describe copy dependencies in repair

MACQUARIE
UNIV%RSITY ‘)}I

Sample TAG derivation (simplified)

(I want) a flight to Boston uh I mean to Denver on Friday ...

Start state: Ny ant |

Nwant want
TAG rule: , resulting structure:
/N &
a:a N, | a:a N |
Nwant
N
TAG rule: Na , resulting structure: a:4 Na
flight:flight Rﬂigh|t:ﬂight flight:flight Rjght.night
|
I I

MACQUARIE
UNIV%RSITY ‘))/

9/22

Sample TAG derivation (cont)

(I want) a flight to Boston uh I mean to Denver on Friday ...

Nuwant
“ X
Nwant flight:flight Raight fiight
ﬂlfﬂ/}\% Riight:fight toro/}mo
flight:flight Reighefight £0:0 }oto\ Riightflight ~ fo:to
L Riightsight 010 L
previous structure TAG rule resulting structure

MACQUARIE
UNIV%RSITY ‘)}I

10/22

(I want) a flight to Boston uh I mean to Denver on Friday ...

Nwant
/\ Nwant
a:a N, /\

. : aa N
flight:flight Raigny night T~
flight:flight Raight.flight
to:0 to:to
to:0 Rto,to
Rpightflight ~ t0:to
. Boston:0 RBoston,Denver
!
previous structure Rioto Denver:Denver
Rto:’to
Reight flight ~ to:to
Boston:0 RBoston:Denver |
I
R*

torto Denver:Denver — yesylting structure

MACQUARIE ‘))/ TAG rule

UNIVERSITY

(I want) a flight to Boston uh I mean to Denver on Friday ...

Nwant

/N

a:a Na
flight:flight Raight-fight
N

t0:0 Rto:to

RBoston:Denver
Boston:0 RBoston:Denver

. /}
Boston:Denver Denver | /\

TAG rule RBoston:Denver NDenver¢

Rio:to Denver:Denver
Reiight:flight ~ to:to

I

VRvaRa Y ‘)}/ resulting structure

(I want) a flight to Boston uh I mean to Denver on Friday ...
Nwant

aa Nj
flight:flight Reighe.fight
PN
to:0 Rto:to

Boston:0 Rposton:Denver

/\

RBoston:Denver NDenver

Rio:to Denver:Denver on:on Non

N

Rfight:flight ~ fo:to Friday:Friday Nriday

| |

I ..
/\
uh:0 1

1.0 mean:0

MACQUARIE
UNIV%RSITY ‘))/

Training Data

e Switchboard corpus (1.3M training words) annotates reparandum,
interregnum and repair (we ignore punctuation and partial words)

I/PRP want/VBP a/DT flight/NN [to/TO Boston/NNP ,/, + {F uh/UH ,/, }
{E I/PRP mean/VBP ,/, } to/TO Denver/NNP] on/IN Friday/NNP

» 5.4% of words are in a reparandum
» 31K repairs, average length: 1.6 words

¢ Reparandum and repair word-aligned by minimum-edit-distance,
prefers identity, POS identity, similar POS
e Of the 57K alignments in the training data:
» 35K (62%) are identities
» 7K (12%) are insertions
» 9K (16%) are deletions
» 5.6K (10%) are substitutions (5% with same POS)

MACQUARIE
UNIV%RSITY ‘)}l

14/22

Dynamic programming algorithm for noisy channel

Iwant a flight to Boston, uh, I mean to Denver on Friday
N—_——

reparandum interregnum repair

e The most likely analysis X generated by the noisy channel model
(bigram language model + TAG channel model) can be found using
dynamic programming

e Charniak and Johnson (2004) propose a O(n°) algorithm that
involves updating a table with entries of the form

(reparandum start, reparandum end, repair start, repair end)

together with standard bigram trellis entries
e The table entries can be computed in bottom-up left-to-right order

= an incremental version of the Charniak and Johnson model

MACQUARIE
UNIV%RSITY ‘)}I

Bottom-up restricts incrementality

[want a flight to Boston, uh, I mean to Denver on Friday
——

reparandum interregnum repair

e The model’s two basic assumptions:

1. The repair looks like the reparandum
2. A sentence without the disfluency is fluent

don’t hold until the disfluency has been completed
I want a flight to Boston, uh, I mean, to ...

» to Boston does not (yet) look very much like to
» taking the disfluency out, there is no fluent continuation (yet)

¢ Pure bottom-up computation delays until the disfluency has
completed and the continuation seen

MACQUARIE
UNIV%RSITY ‘)}l

N
>

Increasing incrementality with speculative completion

e We modify the algorithm to speculatively complete an incomplete
repair
» incremental completion substitution assumes that unanalysed
words in the reparandum are substitions of (as yet unseen)
words in the repair
» the probability is calculated by summing over all possible
repair word substitions

e When the actual following words are observed, we replace the
speculatively completed chart cells with their true values

= A disfluency detected by speculative completion may be revised as
following words are observed

MACQUARIE
UNIV%RSITY ‘)}I

17/22

Evaluating disfluency detection

I want a flight to Boston, uh, I mean to Denver on Friday
N—_——

reparandum interregnum repair

e Fluent words are much more common than disfluent words
= percent correct is not very informative
= prior work reports f-score of fluent/disfluent labels (or other
metrics)
e At the end of the sentence, the incremental algorithms produce same
analyses as Charniak/Johnson algorithm
= Incremental algorithms achieve same f-score (0.778) as
Charniak/Johnson algorithm

MACQUARIE
UNIV%RSITY ‘)}I

18/22

Time to detection evaluation

[want a flight to Boston, uh, I mean to Denver on Friday
N——

reparandum interregnum repair

e Time to detection evaluates how quickly an algorithm proposes a
disfluency
» aqverage time to detection: average number of words from start of
reparandum to when repair is first detected
e Time to detection results:
No speculation: 5.1 words, with speculation: 4.6 words
= speculation speeds disfluency detection by 0.5 words on average

MACQUARIE
UNIV%RSITY ‘)}I

19/22

Delayed f-score at k words

Iwant a flight to Boston, uh, I mean to Denver on Friday
——

reparandum interregnum repair

e Delayed f-score at k words forces the model to label each word as
fluent/disfluent when it has seen k additional words

» delayed f-score at k words: f-score evaluated when input is k
words beyond word evaluated

¢ Delayed f-score results:
k tokens back ‘ 1 2 3 4 5 6

No speculation 0.500 0.558 0.631 0.665 0.701 0.714
With speculation | 0.578 0.633 0.697 0.725 0.758 0.770

= Speculation does not decrease accuracy of disfluency detection

MACQUARIE
UNIV%RSITY ‘)}I

Conclusion and future work

e It’s possible to develop an incremental version of the
Charniak/Johnson disfluency detection algorithm
» Speculative completion speeds disfluency detection without
decreasing accuracy

e Future work:

» develop a version that does not require sentence-segmented
input

» develop models that detect disfluencies even earlier

» replace the bigram language model with an incremental parsing
model

» develop methods for training disfluency models from data
without disfluency annotations

» couple this with an incremental speech recogniser

MACQUARIE
UNIV%RSITY ‘)}l

Interested in statistical models for computational linguistics?
We're recruiting PhD students!.

Contact Mark.Johnson@mgq.edu.au or Katherine. Demuth@mgq.edu.au
for more information.

MACQUARIE
URVaRai Y ‘))/

22/22

