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Statistics, grammar and acquisition

◮ Statistical methods have taken over (applied)
computational linguistics

◮ Can they help us understand language acquisition?
◮ Linguistic structures are compatible with statistics

(Abney 1997)
◮ Generative linguists are (or ought to be) Bayesians
◮ Some simple statistical models don’t work, and we can

start to understand why

◮ Statistics and information theory may help us move from
arm-chair philosophy to quantitative, empirical science
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Statistical learning in computational linguistics

◮ Statistical learning exploits distributional information in
the input

◮ Statistical learning is central to many practical
applications

◮ speech recognition
◮ machine translation
◮ search and related applications

◮ Statistical models can do (surprising?) linguistic things
◮ build bi-lingual dictionaries
◮ cluster words into broad lexical-semantic classes
◮ find lexical properties, e.g., transitivity, verb-particle pairs

◮ But does it have anything deep to say about language?
◮ What constitutes knowledge of language?
◮ How is it acquired?
◮ How is it put to use?



Humans are sensitive to statistics

◮ Lexical frequencies have huge impact on reaction times

◮ Infants can segment stream of nonsense syllables into
“words” using statistical cues alone (Saffran 96)

◮ But: statistical learning is much more than conditional
probabilities!

◮ Order of acquisition is often determined by frequency
(Lleó and Demuth 1999)



Statistics is compatible with linguistics

1. Colorless green ideas sleep furiously.

2. Furiously sleep ideas green colorless.

. . . It is fair to assume that neither sentence (1) nor
(2) (nor indeed any part of these sentences) has ever
occurred in an English discourse . . . (Chomsky 1957)

◮ A class-based bigram model predicts (1) is 2 × 105 more
probable than (2) (Pereira 2000)

◮ We can define probability distributions over linguistically
realistic structures

◮ Maximum entropy models define probability distributions
for arbitrary grammars (Abney 1997)

◮ How do linguistic structures and constraints interact with
distributional information in a statistical learner?



Statistical learning and implicit negative evidence

◮ Logical approach to acquisition
no negative evidence ⇒ subset problem
guess L2 when true lg is L1

L1

L2

◮ statistical learning can use implicit negative evidence
◮ if L2 − L1 is expected to occur but doesn’t

⇒ L2 is probably wrong

◮ Statistical learning can succeed where logical learning fails
◮ Context-free grammars are not learnable from positive

evidence alone, but probabilistic context-free grammars
are

◮ because statistical learning models:
◮ make stronger assumptions about input (follows

distribution)
◮ have weaker criteria for success (probabilistic

convergence)



Probabilistic models and statistical learning

◮ Decompose learning problem into three components:

1. class of possible models, i.e., (probabilistic) grammars
and lexicons, from which learner chooses a model

2. objective function (of model and input) that learning
optimizes

◮ e.g., maximum likelihood: find model that makes input
as likely as possible

3. search algorithm that finds optimal model(s) for input

◮ Using explicit probabilistic models lets us:
◮ combine models for subtasks in an optimal way
◮ better understand our learning models
◮ diagnose problems with our learning models

◮ distinguish model errors from search errors



Bayesian learning

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

◮ Bayesian learning integrates information from multiple
information sources

◮ Likelihood reflects how well grammar fits input data
◮ Prior encodes a priori preferences for particular grammars

◮ Priors can prefer
◮ certain types of structures over others (informative

priors)
◮ smaller grammars over larger (Occam’s razor, MDL)

◮ The prior is as much a linguistic issue as the grammar
◮ Priors can be sensitive to linguistic structure (e.g., words

should contain vowels)
◮ Priors can encode linguistic universals and markedness

preferences
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Probabilistic Context-Free Grammars

◮ The probability of a tree is the product of the
probabilities of the rules used to construct it

1.0 S → NP VP 1.0 VP → V
0.75 NP → George 0.25 NP → Al
0.6 V → barks 0.4 V → snores
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Learning PCFGs from trees (supervised)

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1
NP → rice 2 2/3
NP → corn 1 1/3
VP → grows 3 1

Rel freq is maximum likelihood estimator
(selects rule probabilities that
maximize probability of trees)
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Learning from words alone (unsupervised)

◮ Training data consists of strings of words w

◮ Maximum likelihood estimator (grammar that makes w as
likely as possible) no longer has closed form

◮ Expectation maximization is an iterative procedure for
building unsupervised learners out of supervised learners

◮ parse a bunch of sentences with current guess at
grammar

◮ weight each parse tree by its probability under current
grammar

◮ estimate grammar from these weighted parse trees as
before

◮ Can incorporate Bayesian priors (e.g., prefer grammars
whose rules have uniform head direction)

Dempster, Laird and Rubin (1977) “Maximum likelihood from incomplete data
via the EM algorithm”



