
Parsing and Speech Research
at Brown University

Mark Johnson

Brown University

The University of Tokyo, March 2004

Joint work with Eugene Charniak, Michelle Gregory and Keith Hall

Supported by NSF grants LIS 9720368 and IIS0095940

1

Talk outline

• Language models for speech recognition

– Dynamic programming for language modeling

• Prosody and parsing

• Disfluencies and parsing

– Do disfluencies help parsing?

– Recognizing and correcting speech repairs

• Conclusions and future work

2

Applications of (statistical) parsers

Two different ways of using statistical parsers:

1. Applications that use syntactic parse trees

• information extraction

• (short answer) question answering

• summarization

• machine translation

2. Applications that use the probability distribution over strings or trees

(parser-based language models)

• speech recognition and related applications

• machine translation

3

Language modeling with parsers

The noisy channel model consists of two parts:

The language model: P(x), where x is a sentence

The acoustic model: P(y|x), where y is the acoustic signal

P(x|y) =
P(y|x)P(x)

P(y)
(Bayes Rule)

x?(y) = argmax
x

P(x|y) = argmax
x

P(y|x)P(x)

Syntactic parsing models now provide state-of-the-art performance in

language modeling P(x) (Chelba, Roark, Charniak).

4

Parsing vs language modeling

• A language model models the marginal distribution P(X) over strings

X

• A parser models the conditional distribution P(Y |X) of parses Y given

a string X

• Different kinds of features seem to be useful for these tasks (Charniak

01)

– Tri-head features (the syntactic analog of trigrams) are useful for

language modeling, but not for parsing

– EM(-like) training on unparsed data helps language modeling, but

not parsing

5

n-best list approaches

the

duh

man

man’s

is
early

surely

1. the man is early

2. duh man is early

3. the man’s early

4. the man is surely

. . .

• Roark (p.c.) reports WER improvements with 1,000-best lists

• Can we improve search efficiency and WER by parsing from the

lattice? (Chelba, Roark)

6

Lattices and Charts (IEEE ASRU ’03)

the

duh

man

man’s

is
early

surely

NP
VP

S

• Lattices and charts are the same dynamic programming data structure

• Best-first chart parsing works well on strings

• Can we adapt best-first coarse-to-fine chart-parsing techniques to

lattices?

7

Coarse to fine architecture

Acoustic lattice

PCFG parser

Charniak parser

Parses

Local trees

• Use a “coarse-grained” analysis to identify where a “fine-grained”

analysis should be applied

8

Coarse to fine parsing

• Parsing with the full “fine-grained” grammar is slow and takes a lot of

memory (Charniak 2001 parser)

• Use a “coarse-grained” grammar to indicate location of likely

constituents (PCFG)

• Fine-grained grammar splits each coarse constituent into many fine

constituents

• Works well for string parsing:

– Posits ≈ 100 edges to first parse

– A very good parse is included in 10× overparsing

• Will it work on speech lattices?

9

Coarse to fine on speech lattices

• PCFG and Charniak Language Model WER:

WER

trigram (40million words) 13.7

Roark01 (n-best list) 12.7

Chelba02 12.3

Charniak (n-best list) 11.8

100x overparsing on n-best lattices 12.0

100x overparsing on acoustic lattices 13.0

10

Summary and current work

• The coarse-grained model doesn’t seem to include enough good parts of

the lattice

• If we open the beam further, the fine-grained model runs out of memory

• Current difficulties probably stem from defective nature of

coarse-grained PCFG model

⇒ improve coarse-grained model

⇒ lexicalization will probably be necessary

(we are competing with trigrams, which are lexicalized)

• Can we parse efficiently from a lattice with a lexicalized PCFG?

• Will a three-stage model work better?

11

Prosody and parsing (NAACL’04)

S

INTJ

UH

Oh

,

,

NP

PRP

I

VP

VBD

loved

NP

PRP

it

.

.

• Selectively removing punctuation from the WSJ significantly decreases

parsing performance

• When parsing speech transcripts, would prosody enhance parsing

performance also?

