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Talk outline

• A typology of approaches to parsing

• Applications of parsers

• Representations and features of statistical parsers

• Estimation (training) of statistical parsers

– maximum likelihood (generative) estimation

– maximum conditional likelihood (discriminative) estimation

• Experiments with a discriminatively trained reranking parser

• Advantages and disadvantages of generative and discriminative

training

• Conclusions and future work
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Grammars and parsing

• A (formal) language is a set of strings

– For most practical purposes, human languages are infinite

sets of strings

– In general we are interested in the mapping from surface

form to meaning

• A grammar is a finite description of a language

– Usually assigns each string in a language a description (e.g.,

parse tree, semantic representation)

• Parsing is the process of characterizing (recovering) the

descriptions of a string

• Most grammars of human languages are either manually

constructed or extracted automatically from an annotated corpus

– Linguistic expertise is necessary for both!
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Manually constructed grammars

Examples: Lexical-functional grammar (LFG), Head-driven

phrase-structure grammar (HPSG), Tree-adjoining grammar (TAG)

• Linguistically inspired

– Deals with linguistically interesting phenomena

– Ignores boring (or difficult!) but frequent constructions

– Often explicitly models the form-meaning mapping

• Each theory usually has its own kind of representation

⇒ Difficult to compare different approaches

• Constructing broad-coverage grammars is hard and unrewarding

• Probability distributions can be defined over their

representations

• Often involve long-distance constraints

⇒ Computationally expensive and difficult
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Corpus-derived grammars

• Grammar is extracted automatically from a large linguistically

annotated corpus

– Focuses on frequently occuring constructions

– Only models phenomena that can be (easily) annotated

– Typically ignores semantics and most of the rich details of

linguistic theories

• Different models extracted from the same corpus can usually be

compared

• Constructing corpora is hard, unrewarding work

• Generative models usually only involve local constraints

– Dynamic programming possible, but usually involves

heuristic search
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Sample Penn treebank tree
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Applications of (statistical) parsers

1. Applications that use syntactic parse trees

• information extraction

• (short answer) question answering

• summarization

• machine translation

2. Applications that use the probability distribution over strings or

trees (parser-based language models)

• speech recognition and related applications

• machine translation
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PCFG representations and features
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0.14: VP → VB NP ADVP

• Probabilistic context-free grammars (PCFGs) associate a rule

probability p(r) with each rule ⇒ features are local trees

• Probability of a tree y is P(y) =
∏

r∈y p(r) =
∏

r p(r)fr(y) where

fr(y) is the number of times r appears in y

• Probability of a string x is P(x) =
∑

y∈Y(x) P(y)
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Lexicalized PCFGs
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• Head annotation captures subcategorization and head-to-head

dependencies

• Sparse data is a serious problem: smoothing is essential!
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Modern (generative) statistical parsers
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• Generates a tree via a very large number of small steps

(generates NP, then NN, then boat)

• Each step in this branching process conditions on a large number

of (already generated) variables

• Sparse data is the major problem: smoothing is essential!
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Estimating PCFGs from visible data
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Why is the PCFG MLE so easy to compute?

yi

Y

• Visible training data D = (y1, . . . , yn), where yi is a parse tree

• The MLE is p̂ = argmaxp

∏n
i=1 Pp(yi)

• It is easy to compute because PCFGs are always normalized,

i.e., Z =
∑

y∈Y

∏
r p(r)fr(y) = 1,

where Y is the set of all trees generated by the grammar
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Non-local constraints and the PCFG MLE
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Renormalization
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Other values do better!
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Make dependencies local – GPSG-style
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Maximum entropy or log linear models

• Y = set of syntactic structures (not necessarily trees)

• fj(y) = number of occurences of jth feature in y ∈ Y

(these features need not be conventional linguistic features)

• wj are “feature weight” parameters

Sw(y) =
m∑

j=1

wjfj(y)

Vw(y) = expSw(y)

Zw =
∑

y∈Y

Vw(y)

Pw(y) =
Vw(y)

Zw

=
1

Zw

exp
m∑

j=1

wjfj(y)

log Pλ(y) =
m∑

j=1

wjfj(y) − log Zw
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PCFGs are log-linear models