Expectation Maximization with a toy grammar

Initial rule probs
rule prob
· · · · · ·
VP → V 0.2
VP → V NP 0.2
VP → NP V 0.2
VP → V NP NP 0.2
VP → NP NP V 0.2
· · · · · ·
Det → the 0.1
N → the 0.1
V → the 0.1

“English” input
the dog bites
the dog bites a man
a man gives the dog a bone
· · ·

“pseudo-Japanese” input
the dog bites
the dog a man bites
a man the dog a bone gives
· · ·



Probability of “English”

Iteration

Geometric
average

sentence

probability
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Rule probabilities from “English”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
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Probability of “Japanese”
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Rule probabilities from “Japanese”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability
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Statistical grammar learning

◮ Simple algorithm: learn from your best guesses
◮ requires learner to parse the input

◮ “Glass box” models: learner’s prior knowledge and learnt
generalizations are explicitly represented

◮ Optimization of smooth function of rule weights ⇒
learning can involve small, incremental updates

◮ Learning structure (rules) is hard, but . . .

◮ Parameter estimation can approximate rule learning
◮ start with “superset” grammar
◮ estimate rule probabilities
◮ discard low probability rules



Learning from real data

◮ ATIS treebank consists of 1,300 hand-constructed parse
trees

◮ input consists of POS tags rather than words

◮ about 1,000 PCFG rules are needed to build these trees
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Probability of training strings
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Accuracy of parses produced using the learnt

grammar

Recall
Precision

Iteration
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Accuracy
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The PCFG model is wrong

◮ EM learner initialized with correct parse trees for
sentences

◮ given true rules and their probabilities
⇒poor performance not due to search error

◮ Learner was evaluated on training data
◮ poor performance not due to over-learning

◮ Parse accuracy drops as likelihood increases
◮ higher likelihood 6⇒ better parses
◮ the statistical model is wrong



Why doesn’t a PCFG learner work on real data?

◮ higher likelihood 6⇒ parse accuracy
⇒ probabilistic model and/or objective function are
wrong

◮ Bayesian prior preferring smaller grammars doesn’t help

◮ What could be wrong?
◮ Wrong kind of grammar (Klein and Manning)

◮ Wrong probabilistic model (Smith and Eisner)

◮ Wrong training data (Yang)

◮ Predicting word strings is wrong objective
◮ Grammar ignores semantics (Zettlemoyer and Collins)

de Marken (1995) “Lexical heads, phrase structure and the induction of
grammar”



Outline

Introduction

Probabilistic context-free grammars

Learning simple hierarchical structure

Word segmentation

Conclusion



Research strategy

◮ Start with phonology, morphology and lexicon;
leave syntax and semantics until later

◮ children learn (some) words and inflections before they
learn what they mean

◮ child-directed speech corpora are readily available;
contextual information is not

◮ Goal of this research (as yet unachieved):

Input: “d o g s c h a s e d c a t s”
(actually use unsegmented broad phonemic
transcription)

Output:

Sentence

Noun

NounStem

d o g

NounSuffix

s

VerbPhrase

Verb

VerbStem

c h a s e

VerbSuffix

d

Noun

NounStem

c a t

NounSuffix

s



A grammar for concatenative morphology

◮ Too many things could be going wrong in learning syntax
start with something simpler!

◮ Input data: regular verbs (in broad phonemic
representation)

◮ Learning goal: segment verbs into stems and inflectional
suffixes

Verb → Stem Suffix
Stem → w w ∈ Σ⋆

Suffix → w w ∈ Σ⋆

Data = t a l k i n g

Word

Stem

# t a l k

Suffix

i n g #



Maximum likelihood estimation won’t work

◮ A saturated model has one parameter (i.e., rule) for each
datum (word)

◮ The grammar that analyses each word as a stem with a
null suffix is a saturated model

◮ Saturated models in general have highest likelihood

⇒ saturated model exactly replicates (memorizes) training
data

⇒ doesn’t “waste probability” on any other strings
⇒ maximizes likelihood of training data

Word

Stem

# t a l k i n g

Suffix

#



Bayesian priors for sparse grammars
◮ The saturated grammar has a rule for every word
◮ Factoring words into stems and suffixes should require

fewer rules
◮ We can use Bayesian priors to prefer grammars with few

rules
◮ We have developed MCMC algorithms for sampling from

the posterior distribution of trees given strings with a
Dirichlet prior on rule probabilities

α = 2.0
α = 1.0
α = 0.5
α = 0.1

Binomial probability θ

Pα(θ)

10.80.60.40.20

3

2

1

0



Morphological segmentation experiment

◮ Bayesian estimator with Dirichlet prior with parameter α
◮ prefers sparser solutions (i.e., fewer stems and suffixes)

as α → 0

◮ Component-wise Gibbs sampler samples from posterior
distribution of parses

◮ reanalyses each word based on parses of the other words

◮ Trained on orthographic verbs from U Penn. Wall Street
Journal treebank

◮ behaves similarly with broad phonemic child-directed
input



Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5

α = 10−10
α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed
including including including including

add add add add
adds adds adds add s

added added add ed added
adding adding add ing add ing

continue continue continue continue
continues continues continue s continue s
continued continued continu ed continu ed
continuing continuing continu ing continu ing

report report report report



Log posterior of models on token data

Posterior
True suffixes
Null suffixes

Dirichlet prior parameter α

log Pα

11e-101e-20

-800000

-1e+06

-1.2e+06

◮ Correct solution is nowhere near as likely as posterior

⇒ no point trying to fix algorithm because model is wrong!