12

Prosody as punctuation

S

INTJ

UH

Uh

PROSODY

R4

NP

PRP

I

PROSODY

R4

VP

VBP

do

RB

nt

VP

VB

live

PP

IN

in

NP

DT

a

PROSODY

*R3*S2*

NN

house

PROSODY

S4

• Extract prosodic features from acoustic signal (Ferrer 02)

• Use a forced aligner to align Switchboard transcript with acoustic signal

• Extract prosodic features from acoustic signal and associate them with

a word in transcript

• Bin prosodic features, and attach them in syntactic tree much as

punctuation is
13

Prosodic features we tried

PAU DUR N: pause duration normalized by the speaker’s mean

sentence-internal pause duration,

NORM LAST RHYME DUR: duration of the phone minus the mean

phone duration normalized by the standard deviation of the phone

duration for each phone in the rhyme,

FOK WRD DIFF MNMN NG: log of the mean f0 of the current word,

divided by the log mean f0 of the following word, normalized by the

speakers mean range,

FOK LR MEAN KBASELN: log of the mean f0 of the word normalized

by speaker’s baseline, and

SLOPE MEAN DIFF N: difference in the f0 slope normalized by the

speaker’s mean f0 slope.

14

Binning the prosodic features

• Modern statistic parsers take categorical input, our prosodic features

are continuous

• We experimented with many ways of binning the prosodic feature

values:

– construct a histogram for all features used

– divide feature values into 2/5/10 equal sized bins

– only introduce pseudo-punctuation for the most extreme 40% of

bins

– conjoin binned features

• When all features are used:

– 89 distinct types of pseudo-punctuation symbols

– 54% of words are followed by pseudo-punctuation

15

Prosody as punctuation

S

INTJ

UH

Uh

R4

R4

NP

PRP

I

R4

R4

VP

VBP

do

RB

nt

VP

VB

live

PP

IN

in

NP

DT

a

*R3*S2*

*R3*S2*

NN

house

S4

S4

• Different types of punctuation have different POS tags in WSJ

• POS tags and lexical items are used in different ways in Charniak

parsing model

⇒ Also evaluate with “raised” prosodic features

16

Prosodic parsing results

Annotation unraised raised

punctuation 88.212

none 86.891

l 85.632 85.361

np 86.633 86.633

p 86.754 86.594

r 86.407 86.288

s 86.424 85.75

w 86.031 85.681

p r 86.405 86.282

p w 86.175 85.713

p s 86.328 85.922

p r s 85.64 84.832

• Punctuation improves parsing accu-

racy

• All combinations of prosodic features

decrease parsing accuracy

• The more features we used, the more

accuracy decreased

17

Discussion

• Wrong features? Wrong model? (But why does the “wrong model”

work so well with punctuation?)

• Why did performance go down?

– Charniak parser backs off to a bigram model

– Prosodic punctuation pushes preceding word out of window

– A manually identified word is probably more useful than an

automatically extracted prosodic feature

• Punctuation is annotated by humans (who presumably understood each

sentence)

• Prosody was annotated by machine (which presumably did not

understand)

• Prosody may prove more useful when parsing from speech lattices

18

A TAG-based noisy channel model of speech

repairs

• Goal: Apply parsing technology and “deeper” linguistic analysis to

(transcribed) speech

• Identifying and correcting speech errors

– Types of speech errors

– Speech repairs and “rough copies”

– Noisy channel model

19

Speech errors in (transcribed) speech

• Filled pauses

I think it’s, uh, refreshing to see the, uh, support . . .

• Frequent use of parentheticals

But, you know, I was reading the other day . . .

• Speech repairs

Why didn’t he, why didn’t she stay at home?

• Ungrammatical constructions

Bear, Dowding and Schriberg (1992), Charniak and Johnson (2001), Heeman and Allen

(1997, 1999), Nakatani and Hirschberg (1994), Stolcke and Schriberg (1996)

20

Special treatment of speech repairs

• Filled pauses are easy to recognize (in transcripts)

• Parentheticals appear in WSJ, and current parsers identify them fairly

well

• Filled pauses and parentheticals are useful for identifying constituent

boundaries (just as punctuation is)

– Charniak’s parser performs slightly better with parentheticals and

filled pauses than with them removed

• Ungrammatical constructions aren’t necessarily fatal

– Statistical parsers learn mapping of sentences to parses in training

corpus

• . . . but speech repairs warrant special treatment, since Charniak’s

parser doesn’t recognize them . . .