Y = set of all trees generated by grammar G

fj(y) = number of times the jth rule is used in y ∈ Y

p(rj) = probability of jth rule in G

Choose wj = log p(rj), so p(rj) = expwj
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, 0︸︷︷︸
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, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

Pw(y) =
m∏

j=1

p(rj)
fj(y) =

m∏

j=1

(expwj)
fj(y) = exp(

m∑

j=1

wjfj(ω))

So a PCFG is just a log linear model with Z = 1.
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Max likelihood estimation of log linear models

Visible training data D = (y1, . . . , yn), where yi ∈ Y is a tree

yi
Y

ŵ = argmax
w

LD(w),where

log LD(w) =
n∑

i=1

log Pw(yi) =
n∑

i=1

(Sw(yi) − log Zw)

• In general no closed form solution ⇒ optimize log LD(w)

numerically.

• Calculating Zw involves summing over all parses of all strings

⇒ computationally intractible (Abney suggests Monte Carlo)
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Summary so far

All dependencies are local or context-free:

• if features have “context free” branching structure (i.e.,

rules) then partition function Z can be calculated analytically

⇒ MLE has a simple analytic form (relative frequency)

Structures exhibit non-local constraints:

• with non-local constraints, MLE is in general not relative

frequency

• Usually no analytic form for Z

⇒ no analytic solution for the MLE

⇒ no reason to only use local tree rule features

(i.e., the fj(y) can be any easily computable function of y)

• If it is necessary to enumerate Y to calculate Z then MLE is

infeasible
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Conditional Likelihood and Discriminative

training

Given training data D = ((x1, y1), . . . , (xn, yn)) of strings xi and

corresponding parse yi:

• The PCFG MLE optimizes LD(w) = Pw(x1, y1) . . . Pw(xn, yn)

• The PCFG MLE is a generative model that models the

distribution of strings P(x) as well as trees given strings P(y|x)

• The conditional distribution P(y|x) is important for parsing, but

the marginal distribution P(x) is not

• Generative models “waste” some of their parameters to model

the marginal distribution P(x)

• Optimize conditional likelihood L′
D(w) = Pw(y1|x1) . . . Pw(yn|xn)
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Generative vs discriminative training

95×

A

x 2×

A

a

b

A

1×

A

a b

95/100 2/100×2/100 1/100

Rule count rel freq rel freq

A → x 95 95/100 69/100

A → A b 2 2/100 1/10

A → a 2 2/100 2/10

A → a b 1 1/100 1/100

• When the PCFG independence assumptions are violated, the

MLE may not accurately model P(y|x)
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Linguistic example of discriminative training
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. . . × 2/105 × . . . . . . × 1/7 × . . .

. . . × 2/7 × . . . . . . × 1/7 × . . .

Rule count rel freq rel freq

VP → V 100 100/105 4/7

VP → V NP 3 3/105 1/7

VP → VP PP 2 2/105 2/7

NP → N 6 6/7 6/7

NP → NP PP 1 1/7 1/7

24



Conditional estimation for log linear models

The pseudo-likelihood of w is the conditional probability of the hidden

part (syntactic structure) w given its visible part (yield or terminal

string) x = X(y) (Besag 1974)

Y

yi

Y(xi) = {y : X(y) = X(yi)} ŵ = argmax
λ

PLD(w)

PLD(w) =
n∏

i=1

Pλ(yi|xi)

Pw(y|x) =
Vw(y)

Zw(x)

Vw(y) = exp
∑

j

wjfj(y) Zw(x) =
∑

y′∈Y(x)

Vw(y′)
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Conditional ML estimation

• The pseudo-partition function Zw(x) is much easier to compute

than the partition function Zw

– Zw requires a sum over Y

– Zw(x) requires a sum over Y(x) (parses of x)

• Maximum likelihood estimates full joint distribution

– learns P(x) and P(y|x)

• Conditional ML estimates a conditional distribution

– learns P(y|x) but not P(x)

– conditional distribution is what you need for parsing

– cognitively more plausible?

• Conditional estimation requires labelled training data: no

obvious EM extension
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Conditional estimation

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 3] [3, 1, 5] [2, 6, 3]

sentence 2 [7, 2, 1] [2, 5, 5]

sentence 3 [2, 4, 2] [1, 1, 7] [7, 2, 1]

. . . . . . . . .

