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Talk outline

• Language models for speech recognition

– Dynamic programming for language modeling

• Prosody and parsing

• Disfluencies and parsing

– Do disfluencies help parsing?

– Recognizing and correcting speech repairs

• Conclusions and future work
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Applications of (statistical) parsers

Two different ways of using statistical parsers:

1. Applications that use syntactic parse trees

• information extraction

• (short answer) question answering

• summarization

• machine translation

2. Applications that use the probability distribution over strings or trees

(parser-based language models)

• speech recognition and related applications

• machine translation
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Language modeling with parsers

The noisy channel model consists of two parts:

The language model: P(x), where x is a sentence

The acoustic model: P(y|x), where y is the acoustic signal

P(x|y) =
P(y|x)P(x)

P(y)
(Bayes Rule)

x?(y) = argmax
x

P(x|y) = argmax
x

P(y|x)P(x)

Syntactic parsing models now provide state-of-the-art performance in

language modeling P(x) (Chelba, Roark, Charniak).
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Parsing vs language modeling

• A language model models the marginal distribution P(X) over strings

X

• A parser models the conditional distribution P(Y |X) of parses Y given

a string X

• Different kinds of features seem to be useful for these tasks (Charniak

01)

– Tri-head features (the syntactic analog of trigrams) are useful for

language modeling, but not for parsing

– EM(-like) training on unparsed data helps language modeling, but

not parsing
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n-best list approaches

the

duh

man

man’s

is
early

surely

1. the man is early

2. duh man is early

3. the man’s early

4. the man is surely

. . .

• Roark (p.c.) reports WER improvements with 1,000-best lists

• Can we improve search efficiency and WER by parsing from the

lattice? (Chelba, Roark)
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Lattices and Charts (IEEE ASRU ’03)

the

duh

man

man’s

is
early

surely

NP
VP

S

• Lattices and charts are the same dynamic programming data structure

• Best-first chart parsing works well on strings

• Can we adapt best-first coarse-to-fine chart-parsing techniques to

lattices?
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Coarse to fine architecture

Acoustic lattice

PCFG parser

Charniak parser

Parses

Local trees

• Use a “coarse-grained” analysis to identify where a “fine-grained”

analysis should be applied
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Coarse to fine parsing

• Parsing with the full “fine-grained” grammar is slow and takes a lot of

memory (Charniak 2001 parser)

• Use a “coarse-grained” grammar to indicate location of likely

constituents (PCFG)

• Fine-grained grammar splits each coarse constituent into many fine

constituents

• Works well for string parsing:

– Posits ≈ 100 edges to first parse

– A very good parse is included in 10× overparsing

• Will it work on speech lattices?

9



Coarse to fine on speech lattices

• PCFG and Charniak Language Model WER:

WER

trigram (40million words) 13.7

Roark01 (n-best list) 12.7

Chelba02 12.3

Charniak (n-best list) 11.8

100x overparsing on n-best lattices 12.0

100x overparsing on acoustic lattices 13.0
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Summary and current work

• The coarse-grained model doesn’t seem to include enough good parts of

the lattice

• If we open the beam further, the fine-grained model runs out of memory

• Current difficulties probably stem from defective nature of

coarse-grained PCFG model

⇒ improve coarse-grained model

⇒ lexicalization will probably be necessary

(we are competing with trigrams, which are lexicalized)

• Can we parse efficiently from a lattice with a lexicalized PCFG?

• Will a three-stage model work better?
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Prosody and parsing (NAACL’04)

S

INTJ

UH

Oh

,

,

NP

PRP

I

VP

VBD

loved

NP

PRP

it

.

.

