
Discriminative approaches to
Statistical Parsing

Mark Johnson

Brown University

University of Tokyo, 2004

Joint work with Eugene Charniak (Brown) and Michael Collins (MIT)

Supported by NSF grants LIS 9720368 and IIS0095940

1

Talk outline

• A typology of approaches to parsing

• Applications of parsers

• Representations and features of statistical parsers

• Estimation (training) of statistical parsers

– maximum likelihood (generative) estimation

– maximum conditional likelihood (discriminative) estimation

• Experiments with a discriminatively trained reranking parser

• Advantages and disadvantages of generative and discriminative

training

• Conclusions and future work

2

Grammars and parsing

• A (formal) language is a set of strings

– For most practical purposes, human languages are infinite

sets of strings

– In general we are interested in the mapping from surface

form to meaning

• A grammar is a finite description of a language

– Usually assigns each string in a language a description (e.g.,

parse tree, semantic representation)

• Parsing is the process of characterizing (recovering) the

descriptions of a string

• Most grammars of human languages are either manually

constructed or extracted automatically from an annotated corpus

– Linguistic expertise is necessary for both!
3

Manually constructed grammars

Examples: Lexical-functional grammar (LFG), Head-driven

phrase-structure grammar (HPSG), Tree-adjoining grammar (TAG)

• Linguistically inspired

– Deals with linguistically interesting phenomena

– Ignores boring (or difficult!) but frequent constructions

– Often explicitly models the form-meaning mapping

• Each theory usually has its own kind of representation

⇒ Difficult to compare different approaches

• Constructing broad-coverage grammars is hard and unrewarding

• Probability distributions can be defined over their

representations

• Often involve long-distance constraints

⇒ Computationally expensive and difficult
4

TURN

SEGMENT

ROOT

Sadj

S

VPv

V

let

NP

PRON

us

VPv

V

take

NP

DATEP

N

Tuesday

COMMA

,

DATEnum

D

the

NUMBER

fifteenth

PERIOD

.

SENTENCE ID BAC002 E

OBJ

9

ANIM +
CASE ACC
NUM PL
PERS 1
PRED PRO
PRON-FORM WE
PRON-TYPE PERS

PASSIVE−
PRED LET〈2,10〉9
STMT-TYPE IMPERATIVE

SUBJ

2

PERS 2
PRED PRO
PRON-TYPE NULL

TNS-ASP MOOD IMPERATIVE

XCOMP

10

OBJ

13

ANIM−

APP

NTYPE NUMBER ORD
TIME DATE

NUM SG
PRED fifteen

SPEC SPEC-FORM THE
SPEC-TYPE DEF

CASE ACC
GEND NEUT

NTYPE
GRAIN COUNT
PROPER DATE
TIME DAY

NUM SG
PERS 3
PRED TUESDAY

PASSIVE−
PRED TAKE〈9,13〉
SUBJ 9

5

Corpus-derived grammars

• Grammar is extracted automatically from a large linguistically

annotated corpus

– Focuses on frequently occuring constructions

– Only models phenomena that can be (easily) annotated

– Typically ignores semantics and most of the rich details of

linguistic theories

• Different models extracted from the same corpus can usually be

compared

• Constructing corpora is hard, unrewarding work

• Generative models usually only involve local constraints

– Dynamic programming possible, but usually involves

heuristic search

6

Sample Penn treebank tree

ROOT

S

NP-SBJ

NNP

BELL

NNP

INDUSTRIES

NNP

Inc.

VP

VBD

increased

NP

PRP$

its

NN

quarterly

PP-DIR

TO

to

NP

CD

10

NNS

cents

PP-DIR

IN

from

NP

NP

CD

seven

NNS

cents

NP-ADV

DT

a

NN

share

.

.

7

Applications of (statistical) parsers

1. Applications that use syntactic parse trees

• information extraction

• (short answer) question answering

• summarization

• machine translation

2. Applications that use the probability distribution over strings or

trees (parser-based language models)

• speech recognition and related applications

• machine translation

8

PCFG representations and features

George

NNP

NP

S

VP

VB

eats

pizza quickly

RBNN

NP ADVP

0.14: VP → VB NP ADVP

• Probabilistic context-free grammars (PCFGs) associate a rule

probability p(r) with each rule ⇒ features are local trees

• Probability of a tree y is P(y) =
∏

r∈y p(r) =
∏

r p(r)fr(y) where

fr(y) is the number of times r appears in y

• Probability of a string x is P(x) =
∑

y∈Y(x) P(y)

9

Lexicalized PCFGs

the

the

DT

torpedo

NP

NN
torpedo

torpedo sank

sank

VB

sank

VP

sank

S

NP
boat

DT
the

the

NN
boat

boat

0.02: VP
sank → VB

sank
NP
boat

• Head annotation captures subcategorization and head-to-head

dependencies

• Sparse data is a serious problem: smoothing is essential!

