
Detecting Speech Repairs Incrementally
Using a Noisy Channel Approach

Simon Zwarts, Mark Johnson, Robert Dale

Department of Computing
Macquarie University

COLING 2010

1/22

Research goals

• Spontaneous speech often contains disfluencies

I want a flight to Boston, uh, I mean, to Denver on Friday

which we’d like to detect and delete in order to produce a more
fluent transcript

• Current disfluency detection/correction systems process entire
sentences at a time

• An incremental speech disfluency detector/corrector could better
integrate with incremental speech recognition

◮ and ultimately might not require sentence segmentation

• We describe an incremental version of the Charniak and Johnson
(2004) TAG-based model

• We also propose two new metrics to measure how quickly and
accurately an incremental disfluency system detects disfluencies

2/22

Speech errors in (transcribed) speech

• Filled pauses:

I think it’s, uh, refreshing to see the, uh, support . . .

• Parentheticals:

But, you know, I was reading the other day . . .

• Speech repairs:

Why didn’t he, why didn’t she stay at home?

• Ungrammatical constructions:

My friends is visiting me?

3/22

Why focus on speech repairs?

• Filled pauses are easy to recognize (in transcripts at least)

• Parentheticals are easy to detect (e.g., parsing)

• “Ungrammatical” constructions aren’t necessarily fatal

◮ Statistical parsers learn mapping of sentences to parses in
training corpus

• Speech repairswarrant special treatment, since standard PCFG-based
parsers misanalyse them

4/22

Shriberg’s analysis of speech repairs

I want a flight to Boston,
︸ ︷︷ ︸
reparandum

uh, I mean
︸ ︷︷ ︸
interregnum

to Denver
︸ ︷︷ ︸

repair

on Friday

• The Interregnum is usually lexically (and prosodically marked), but
can be empty

• Repairs can cross syntactic boundaries

Why didn’t she, uh, why didn’t he stay at home?

and interfere with syntactic parsing

• The Repair is often “roughly” a copy of the Reparandum

⇒ identify repairs by looking for “rough copies”

• The Reparandum is often short (only 1–2 words long)
⇒ word-by-word classifiers can be quite successful

• The Reparandum and Repair can be completely unrelated

5/22

Noisy channel approach to disfluency detection

language model
Source Pr(X)

Source signal x
a flight to Denver on Friday

Noisy channel Pr(U|X)
introduces disfluencies

Observed noisy signal u
a flight to Boston uh I mean to Denver on Friday

• Goal: recover the most likely source string x̂ given observed string u

x̂ = argmax
x

Pr(x|u) = argmax
x

Pr(u|x)Pr(x)

6/22

The language model

• Given the observed sentence

u = I want a flight to Boston, uh, to Denver on Friday

the (true) source sentence is

x = I want a flight to Denver on Friday

• The language model estimates Pr(x)
◮ here we use a bigram language model

Pr(x) = Pr(I | $)Pr(want | I)Pr(a | want)Pr(flight | a)
Pr(to | flight)Pr(Denver | to)Pr(on | Denver)
Pr(Friday | on)Pr($ | Friday)

7/22

TAG transducer channel model (1)

• Channel model is a transducer generating surface:source pairs ui : xi

a:a flight:flight to:0 Boston:0 uh:0 I:0 mean:0 to:to Denver:Denver

• Crossing dependencies ⇒ channel model is a TAG

◮ TAG does not reflect grammatical structure (but LM can)
◮ right branching finite state model of non-repairs and
interregnum

◮ adjunction used to describe copy dependencies in repair

8/22

Sample TAG derivation (simplified)

(I want) a flight to Boston uh I mean to Denver on Friday . . .

Start state: Nwant ↓

TAG rule:
Nwant

a:a Na ↓

, resulting structure:
Nwant

a:a Na ↓

TAG rule: Na

flight:flight Rflight:flight

I↓

, resulting structure:

Nwant

a:a Na

flight:flight Rflight:flight

I↓

9/22

Sample TAG derivation (cont)

(I want) a flight to Boston uh I mean to Denver on Friday . . .

Nwant

a:a Na

flight:flight Rflight:flight

I↓

Rflight:flight

to:0 Rto:to

R⋆

flight:flight to:to

Nwant

a:a Na

flight:flight Rflight,flight

to:0 Rto:to

Rflight:flight

I↓

to:to

previous structure TAG rule resulting structure

10/22

(I want) a flight to Boston uh I mean to Denver on Friday . . .

Nwant

a:a Na

flight:flight Rflight,flight

to:0 Rto:to

Rflight:flight

I↓

to:to

previous structure
Rto:to

Boston:0 RBoston:Denver

R⋆

to:to Denver:Denver

TAG rule

Nwant

a:a Na

flight:flight Rflight:flight

to:0 Rto,to

Boston:0 RBoston,Denver

Rto,to

Rflight,flight

I↓

to:to

Denver:Denver

resulting structure

11/22

(I want) a flight to Boston uh I mean to Denver on Friday . . .

RBoston:Denver

R⋆

Boston:Denver NDenver ↓

TAG rule

Nwant

a:a Na

flight:flight Rflight:flight

to:0 Rto:to

Boston:0 RBoston:Denver

RBoston:Denver

Rto:to

Rflight:flight

I↓

to:to

Denver:Denver

NDenver ↓

resulting structure
12/22

(I want) a flight to Boston uh I mean to Denver on Friday . . .
Nwant

a:a Na

flight:flight Rflight:flight

to:0 Rto:to

Boston:0 RBoston:Denver

RBoston:Denver

Rto:to

Rflight:flight

I

uh:0 I

I:0 mean:0

to:to

Denver:Denver

NDenver

on:on Non

Friday:Friday NFriday

. . .