• Training data is fully observed (i.e., parsed data)

• Choose w to maximize (log) likelihood of correct parses relative

to other parses

• Distribution of sentences is ignored

• Nothing is learnt from unambiguous examples

• Other kinds of discriminative learners can also train from this

data
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Pseudo-constant features are uninformative

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2 ] [2, 2, 2 ] [3, 1, 2 ] [2, 6, 2 ]

sentence 2 [7, 2, 5 ] [2, 5, 5 ]

sentence 3 [2, 4, 4 ] [1, 1, 4 ] [7, 2, 4 ]

. . . . . . . . .

• Pseudo-constant features are identical within every set of parses

• They contribute the same constant factor to each parses’

likelihood

• They do not distinguish parses of any sentence ⇒ irrelevant
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Pseudo-maximal features ⇒ unbounded ŵj

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3 , 2] [2, 3 , 4] [3, 1 , 1] [2, 1 , 1]

sentence 2 [2, 7 , 4] [3, 7 , 2]

sentence 3 [2, 4 , 4] [1, 1 , 1] [1, 2 , 4]

• A pseudo-maximal feature always reaches its maximum value

within a parse on the correct parse

• If fj is pseudo-maximal, ŵj → ∞ (hard constraint)

• If fj is pseudo-minimal, ŵj → −∞ (hard constraint)
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Regularization

• fj is pseudo-maximal over training data 6⇒ fj is pseudo-maximal

over all Y (sparse data)

• With many more features than data, log-linear models can

over-fit

• Regularization: add bias term to ensure ŵ is finite and small

• In these experiments, the regularizer is a polynomial penalty

term

ŵ = argmax
w

log PLD(w) − c
m∑

j=1

|wj |
p

(p = 2 gives a Gaussian prior).
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Conditional estimation of PCFGs

• MCLE involves maximizing a complex non-linear function

– conjugate gradient (iterative optimization)

– each iteration involves summing over all parses of each

training sentence

⇒ Use the small ATIS treebank corpus

– Trained on 1088 sentences of ATIS1 corpus

– Tested on 294 sentences of ATIS2 corpus

• MCLE estimator initialized with MLE probabilities

• (Added in 2003: I think there may be better ways to do the

conditional estimation)
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Parser evaluation

• A node’s edge is its label and beginning and ending string positions

• E(y) is the set of edges associated with a tree y (same with forests)

• If y is a parse tree and ȳ is the correct tree, then

precision Pȳ(y) = |E(y)|/|E(y) ∩ E(ȳ)|

recall Rȳ(y) = |E(ȳ)|/|E(y) ∩ E(ȳ)|

f score Fȳ(y) = 2/(Pȳ(y)−1 + Rȳ(y)−1)

Edges

(0 NP 2)

(2 VP 3)

(0 S 3)

ROOT

S

NP

DT

the

N

dog

VP

VB

barks
30 1 2
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Conditional and Joint ML PCFG evaluation

MLE MCLE

− log likelihood of training data 13857 13896

− log conditional likelihood of training data 1833 1769

− log marginal probability of training strings 12025 12127

Labelled precision of test data 0.815 0.817

Labelled recall of test data 0.789 0.794

• Precision/recall difference not significant (p ≈ 0.1)
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Experiments in Discriminative Parsing

• Collins Model 3 parser pro-

duces a set of candidate parses

Y(x) for each sentence x

• The discriminative parser has

a weight wj for each feature fj

• The score for each parse is

S(x, y) = w · f(x, y)

• The highest scoring parse

ŷ = argmax
y∈Y(x)

S(x, y)

is predicted correct

sentence x

yk. . .

. . .f(x, y1) f(x, yk)

w · f(x, y1) w · f(x, yk). . .