10

Modern (generative) statistical parsers

DT:the

DT

the torpedo

NN:torpedo

NN

NN:torpedo

NP

VB:sank

S

VP
VB:sank

VB
VB:sank

sank

NP
NN:boat

DT
DT:the

the

NN
NN:boat

boat

• Generates a tree via a very large number of small steps

(generates NP, then NN, then boat)

• Each step in this branching process conditions on a large number

of (already generated) variables

• Sparse data is the major problem: smoothing is essential!
11

Estimating PCFGs from visible data

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → corn 1 1/3

VP → grows 3 1

P




S

NP VP

rice grows




= 2/3

P




S

NP VP

corn grows




= 1/3

12

Why is the PCFG MLE so easy to compute?

yi

Y

• Visible training data D = (y1, . . . , yn), where yi is a parse tree

• The MLE is p̂ = argmaxp

∏n
i=1 Pp(yi)

• It is easy to compute because PCFGs are always normalized,

i.e., Z =
∑

y∈Y

∏
r p(r)fr(y) = 1,

where Y is the set of all trees generated by the grammar

13

Non-local constraints and the PCFG MLE

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3

VP → grow 1 1/3

P




S

NP VP

rice grows


 = 4/9

P




S

NP VP

bananas grow


 = 1/9

Z = 5/9

14

Renormalization

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3

VP → grow 1 1/3

P




S

NP VP

rice grows


 = 4/9 4/5

P




S

NP VP

bananas grow


 = 1/9 1/5

Z = 5/9

15

Other values do better!

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 1/2

VP → grow 1 1/2

(Abney 1997)

P




S

NP VP

rice grows


 = 2/6 2/3

P




S

NP VP

bananas grow


 = 1/6 1/3

Z = 3/6

16

Make dependencies local – GPSG-style

rule count rel freq

S → NP
+singular

VP
+singular

2 2/3

S → NP
+plural

VP
+plural

1 1/3

NP
+singular

→ rice 2 1

NP
+plural

→ bananas 1 1

VP
+singular

→ grows 2 1

VP
+plural

→ grow 1 1

P




S

NP
+singular

rice

VP
+singular

grows




= 2/3

P




S

NP
+plural

bananas

VP
+plural

grow




= 1/3

17

Maximum entropy or log linear models

• Y = set of syntactic structures (not necessarily trees)

• fj(y) = number of occurences of jth feature in y ∈ Y

(these features need not be conventional linguistic features)

• wj are “feature weight” parameters

Sw(y) =
m∑

j=1

wjfj(y)

Vw(y) = expSw(y)

Zw =
∑

y∈Y

Vw(y)

Pw(y) =
Vw(y)

Zw

=
1

Zw

exp
m∑

j=1

wjfj(y)

log Pλ(y) =
m∑

j=1

wjfj(y) − log Zw

18

PCFGs are log-linear models

Y = set of all trees generated by grammar G

fj(y) = number of times the jth rule is used in y ∈ Y

p(rj) = probability of jth rule in G

Choose wj = log p(rj), so p(rj) = expwj

f




S

NP VP

rice grows




= [1︸︷︷︸
S→NP VP

, 1︸︷︷︸
NP→rice

, 0︸︷︷︸
NP→bananas

, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

Pw(y) =
m∏

j=1

p(rj)
fj(y) =

m∏

j=1

(expwj)
fj(y) = exp(

m∑

j=1

wjfj(ω))

So a PCFG is just a log linear model with Z = 1.
19

Max likelihood estimation of log linear models

Visible training data D = (y1, . . . , yn), where yi ∈ Y is a tree

yi
Y

ŵ = argmax
w

LD(w),where

log LD(w) =
n∑

i=1

log Pw(yi) =
n∑

i=1

(Sw(yi) − log Zw)

• In general no closed form solution ⇒ optimize log LD(w)

numerically.