21

Representation of repairs in Switchboard

treebank

ROOT

S

CC

and

EDITED

S

NP

PRP

you

VP

VBP

get

,

,

NP

PRP

you

VP

MD

can

VP

VB

get

NP

DT

a

NN

system

• Speech repairs are indicated by EDITED nodes in corpus

22

Speech repairs and interpretation

• Speech repairs are indicated by EDITED nodes in corpus

• The unadorned parser does not posit any EDITED nodes even though

the training corpus contains them

– Parser is based on context-free headed trees and head-to-argument

dependencies

– Repairs involve context-sensitive “rough copy” dependencies that

cross constituent boundaries

Why didn’t he, uh, why didn’t she stay at home?

• The interpretation of a sentence with a speech repair is (usually) the

same as with the repair excised

⇒ Identify and remove EDITED words (Charniak and Johnson, 2001)

23

Parser architecture

Speech transcripts

Identify and remove EDITed words

Insert EDITed words

Parse

Parsed speech transcripts

Parser evaluation

24

The noisy channel model

Bigram/Parsing LM
Source model P(X)

Source signal x
a flight to Denver on Friday

Noisy channel P(U |X)
TAG transducer

Noisy signal u
a flight to Boston uh I mean to Denver on Friday

P(x|u) =
P(u|x)P(x)

P(u)
(Bayes Rule)

argmax
x

P(x|u) = argmax
x

P(u|x)P(x)

25

The structure of a repair

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• The Interregnum is usually lexically (and prosodically marked), but

can be empty

• The Repair is often “roughly” a copy of the Reparandum

– Finite state and context free grammars cannot generate ww “copy

languages” but Tree Adjoining Grammars can

– Repairs are typically short

– Repairs are not always copies

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”

26

“Helical structure” of speech repairs

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

Imean uh

a flight to Boston

to Denver on Friday

• Language model generates repaired string

• TAG transducer generates reparandum from repair

• Interregnum is generated by specialized finite state grammar in TAG

transducer

Joshi (2002), ACL Lifetime achievement award talk

27

TAG transducer models speech repairs

Imean uh

a flight to Boston

to Denver on Friday

• Source (bigram) language model: a flight to Denver on Friday

• TAG generates string of u:x pairs, where u is a speech stream word and

x is either ∅ or a source word:

a:a flight:flight to:∅ Boston:∅ uh:∅ I:∅ mean:∅ to:to Denver:Denver

on:on Friday:Friday

– TAG does not reflect grammatical structure (but LM can)

– right branching finite state model of non-repairs and interregnum

– adjunction used to describe copy dependencies in repair

28

Sample TAG derivation (simplified)

(I want) a flight to Boston uh I mean a flight to Denver on Friday . . .

Start state: Nwant ↓

TAG rule:
Nwant

a:a Na ↓

, resulting structure:
Nwant

a:a Na ↓

TAG rule:
Na

flight:flight Rflight:flight

I↓

, resulting structure:

Nwant

a:a Na

flight:flight Rflight:flight

I↓

29

Sample TAG derivation (cont)

(I want) a flight to Boston uh I mean to Denver on Friday . . .

Nwant

a:a Na

flight:flight Rflight:flight

I↓

Rflight:flight

to:∅ Rto:to

R?

flight:flight to:to

Nwant

a:a Na

flight:flight Rflight,flight

to:∅ Rto:to

Rflight:flight

I↓

to:to

previous structure TAG rule resulting structure

30

(I want) a flight to Boston uh I mean to Denver on Friday . . .

Nwant

a:a Na

flight:flight Rflight,flight

to:∅ Rto:to

Rflight:flight

I↓

to:to

previous structure

Rto:to

Boston:∅ RBoston:Denver

R?

to:to Denver:Denver

TAG rule

Nwant

a:a Na

flight:flight Rflight:flight

to:∅ Rto,to

Boston:∅ RBoston,Denver

Rto,to

Rflight,flight

I↓

to:to

Denver:Denver

resulting structure
31

(I want) a flight to Boston uh I mean to Denver on Friday . . .

RBoston:Denver

R?