Collins model 3

parses Y(x)y1

features

scores S(x, y)
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Training the discriminative parser

• Training data ((x1, y1), . . . , (xn, yn))

• Each string xi is parsed using Collins

parser, producing a set Yc(xi) of parse

trees

• Best parse ỹi = argmaxy∈Yc(xi) Fyi
(y),

where Fy′(y) measures parse accuracy

• w is chosen to maximize the

regularized log pseudo-likelihood
∑

i log Pw(ỹi|xi) + R(w)

Y

ỹi

Yc(xi)
yi
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Baseline and oracle results

• Training corpus: 36,112 Penn treebank trees, development

corpus 3,720 trees from sections 2-21

• Collins Model 2 parser failed to produce a parse on 115 sentences

• Average |Y(x)| = 36.1

• Model 2 f -score = 0.882 (picking parse with highest Model 2

probability)

• Oracle (maximum possible) f -score = 0.953

(i.e., evaluate f -score of closest parses ỹi)

⇒ Oracle (maximum possible) error reduction 0.601
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Expt 1: Only “old” features

• Features: (1) log Model 2 probability, (9717) local tree features

• Model 2 already conditions on local trees!

• Feature selection: features must vary on 5 or more sentences

• Results: f -score = 0.886; ≈ 4% error reduction

⇒ discriminative training alone can improve accuracy
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Expt 2: Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the

right-most branch (ignoring punctuation)

• Reflects the tendancy toward right branching

• LogProb + RightBranch: f -score = 0.884 (probably significant)

• LogProb + RightBranch + Rule: f -score = 0.889
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Lexicalized and parent-annotated rules

• Lexicalization associates each constituent with its head

• Parent annotation provides a little “vertical context”

• With all combinations, there are 158,890 rule features
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n-gram rule features generalize rules

• Collects adjacent constituents in a local tree

• Also includes relationship to head

• Constituents can be ancestor-annotated and lexicalized

• 5,143 unlexicalized rule bigram features, 43,480 lexicalized rule

bigram features

ROOT

S

NP

DT

The

NN

clash

VP

AUX

is

NP

NP

DT

a

NN

sign

PP

IN

of

NP

NP

DT

a

JJ

new

NN

toughness

CC

and

NN

divisiveness

PP

IN

in

NP

NP

NNP

Japan

POS

’s

JJ

once-cozy

JJ

financial

NNS

circles

.

.

Left of head, non-adjacent to head
40



Head to head dependencies

• Head-to-head dependencies track the function-argument

dependencies in a tree

• Co-ordination leads to phrases with multiple heads or functors

• With all combinations, there are 121,885 head-to-head features
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Head trees record all dependencies

• Head trees consist of a (lexical) head, all of its projections and

(optionally) all of the siblings of these nodes

• These correspond roughly to TAG elementary trees
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Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size

and (binned) closeness to the end of the sentence

• There are 984 Heavyness features
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Tree n-gram

• A tree n-gram are tree fragments that connect sequences of

adjacent n words

• There are 62,487 tree n-gram features
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Subject-Verb Agreement

• The SubjVerbAgr features are the POS of the subject NP’s

lexical head and the VP’s functional head

• There are 200 SubjVerbAgr features
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Functional-lexical head dependencies

• The SynSemHeads features collect pairs of functional and lexical

heads of phrases (Grimshaw)

• This captures number agreement in NPs and aspects of other

head-to-head dependencies

• There are 1,606 SynSemHeads features
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Coordination parallelism (1)

• The CoPar feature indicates the depth to which adjacent

conjuncts are parallel

• There are 9 CoPar features
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Coordination parallelism (2)

• The CoLenPar feature indicates the difference in length in

adjacent conjuncts and whether this pair contains the last

conjunct.

• There are 22 CoLenPar features
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Regularization

• General form of regularizer: c
∑

j |wj |
p

• p = 1 leads to sparse weight vectors. (Kazama and Tsujii, 2003)

– If |∂L/∂wj | < c then wj = 0

• Experiment on small feature set:

– 164,273 features

– c = 2, p = 2, f -score = 0.898

– c = 4, p = 1, f -score = 0.896, only 5,441 non-zero features!

– Earlier experiments suggested that optimal performance is

obtained with p ≈ 1.5
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Experimental results with all features

• Features must vary on parses of at least 5 sentences in training

data

• In this experiment, 692,708 features

• regularization term: 4
∑

j |wj |
2

• dev set results: f-score = 0.904 (20% error reduction)
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Which kinds of features are best?