• Calculating Zw involves summing over all parses of all strings

⇒ computationally intractible (Abney suggests Monte Carlo)
20

Summary so far

All dependencies are local or context-free:

• if features have “context free” branching structure (i.e.,

rules) then partition function Z can be calculated analytically

⇒ MLE has a simple analytic form (relative frequency)

Structures exhibit non-local constraints:

• with non-local constraints, MLE is in general not relative

frequency

• Usually no analytic form for Z

⇒ no analytic solution for the MLE

⇒ no reason to only use local tree rule features

(i.e., the fj(y) can be any easily computable function of y)

• If it is necessary to enumerate Y to calculate Z then MLE is

infeasible
21

Conditional Likelihood and Discriminative

training

Given training data D = ((x1, y1), . . . , (xn, yn)) of strings xi and

corresponding parse yi:

• The PCFG MLE optimizes LD(w) = Pw(x1, y1) . . . Pw(xn, yn)

• The PCFG MLE is a generative model that models the

distribution of strings P(x) as well as trees given strings P(y|x)

• The conditional distribution P(y|x) is important for parsing, but

the marginal distribution P(x) is not

• Generative models “waste” some of their parameters to model

the marginal distribution P(x)

• Optimize conditional likelihood L′
D(w) = Pw(y1|x1) . . . Pw(yn|xn)

22

Generative vs discriminative training

95×

A

x 2×

A

a

b

A

1×

A

a b

95/100 2/100×2/100 1/100

Rule count rel freq rel freq

A → x 95 95/100 69/100

A → A b 2 2/100 1/10

A → a 2 2/100 2/10

A → a b 1 1/100 1/100

• When the PCFG independence assumptions are violated, the

MLE may not accurately model P(y|x)

23

Linguistic example of discriminative training

100×

VP

V

run 2×

VP

VP

V

see

NP

N

people

PP

P

with

NP

N

telescopes
1×

VP

V

see

NP

NP

N

people

PP

P

with

NP

N

telescopes

. . . × 2/105 × × 1/7 × . . .

. . . × 2/7 × × 1/7 × . . .

Rule count rel freq rel freq

VP → V 100 100/105 4/7

VP → V NP 3 3/105 1/7

VP → VP PP 2 2/105 2/7

NP → N 6 6/7 6/7

NP → NP PP 1 1/7 1/7

24

Conditional estimation for log linear models

The pseudo-likelihood of w is the conditional probability of the hidden

part (syntactic structure) w given its visible part (yield or terminal

string) x = X(y) (Besag 1974)

Y

yi

Y(xi) = {y : X(y) = X(yi)} ŵ = argmax
λ

PLD(w)

PLD(w) =
n∏

i=1

Pλ(yi|xi)

Pw(y|x) =
Vw(y)

Zw(x)

Vw(y) = exp
∑

j

wjfj(y) Zw(x) =
∑

y′∈Y(x)

Vw(y′)

25

Conditional ML estimation

• The pseudo-partition function Zw(x) is much easier to compute

than the partition function Zw

– Zw requires a sum over Y

– Zw(x) requires a sum over Y(x) (parses of x)

• Maximum likelihood estimates full joint distribution

– learns P(x) and P(y|x)

• Conditional ML estimates a conditional distribution

– learns P(y|x) but not P(x)

– conditional distribution is what you need for parsing

– cognitively more plausible?

• Conditional estimation requires labelled training data: no

obvious EM extension

26

Conditional estimation

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 3] [3, 1, 5] [2, 6, 3]

sentence 2 [7, 2, 1] [2, 5, 5]

sentence 3 [2, 4, 2] [1, 1, 7] [7, 2, 1]

.

• Training data is fully observed (i.e., parsed data)

• Choose w to maximize (log) likelihood of correct parses relative

to other parses

• Distribution of sentences is ignored

• Nothing is learnt from unambiguous examples

• Other kinds of discriminative learners can also train from this

data
27

Pseudo-constant features are uninformative

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 2] [3, 1, 2] [2, 6, 2]

sentence 2 [7, 2, 5] [2, 5, 5]

sentence 3 [2, 4, 4] [1, 1, 4] [7, 2, 4]

.