13/22

Training Data

• Switchboard corpus (1.3M training words) annotates reparandum,
interregnum and repair (we ignore punctuation and partial words)

I/PRP want/VBP a/DT flight/NN [to/TO Boston/NNP ,/, + {F uh/UH ,/, }

{E I/PRP mean/VBP ,/, } to/TO Denver/NNP] on/IN Friday/NNP

◮ 5.4% of words are in a reparandum
◮ 31K repairs, average length: 1.6 words

• Reparandum and repair word-aligned by minimum-edit-distance,
prefers identity, POS identity, similar POS

• Of the 57K alignments in the training data:

◮ 35K (62%) are identities
◮ 7K (12%) are insertions
◮ 9K (16%) are deletions
◮ 5.6K (10%) are substitutions (5% with same POS)

14/22

Dynamic programming algorithm for noisy channel

I want a flight to Boston,
︸ ︷︷ ︸
reparandum

uh, I mean
︸ ︷︷ ︸
interregnum

to Denver
︸ ︷︷ ︸

repair

on Friday

• The most likely analysis x̂ generated by the noisy channel model
(bigram language model + TAG channel model) can be found using
dynamic programming

• Charniak and Johnson (2004) propose a O(n5) algorithm that
involves updating a table with entries of the form

〈reparandum start, reparandum end, repair start, repair end〉

together with standard bigram trellis entries

• The table entries can be computed in bottom-up left-to-right order

⇒ an incremental version of the Charniak and Johnson model

15/22

Bottom-up restricts incrementality

I want a flight to Boston,
︸ ︷︷ ︸
reparandum

uh, I mean
︸ ︷︷ ︸
interregnum

to Denver
︸ ︷︷ ︸

repair

on Friday

• The model’s two basic assumptions:

1. The repair looks like the reparandum
2. A sentence without the disfluency is fluent

don’t hold until the disfluency has been completed

I want a flight to Boston, uh, I mean, to . . .

◮ to Boston does not (yet) look very much like to
◮ taking the disfluency out, there is no fluent continuation (yet)

• Pure bottom-up computation delays until the disfluency has
completed and the continuation seen

16/22

Increasing incrementality with speculative completion

• We modify the algorithm to speculatively complete an incomplete
repair

◮ incremental completion substitution assumes that unanalysed
words in the reparandum are substitions of (as yet unseen)
words in the repair

◮ the probability is calculated by summing over all possible
repair word substitions

• When the actual following words are observed, we replace the
speculatively completed chart cells with their true values

⇒ A disfluency detected by speculative completion may be revised as
following words are observed

17/22

Evaluating disfluency detection

I want a flight to Boston,
︸ ︷︷ ︸
reparandum

uh, I mean
︸ ︷︷ ︸
interregnum

to Denver
︸ ︷︷ ︸

repair

on Friday

• Fluent words are much more common than disfluent words

⇒ percent correct is not very informative
⇒ prior work reports f-score of fluent/disfluent labels (or other

metrics)

• At the end of the sentence, the incremental algorithms produce same
analyses as Charniak/Johnson algorithm

⇒ Incremental algorithms achieve same f-score (0.778) as
Charniak/Johnson algorithm

18/22

Time to detection evaluation

I want a flight to Boston,
︸ ︷︷ ︸
reparandum

uh, I mean
︸ ︷︷ ︸
interregnum

to Denver
︸ ︷︷ ︸

repair

on Friday

• Time to detection evaluates how quickly an algorithm proposes a
disfluency

◮ average time to detection: average number of words from start of
reparandum to when repair is first detected

• Time to detection results:
No speculation: 5.1 words, with speculation: 4.6 words

⇒ speculation speeds disfluency detection by 0.5 words on average

19/22

Delayed f-score at k words

I want a flight to Boston,
︸ ︷︷ ︸
reparandum

uh, I mean
︸ ︷︷ ︸
interregnum

to Denver
︸ ︷︷ ︸

repair

on Friday

• Delayed f-score at k words forces the model to label each word as
fluent/disfluent when it has seen k additional words

◮ delayed f-score at k words: f-score evaluated when input is k
words beyond word evaluated

• Delayed f-score results:

k tokens back 1 2 3 4 5 6

No speculation 0.500 0.558 0.631 0.665 0.701 0.714
With speculation 0.578 0.633 0.697 0.725 0.758 0.770

⇒ Speculation does not decrease accuracy of disfluency detection

20/22

Conclusion and future work

• It’s possible to develop an incremental version of the
Charniak/Johnson disfluency detection algorithm

◮ Speculative completion speeds disfluency detection without
decreasing accuracy

• Future work:

◮ develop a version that does not require sentence-segmented
input

◮ develop models that detect disfluencies even earlier
◮ replace the bigram language model with an incremental parsing
model

◮ develop methods for training disfluency models from data
without disfluency annotations

◮ couple this with an incremental speech recogniser

21/22

Interested in statistical models for computational linguistics?

We’re recruiting PhD students!.

Contact Mark.Johnson@mq.edu.au or Katherine.Demuth@mq.edu.au

for more information.

22/22