# of features f-score

Treebank trees 375,646 0.901

Correct parses 271,267 0.902

Incorrect parses 876,339 0.903

Correct & incorrect parses 883,936 0.903

• Features from incorrect parses characterize failure modes of

Collins parser

• There are far more ways to be wrong than to be right!
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Evaluating feature classes

∆ f-score ∆ − logL # w av w[j] sd w[j] zeroed class

-0.0187508 1814.32 1 0.629557 inf LogProb

-0.00185951 145.987 2 -0.477453 1.59274e-05 RightBranch

5.50245e-05 9.44562 9717 0.000637244 0.0024974 Rule:0:0:0:0:0:0:0:0

-0.00106989 0.896624 48723 0.000629753 0.00235112 Rule:1:0:0:0:0:0:0:0

-0.000611704 2.77256 68035 0.000639053 0.00255555 NGramTree:3:2:1:0

-0.000270621 1.66255 21543 0.000944576 0.0028058 Heads:2:0:1:1

-0.00031439 5.4608 10187 0.000908379 0.00225115 Word:2

-0.00241466 61.5452 984 -0.00115477 0.0119984 Heavy

-0.00153331 47.0448 7450 0.000453298 0.00513622 Neighbours:1:1

0.000127092 11.0722 9 0.145198 0.0562 CoPar

-0.00018458 5.28722 22 0.0155067 0.0313398 CoLenPar

-9.55417e-05 1.30432 200 -0.00147174 0.00723214 SubjVerbAgr
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Summary

• Generative and discriminative parsers both identify the likely parse y

of a string x, i.e., estimate P(y|x)

• Generative parsers also define language models, estimate P(x)

• Discriminative estimation doesn’t require feature independence

– suitable for grammar formalisms without CF branching structure

• Parsing is equally complex for generative and discriminative parsers

– depends on features used

– reranking uses one parser to narrow the search space for another

• Estimation is computationally inexpensive for generative parsers, but

expensive for discriminative parsers

• Because a discrimative parser can use the generative model’s

probability estimate as a feature, discriminative parsers almost never

do worse than the generative model, and often do substantially better.
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Discriminative learning in other settings

• Speech recognition

– Take x to be the acoustic signal, Y(x) all strings in

recognizer lattice for x

– Training data: D = ((y1, x1), . . . , (yn, xn)), where yi is

correct transcript for xi

– Features could be n-grams, log parser prob, cache features

• Machine translation

– Take x to be input language string, Y(x) a set of target

language strings (e.g., generated by an IBM-style model)

– Training data: D = ((y1, x1), . . . , (yn, xn)), where yi is

correct translation of xi

– Features could be n-grams of target language strings, word

and phrase correspondences, . . .
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Conclusion and directions for future work

• Discriminatively trained parsing models can perform better than

standard generative parsing models

• Features can be arbitrary functions of parse trees

– Difficult to tell which features are most useful

– Are there techniques to systematically evaluate and explore

possible features?

• Generative parser language models can be applied to a variety of

applications. Are there similiar generic discriminative parsers?

• Efficient computational procedures for search and estimation

– Dynamic programming

– Approximation methods (variational methods, best-first or

beam search)
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Regularizer tuning in Max Ent models

• Associate each feature fj with bin b(j)

• Associate regularizer constant βk with feature bin k

• Optimize feature weights α = (α1, . . . , αm) on main training

data M

• Optimize regularizer constants β on held-out data H

LD(α) =
n∏

i=1

Pα(yi|xi), where D = ((y1, x1), . . . , (yn, xn))

α̂(β) = argmax
α

log LM (α) −
m∑

j=1

βb(j)α
2
j

β̂ = argmax
β

log LH(α̂(β))
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Expectation maximization for PCFGs

• Hidden training data: D = (x1, . . . , xn), where xi is a string

• The Inside-Outside algorithm is an Expectation-Maximization

algorithm for PCFGs

p̂ = argmax
p

LD(p), where

LD(p) =
n∏

i=1

Pp(xi) = argmax
p

n∏

i=1

∑

y∈Y(xi)

P(y)

Y(xi)

Y
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Why there is no conditional ML EM

• Conditional ML conditions on the string x

• Hidden training data: D = (x1, . . . , xn), where xi is a string

• The likelihood is the probability of predicting the string xi given

the string xi, a constant function

p̂ = argmax
p

LD(p), where

LD(p) =
n∏

i=1

Pp(xi|xi)

Y

Y(xi)
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