• Pseudo-constant features are identical within every set of parses

• They contribute the same constant factor to each parses’

likelihood

• They do not distinguish parses of any sentence ⇒ irrelevant

28

Pseudo-maximal features ⇒ unbounded ŵj

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3 , 2] [2, 3 , 4] [3, 1 , 1] [2, 1 , 1]

sentence 2 [2, 7 , 4] [3, 7 , 2]

sentence 3 [2, 4 , 4] [1, 1 , 1] [1, 2 , 4]

• A pseudo-maximal feature always reaches its maximum value

within a parse on the correct parse

• If fj is pseudo-maximal, ŵj → ∞ (hard constraint)

• If fj is pseudo-minimal, ŵj → −∞ (hard constraint)

29

Regularization

• fj is pseudo-maximal over training data 6⇒ fj is pseudo-maximal

over all Y (sparse data)

• With many more features than data, log-linear models can

over-fit

• Regularization: add bias term to ensure ŵ is finite and small

• In these experiments, the regularizer is a polynomial penalty

term

ŵ = argmax
w

log PLD(w) − c
m∑

j=1

|wj |
p

(p = 2 gives a Gaussian prior).

30

Conditional estimation of PCFGs

• MCLE involves maximizing a complex non-linear function

– conjugate gradient (iterative optimization)

– each iteration involves summing over all parses of each

training sentence

⇒ Use the small ATIS treebank corpus

– Trained on 1088 sentences of ATIS1 corpus

– Tested on 294 sentences of ATIS2 corpus

• MCLE estimator initialized with MLE probabilities

• (Added in 2003: I think there may be better ways to do the

conditional estimation)

31

Parser evaluation

• A node’s edge is its label and beginning and ending string positions

• E(y) is the set of edges associated with a tree y (same with forests)

• If y is a parse tree and ȳ is the correct tree, then

precision Pȳ(y) = |E(y)|/|E(y) ∩ E(ȳ)|

recall Rȳ(y) = |E(ȳ)|/|E(y) ∩ E(ȳ)|

f score Fȳ(y) = 2/(Pȳ(y)−1 + Rȳ(y)−1)

Edges

(0 NP 2)

(2 VP 3)

(0 S 3)

ROOT

S

NP

DT

the

N

dog

VP

VB

barks
30 1 2

32

Conditional and Joint ML PCFG evaluation

MLE MCLE

− log likelihood of training data 13857 13896

− log conditional likelihood of training data 1833 1769

− log marginal probability of training strings 12025 12127

Labelled precision of test data 0.815 0.817

Labelled recall of test data 0.789 0.794

• Precision/recall difference not significant (p ≈ 0.1)

33

Experiments in Discriminative Parsing

• Collins Model 3 parser pro-

duces a set of candidate parses

Y(x) for each sentence x

• The discriminative parser has

a weight wj for each feature fj

• The score for each parse is

S(x, y) = w · f(x, y)

• The highest scoring parse

ŷ = argmax
y∈Y(x)

S(x, y)

is predicted correct

sentence x

yk. . .

. . .f(x, y1) f(x, yk)

w · f(x, y1) w · f(x, yk). . .

Collins model 3

parses Y(x)y1

features

scores S(x, y)

34

Training the discriminative parser

• Training data ((x1, y1), . . . , (xn, yn))

• Each string xi is parsed using Collins

parser, producing a set Yc(xi) of parse

trees

• Best parse ỹi = argmaxy∈Yc(xi) Fyi
(y),

where Fy′(y) measures parse accuracy

• w is chosen to maximize the

regularized log pseudo-likelihood
∑

i log Pw(ỹi|xi) + R(w)

Y

ỹi

Yc(xi)
yi

35

Baseline and oracle results

• Training corpus: 36,112 Penn treebank trees, development

corpus 3,720 trees from sections 2-21

• Collins Model 2 parser failed to produce a parse on 115 sentences

• Average |Y(x)| = 36.1

• Model 2 f -score = 0.882 (picking parse with highest Model 2

probability)

• Oracle (maximum possible) f -score = 0.953

(i.e., evaluate f -score of closest parses ỹi)

⇒ Oracle (maximum possible) error reduction 0.601

36

Expt 1: Only “old” features

• Features: (1) log Model 2 probability, (9717) local tree features

• Model 2 already conditions on local trees!