Boston:Denver NDenver ↓

TAG rule

Nwant

a:a Na

flight:flight Rflight:flight

to:∅ Rto:to

Boston:∅ RBoston:Denver

RBoston:Denver

Rto:to

Rflight:flight

I↓

to:to

Denver:Denver

NDenver ↓

resulting structure
32

Nwant

a:a Na

flight:flight Rflight:flight

to:∅ Rto:to

Boston:∅ RBoston:Denver

RBoston:Denver

Rto:to

Rflight:flight

I

uh:∅ I

I:∅ mean:∅

to:to

Denver:Denver

NDenver

on:on Non

Friday:Friday NFriday

. . .

33

Disfluencies in Switchboard

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• Penn Switchboard corpus annotates reparandum, interregnum and

repair

• Trained on the disfluency and POS tagged Switchboard files

sw[23]*.dps (1.3M words)

• Tested on Switchboard files sw4[5-9]*.dps (65K words)

• Punctuation and partial words ignored

• 5.4% of words are in a reparandum

• 31K repairs, average repair length 1.6 words

• Number of training words: reparandum 50K (3.8%), interregnum 10K

(0.8%), repair 53K (4%), unclassified 24K (1.8%)
34

Training data for the model

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• Minimum edit distance aligner used to align reparandum and repair

words

– Prefers identity, POS identity, similar POS alignments

• Of the 57K alignments in the training data:

– 35K (62%) are identities

– 7K (12%) are insertions

– 9K (16%) are deletions

– 5.6K (10%) are substitutions

∗ 2.9K (5%) are substitutions with same POS

∗ 148 of the 352 substitutions (42%) in heldout data were not seen

in training
35

Estimating the model from data

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

Pn(repair|flight) The probability of a repair beginning after flight

P(m|Boston,Denver), where m ∈ {copy, substitute, insert, delete, nonrepair}:

The probability of repair type m when the last reparandum word was

Boston and the last repair word was Denver

Pw(tomorrow|Boston,Denver) The probability that the next reparandum

word is tomorrow when the last reparandum word was Boston and last

repair word was Denver

36

The TAG rules and their probabilities

P






Nwant

a:a Na ↓




 = (1 − Pn(repair|a))

P










Na

flight:flight Rflight:flight

I↓










= Pn(repair|flight)

• These rules are just the TAG formulation of a HMM.

37

The TAG rules and their probabilities (cont.)

P










Rflight:flight

to:∅ Rto:to

R?

flight:flight to:to










= Pr(copy|flight,flight)

P










Rto:to

Boston:∅ RBoston:Denver

R?

to:to Denver:Denver










= Pr(substitute|to, to)

Pw(Boston|to, to)

• Copies generally have higher probability than substitutions

38

The TAG rules and their probabilities (cont.)

P










RBoston,Denver

tomorrow:∅ Rtomorrow,Denver

R?

Boston,Denver










= Pr(insert|Boston,Denver)

Pw(tomorrow|Boston,Denver)

P










RBoston,Denver

RBoston,tomorrow

R?

Boston,Denver tomorrow:tomorrow










= Pr(delete|Boston,Denver)

P






RBoston:Denver

R?

Boston:Denver NDenver ↓




 = Pr(nonrepair|Boston,Denver)

39

Decoding speech repairs

• We could find the most likely analysis of a sentence

• or alternatively:

1. compute the probability that each triple of adjacent substrings can

be analysed as a reparandum/interregnum/repair

2. divide by the probability that the substrings do not contain a repair

3. if the odds is greater than a fixed threshold, declare that there is a

repair

• Advantages of the more complex approach:

– Doesn’t require parsing the whole sentence (rather, only look for

repairs up to some maximum size)

– Adjusting the odds threshold trades precision for recall

– Handles overlapping repairs (where the repair is itself repaired)

[[What did + what does he] + what does she] want?

40

Empirical results

• Training and testing data has partial words and punctuation removed

• CJ01′ is the Charniak and Johnson 2001 word-by-word classifier

trained on new training and testing data

CJ01′ Bigram Trigram Parser

Precision 0.951 0.776 0.774 0.820

Recall 0.631 0.736 0.763 0.778

F-score 0.759 0.756 0.768 0.797

41

Conclusion and future work

• There are lots of interesting ways of combining speech and parsing

• Some of them don’t work better than existing techniques (yet)

• Syntactic parsers make very good language models

• (Discriminative models might also be a good thing to try).

42