• Selectively removing punctuation from the WSJ significantly decreases

parsing performance

• When parsing speech transcripts, would prosody enhance parsing

performance also?
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Prosody as punctuation

S

INTJ

UH

Uh

PROSODY

*R4*

NP

PRP

I

PROSODY

*R4*

VP

VBP

do

RB

nt

VP

VB

live

PP

IN

in

NP

DT

a

PROSODY

*R3*S2*

NN

house

PROSODY

*S4*

• Extract prosodic features from acoustic signal (Ferrer 02)

• Use a forced aligner to align Switchboard transcript with acoustic signal

• Extract prosodic features from acoustic signal and associate them with

a word in transcript

• Bin prosodic features, and attach them in syntactic tree much as

punctuation is
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Prosodic features we tried

PAU DUR N: pause duration normalized by the speaker’s mean

sentence-internal pause duration,

NORM LAST RHYME DUR: duration of the phone minus the mean

phone duration normalized by the standard deviation of the phone

duration for each phone in the rhyme,

FOK WRD DIFF MNMN NG: log of the mean f0 of the current word,

divided by the log mean f0 of the following word, normalized by the

speakers mean range,

FOK LR MEAN KBASELN: log of the mean f0 of the word normalized

by speaker’s baseline, and

SLOPE MEAN DIFF N: difference in the f0 slope normalized by the

speaker’s mean f0 slope.
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Binning the prosodic features

• Modern statistic parsers take categorical input, our prosodic features

are continuous

• We experimented with many ways of binning the prosodic feature

values:

– construct a histogram for all features used

– divide feature values into 2/5/10 equal sized bins

– only introduce pseudo-punctuation for the most extreme 40% of

bins

– conjoin binned features

• When all features are used:

– 89 distinct types of pseudo-punctuation symbols

– 54% of words are followed by pseudo-punctuation
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Prosody as punctuation

S

INTJ

UH

Uh

*R4*

*R4*

NP

PRP

I

*R4*

*R4*

VP

VBP

do

RB

nt

VP

VB

live

PP

IN

in

NP

DT

a

*R3*S2*

*R3*S2*

NN

house

*S4*

*S4*

• Different types of punctuation have different POS tags in WSJ

• POS tags and lexical items are used in different ways in Charniak

parsing model

⇒ Also evaluate with “raised” prosodic features
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Prosodic parsing results

Annotation unraised raised

punctuation 88.212

none 86.891

l 85.632 85.361

np 86.633 86.633

p 86.754 86.594

r 86.407 86.288

s 86.424 85.75

w 86.031 85.681

p r 86.405 86.282

p w 86.175 85.713

p s 86.328 85.922

p r s 85.64 84.832

• Punctuation improves parsing accu-

racy

• All combinations of prosodic features

decrease parsing accuracy

• The more features we used, the more

accuracy decreased
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Discussion

• Wrong features? Wrong model? (But why does the “wrong model”

work so well with punctuation?)

• Why did performance go down?

– Charniak parser backs off to a bigram model

– Prosodic punctuation pushes preceding word out of window

– A manually identified word is probably more useful than an

automatically extracted prosodic feature

• Punctuation is annotated by humans (who presumably understood each

sentence)

• Prosody was annotated by machine (which presumably did not

understand)

• Prosody may prove more useful when parsing from speech lattices
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A TAG-based noisy channel model of speech

repairs

• Goal: Apply parsing technology and “deeper” linguistic analysis to

(transcribed) speech

• Identifying and correcting speech errors

– Types of speech errors

– Speech repairs and “rough copies”

– Noisy channel model
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Speech errors in (transcribed) speech

• Filled pauses

I think it’s, uh, refreshing to see the, uh, support . . .

• Frequent use of parentheticals

But, you know, I was reading the other day . . .

• Speech repairs

Why didn’t he, why didn’t she stay at home?

• Ungrammatical constructions

Bear, Dowding and Schriberg (1992), Charniak and Johnson (2001), Heeman and Allen

(1997, 1999), Nakatani and Hirschberg (1994), Stolcke and Schriberg (1996)
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Special treatment of speech repairs

• Filled pauses are easy to recognize (in transcripts)

• Parentheticals appear in WSJ, and current parsers identify them fairly

well

• Filled pauses and parentheticals are useful for identifying constituent

boundaries (just as punctuation is)

– Charniak’s parser performs slightly better with parentheticals and

filled pauses than with them removed

• Ungrammatical constructions aren’t necessarily fatal

– Statistical parsers learn mapping of sentences to parses in training

corpus

• . . . but speech repairs warrant special treatment, since Charniak’s

parser doesn’t recognize them . . .
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Representation of repairs in Switchboard

treebank

ROOT

S

CC

and

EDITED

S

NP

PRP

you

VP

VBP

get

,

,

NP

PRP

you

VP

MD

can

VP

VB

get

NP

DT

a

NN

system

• Speech repairs are indicated by EDITED nodes in corpus
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Speech repairs and interpretation

• Speech repairs are indicated by EDITED nodes in corpus

• The unadorned parser does not posit any EDITED nodes even though

the training corpus contains them

– Parser is based on context-free headed trees and head-to-argument

dependencies

– Repairs involve context-sensitive “rough copy” dependencies that

cross constituent boundaries

Why didn’t he, uh, why didn’t she stay at home?