• Feature selection: features must vary on 5 or more sentences

• Results: f -score = 0.886; ≈ 4% error reduction

⇒ discriminative training alone can improve accuracy

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

37

Expt 2: Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the

right-most branch (ignoring punctuation)

• Reflects the tendancy toward right branching

• LogProb + RightBranch: f -score = 0.884 (probably significant)

• LogProb + RightBranch + Rule: f -score = 0.889

ROOT

WDT

That went

over

DT

the

JJ

permissible

NN

line

IN

for

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.PP

VP

S

NP

PP

NP

NP

VBD

IN

NP

ADJP

38

Lexicalized and parent-annotated rules

• Lexicalization associates each constituent with its head

• Parent annotation provides a little “vertical context”

• With all combinations, there are 158,890 rule features

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

Heads

Rule

Grandparent

39

n-gram rule features generalize rules

• Collects adjacent constituents in a local tree

• Also includes relationship to head

• Constituents can be ancestor-annotated and lexicalized

• 5,143 unlexicalized rule bigram features, 43,480 lexicalized rule

bigram features

ROOT

S

NP

DT

The

NN

clash

VP

AUX

is

NP

NP

DT

a

NN

sign

PP

IN

of

NP

NP

DT

a

JJ

new

NN

toughness

CC

and

NN

divisiveness

PP

IN

in

NP

NP

NNP

Japan

POS

’s

JJ

once-cozy

JJ

financial

NNS

circles

.

.

Left of head, non-adjacent to head
40

Head to head dependencies

• Head-to-head dependencies track the function-argument

dependencies in a tree

• Co-ordination leads to phrases with multiple heads or functors

• With all combinations, there are 121,885 head-to-head features

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

41

Head trees record all dependencies

• Head trees consist of a (lexical) head, all of its projections and

(optionally) all of the siblings of these nodes

• These correspond roughly to TAG elementary trees

ROOT

S

NP

PRP

They

VP

VBD

were

VP

VBN

consulted

PP

IN

in

NP

NN

advance

.

.

42

Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size

and (binned) closeness to the end of the sentence

• There are 984 Heavyness features

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

> 5 words =1 punctuation

43

Tree n-gram

• A tree n-gram are tree fragments that connect sequences of

adjacent n words

• There are 62,487 tree n-gram features

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

44

Subject-Verb Agreement

• The SubjVerbAgr features are the POS of the subject NP’s

lexical head and the VP’s functional head

• There are 200 SubjVerbAgr features

ROOT

S

NP

DT

The

NNS

rules

VP

VBP

force

S

NP

NNS

executives

VP

TO

to

VP

VB

report

NP

NNS

purchases

.

.

45

Functional-lexical head dependencies

• The SynSemHeads features collect pairs of functional and lexical

heads of phrases (Grimshaw)

• This captures number agreement in NPs and aspects of other

head-to-head dependencies

• There are 1,606 SynSemHeads features

ROOT

S

NP

DT

The

NNS

rules

VP

VBP

force

S

NP

NNS

executives

VP

TO

to

VP

VB

report

NP

NNS

purchases

.

.

46

Coordination parallelism (1)

• The CoPar feature indicates the depth to which adjacent

conjuncts are parallel

• There are 9 CoPar features

ROOT

S

NP

PRP

They

VP

VP

VBD

were

VP

VBN

consulted

PP

IN

in

NP

NN

advance

CC

and

VP

VDB

were

VP

VBN

surprised

PP

IN

at

NP

NP

DT

the

NN

action

VP

VBN

taken

.

.

Isomorphic trees to depth 4

47

Coordination parallelism (2)

• The CoLenPar feature indicates the difference in length in

adjacent conjuncts and whether this pair contains the last

conjunct.

• There are 22 CoLenPar features

ROOT

S

NP

PRP

They

VP

VP

VBD

were

VP

VBN

consulted

PP

IN

in

NP

NN

advance

CC

and

VP

VDB

were

VP

VBN

surprised

PP

IN

at

NP

NP

DT

the

NN

action

VP

VBN

taken

.

.

4 words

6 wordsCoLenPar feature: (2,true)

48

Regularization

• General form of regularizer: c
∑

j |wj |
p

• p = 1 leads to sparse weight vectors. (Kazama and Tsujii, 2003)

– If |∂L/∂wj | < c then wj = 0

• Experiment on small feature set:

– 164,273 features

– c = 2, p = 2, f -score = 0.898

– c = 4, p = 1, f -score = 0.896, only 5,441 non-zero features!

– Earlier experiments suggested that optimal performance is

obtained with p ≈ 1.5

49

Experimental results with all features

• Features must vary on parses of at least 5 sentences in training

data

• In this experiment, 692,708 features

• regularization term: 4
∑

j |wj |
2

• dev set results: f-score = 0.904 (20% error reduction)

50

Which kinds of features are best?

of features f-score

Treebank trees 375,646 0.901

Correct parses 271,267 0.902

Incorrect parses 876,339 0.903

Correct & incorrect parses 883,936 0.903

• Features from incorrect parses characterize failure modes of

Collins parser

• There are far more ways to be wrong than to be right!

51

Evaluating feature classes

∆ f-score ∆ − logL # w av w[j] sd w[j] zeroed class

-0.0187508 1814.32 1 0.629557 inf LogProb

-0.00185951 145.987 2 -0.477453 1.59274e-05 RightBranch

5.50245e-05 9.44562 9717 0.000637244 0.0024974 Rule:0:0:0:0:0:0:0:0

-0.00106989 0.896624 48723 0.000629753 0.00235112 Rule:1:0:0:0:0:0:0:0

-0.000611704 2.77256 68035 0.000639053 0.00255555 NGramTree:3:2:1:0

-0.000270621 1.66255 21543 0.000944576 0.0028058 Heads:2:0:1:1

-0.00031439 5.4608 10187 0.000908379 0.00225115 Word:2

-0.00241466 61.5452 984 -0.00115477 0.0119984 Heavy

-0.00153331 47.0448 7450 0.000453298 0.00513622 Neighbours:1:1

0.000127092 11.0722 9 0.145198 0.0562 CoPar

-0.00018458 5.28722 22 0.0155067 0.0313398 CoLenPar

-9.55417e-05 1.30432 200 -0.00147174 0.00723214 SubjVerbAgr

52

Summary

• Generative and discriminative parsers both identify the likely parse y

of a string x, i.e., estimate P(y|x)

• Generative parsers also define language models, estimate P(x)

• Discriminative estimation doesn’t require feature independence

– suitable for grammar formalisms without CF branching structure

• Parsing is equally complex for generative and discriminative parsers

– depends on features used

– reranking uses one parser to narrow the search space for another

• Estimation is computationally inexpensive for generative parsers, but

expensive for discriminative parsers

• Because a discrimative parser can use the generative model’s

probability estimate as a feature, discriminative parsers almost never

do worse than the generative model, and often do substantially better.

53

Discriminative learning in other settings

• Speech recognition

– Take x to be the acoustic signal, Y(x) all strings in

recognizer lattice for x

– Training data: D = ((y1, x1), . . . , (yn, xn)), where yi is

correct transcript for xi

– Features could be n-grams, log parser prob, cache features

• Machine translation

– Take x to be input language string, Y(x) a set of target

language strings (e.g., generated by an IBM-style model)

– Training data: D = ((y1, x1), . . . , (yn, xn)), where yi is

correct translation of xi

– Features could be n-grams of target language strings, word

and phrase correspondences, . . .

54

Conclusion and directions for future work

• Discriminatively trained parsing models can perform better than

standard generative parsing models

• Features can be arbitrary functions of parse trees

– Difficult to tell which features are most useful

– Are there techniques to systematically evaluate and explore

possible features?

• Generative parser language models can be applied to a variety of

applications. Are there similiar generic discriminative parsers?

• Efficient computational procedures for search and estimation

– Dynamic programming

– Approximation methods (variational methods, best-first or

beam search)
55

Regularizer tuning in Max Ent models

• Associate each feature fj with bin b(j)

• Associate regularizer constant βk with feature bin k

• Optimize feature weights α = (α1, . . . , αm) on main training

data M

• Optimize regularizer constants β on held-out data H

LD(α) =
n∏

i=1

Pα(yi|xi), where D = ((y1, x1), . . . , (yn, xn))

α̂(β) = argmax
α

log LM (α) −
m∑

j=1

βb(j)α
2
j

β̂ = argmax
β

log LH(α̂(β))

56

Expectation maximization for PCFGs

• Hidden training data: D = (x1, . . . , xn), where xi is a string

• The Inside-Outside algorithm is an Expectation-Maximization

algorithm for PCFGs

p̂ = argmax
p

LD(p), where

LD(p) =
n∏

i=1

Pp(xi) = argmax
p

n∏

i=1

∑

y∈Y(xi)

P(y)

Y(xi)

Y

57

Why there is no conditional ML EM

• Conditional ML conditions on the string x

• Hidden training data: D = (x1, . . . , xn), where xi is a string

• The likelihood is the probability of predicting the string xi given

the string xi, a constant function

p̂ = argmax
p

LD(p), where

LD(p) =
n∏

i=1

Pp(xi|xi)

Y

Y(xi)

58