• The interpretation of a sentence with a speech repair is (usually) the

same as with the repair excised

⇒ Identify and remove EDITED words (Charniak and Johnson, 2001)

23



Parser architecture

Speech transcripts

Identify and remove EDITed words

Insert EDITed words

Parse

Parsed speech transcripts

Parser evaluation
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The noisy channel model

Bigram/Parsing LM
Source model P(X)

Source signal x
a flight to Denver on Friday

Noisy channel P(U |X)
TAG transducer

Noisy signal u
a flight to Boston uh I mean to Denver on Friday

P(x|u) =
P(u|x)P(x)

P(u)
(Bayes Rule)

argmax
x

P(x|u) = argmax
x

P(u|x)P(x)
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The structure of a repair

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• The Interregnum is usually lexically (and prosodically marked), but

can be empty

• The Repair is often “roughly” a copy of the Reparandum

– Finite state and context free grammars cannot generate ww “copy

languages” but Tree Adjoining Grammars can

– Repairs are typically short

– Repairs are not always copies

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”
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“Helical structure” of speech repairs

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

Imean uh

a flight to Boston

to Denver on Friday

• Language model generates repaired string

• TAG transducer generates reparandum from repair

• Interregnum is generated by specialized finite state grammar in TAG

transducer

Joshi (2002), ACL Lifetime achievement award talk
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TAG transducer models speech repairs

Imean uh

a flight to Boston

to Denver on Friday

• Source (bigram) language model: a flight to Denver on Friday

• TAG generates string of u:x pairs, where u is a speech stream word and

x is either ∅ or a source word:

a:a flight:flight to:∅ Boston:∅ uh:∅ I:∅ mean:∅ to:to Denver:Denver

on:on Friday:Friday

– TAG does not reflect grammatical structure (but LM can)

– right branching finite state model of non-repairs and interregnum

– adjunction used to describe copy dependencies in repair
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Sample TAG derivation (simplified)

(I want) a flight to Boston uh I mean a flight to Denver on Friday . . .

Start state: Nwant ↓

TAG rule:
Nwant

a:a Na ↓

, resulting structure:
Nwant

a:a Na ↓

TAG rule:
Na

flight:flight Rflight:flight

I↓

, resulting structure:

Nwant

a:a Na

flight:flight Rflight:flight

I↓
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Sample TAG derivation (cont)

(I want) a flight to Boston uh I mean to Denver on Friday . . .

Nwant

a:a Na

flight:flight Rflight:flight

I↓

Rflight:flight

to:∅ Rto:to

R?

flight:flight to:to

Nwant

a:a Na

flight:flight Rflight,flight

to:∅ Rto:to

Rflight:flight

I↓

to:to

previous structure TAG rule resulting structure
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(I want) a flight to Boston uh I mean to Denver on Friday . . .

Nwant

a:a Na

flight:flight Rflight,flight

to:∅ Rto:to

Rflight:flight

I↓

to:to

previous structure

Rto:to

Boston:∅ RBoston:Denver

R?

to:to Denver:Denver

TAG rule

Nwant

a:a Na

flight:flight Rflight:flight

to:∅ Rto,to

Boston:∅ RBoston,Denver

Rto,to

Rflight,flight

I↓

to:to

Denver:Denver

resulting structure
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(I want) a flight to Boston uh I mean to Denver on Friday . . .

RBoston:Denver

R?

Boston:Denver NDenver ↓

TAG rule

Nwant

a:a Na

flight:flight Rflight:flight

to:∅ Rto:to

Boston:∅ RBoston:Denver

RBoston:Denver

Rto:to

Rflight:flight

I↓

to:to

Denver:Denver

NDenver ↓

resulting structure
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Nwant

a:a Na

flight:flight Rflight:flight

to:∅ Rto:to

Boston:∅ RBoston:Denver

RBoston:Denver

Rto:to

Rflight:flight

I

uh:∅ I

I:∅ mean:∅

to:to

Denver:Denver

NDenver

on:on Non

Friday:Friday NFriday

. . .
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Disfluencies in Switchboard

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• Penn Switchboard corpus annotates reparandum, interregnum and

repair

• Trained on the disfluency and POS tagged Switchboard files

sw[23]*.dps (1.3M words)

• Tested on Switchboard files sw4[5-9]*.dps (65K words)

• Punctuation and partial words ignored

• 5.4% of words are in a reparandum

• 31K repairs, average repair length 1.6 words

• Number of training words: reparandum 50K (3.8%), interregnum 10K

(0.8%), repair 53K (4%), unclassified 24K (1.8%)
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Training data for the model

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• Minimum edit distance aligner used to align reparandum and repair

words

– Prefers identity, POS identity, similar POS alignments

• Of the 57K alignments in the training data:

– 35K (62%) are identities

– 7K (12%) are insertions

– 9K (16%) are deletions

– 5.6K (10%) are substitutions

∗ 2.9K (5%) are substitutions with same POS

∗ 148 of the 352 substitutions (42%) in heldout data were not seen

in training
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Estimating the model from data

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

Pn(repair|flight) The probability of a repair beginning after flight

P(m|Boston,Denver), where m ∈ {copy, substitute, insert, delete, nonrepair}:

The probability of repair type m when the last reparandum word was

Boston and the last repair word was Denver

Pw(tomorrow|Boston,Denver) The probability that the next reparandum

word is tomorrow when the last reparandum word was Boston and last

repair word was Denver
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The TAG rules and their probabilities

P






Nwant

a:a Na ↓




 = (1 − Pn(repair|a))

P










Na

flight:flight Rflight:flight

I↓










= Pn(repair|flight)

• These rules are just the TAG formulation of a HMM.
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The TAG rules and their probabilities (cont.)

P










Rflight:flight

to:∅ Rto:to

R?

flight:flight to:to










= Pr(copy|flight,flight)

P










Rto:to

Boston:∅ RBoston:Denver

R?

to:to Denver:Denver










= Pr(substitute|to, to)

Pw(Boston|to, to)

• Copies generally have higher probability than substitutions
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The TAG rules and their probabilities (cont.)

P










RBoston,Denver

tomorrow:∅ Rtomorrow,Denver

R?

Boston,Denver










= Pr(insert|Boston,Denver)

Pw(tomorrow|Boston,Denver)

P










RBoston,Denver

RBoston,tomorrow

R?

Boston,Denver tomorrow:tomorrow










= Pr(delete|Boston,Denver)

P






RBoston:Denver

R?

Boston:Denver NDenver ↓




 = Pr(nonrepair|Boston,Denver)
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Decoding speech repairs

• We could find the most likely analysis of a sentence

• or alternatively:

1. compute the probability that each triple of adjacent substrings can

be analysed as a reparandum/interregnum/repair

2. divide by the probability that the substrings do not contain a repair

3. if the odds is greater than a fixed threshold, declare that there is a

repair

• Advantages of the more complex approach:

– Doesn’t require parsing the whole sentence (rather, only look for

repairs up to some maximum size)

– Adjusting the odds threshold trades precision for recall

– Handles overlapping repairs (where the repair is itself repaired)

[ [What did + what does he ] + what does she ] want?
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Empirical results

• Training and testing data has partial words and punctuation removed

• CJ01′ is the Charniak and Johnson 2001 word-by-word classifier

trained on new training and testing data

CJ01′ Bigram Trigram Parser

Precision 0.951 0.776 0.774 0.820

Recall 0.631 0.736 0.763 0.778

F-score 0.759 0.756 0.768 0.797
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Conclusion and future work

• There are lots of interesting ways of combining speech and parsing

• Some of them don’t work better than existing techniques (yet)

• Syntactic parsers make very good language models

• (Discriminative models might also be a good thing to try).
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