Independence assumptions in PCFG model

Word

Stem

# t a l k

Suffix

i n g #

P(Word) = P(Stem)P(Suffix)

◮ Model expects relative frequency of each suffix to be the
same for all stems



Relative frequencies of inflected verb forms



Types and tokens

◮ A word type is a distinct word shape

◮ A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the” 2, “cat” 2, “chased” 1, “other” 1

Types = “the” 1, “cat” 1, “chased” 1, “other” 1

◮ Using word types instead of word tokens effectively
normalizes for frequency variations



Posterior samples from WSJ verb types

α = 0.1 α = 10−5
α = 10−10

α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort



Learning from types and tokens

◮ Overdispersion in suffix distribution can be ignored by
learning from types instead of tokens

◮ Some psycholinguistics claim that children learn
morphology from types (Pierrehumbert 2003)

◮ To identify word types the input must be segmented into
word tokens

◮ But the input doesn’t come neatly segmented into tokens!

◮ We have been developing two stage adaptor models to
deal with type-token mismatches



Two stage adaptor framework

◮ Generator determines set of
possible structures

◮ Adaptor replicates them an
arbitrary number of times
(determines their probability)

◮ “Noisy channel” Bayesian inversion
used to train generator and adaptor

◮ Generator learns structure from
“types”

◮ Adaptor learns (power law)
frequencies from tokens

Generator
(e.g., PCFG)

Analysis “types”
(parse trees)

Adaptor

Analysis “tokens”
(parse trees)

(Pitman-Yor process)
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Grammars for word segmentation
Words

Word

y u

Word

w a n t

Word

t u

Word

s i

Word

D 6

Word

b U k

Sample input = y u w a n t t u s i D 6 b u k

Utterance → Word Utterance
Utterance → Word
Word → w , w ∈ Σ⋆

◮ These are unigram models of sentences
(each word is conditionally independent of its neighbours)

◮ This assumption is standardly made in models of word
segmentation (Brent 1999), but is it accurate?



Saturated grammar is maximum likelihood

grammar

Words

Word

y u w a n t t u s i D 6 b u k

◮ Grammar that generates each utterance as a single word
exactly matches input distribution

⇒ saturated grammar is maximum likelihood grammar

⇒ use Bayesian estimation with a sparse Dirichlet process
prior

◮ “Chinese Restaurant Process” used to construct Monte
Carlo Sampler



Segmentations found by unigram model

yuwant tu si D6bUk lUk D*z 6b7 wIT hIz h&t
&nd 6dOgi yu wanttu lUk&tDIs
lUk&tDIs h&v6 drINk
oke nQ WAtsDIs
WAtsD&t WAtIzIt
lUk k&nyu tek ItQt tek D6dOgi Qt

◮ Trained on Brent broad phonemic child-directed corpus

◮ Tends to find multi-word expressions, e.g, yuwant

◮ Word finding accuracy is less than Brent’s accuracy

◮ These solutions are more likely under Brent’s model than
the solutions Brent found

⇒ Brent’s search procedure is not finding optimal solution



Contextual dependencies in word segmentation

◮ Unigram model assumes words are independently
distributed

◮ but words in multiword expressions are not independently
distributed

◮ if we train from a corpus in which the words are
randomly permuted, the unigram model finds correct
segmentations

◮ Bigram models capture word-word dependencies
P(wi+1|wi)

◮ straight-forward to build a Gibbs sampler,
even though we don’t have a fixed set of words

◮ Each step reanalyses a word or pair of words using the
analyses of the rest of the input



Segmentations found by bigram model

yu want tu si D6 bUk lUk D*z 6 b7 wIT hIz h&t
&nd 6 dOgi yu want tu lUk&t DIs
lUk&t DIs h&v 6 drINk
oke nQ WAts DIs
WAts D&t WAtIz It
lUk k&nyu tek It Qt tek D6 dOgi Qt

◮ Bigram model segments much more accurately than
unigram model and Brent’s model

⇒ conditional independence alone is not a sufficient cue for
accurate word segmentation
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Conclusion

◮ We have mathematical and computational tools to
connect learning theory and linguistic theory

◮ Studying learning via explicit probabilistic models
◮ is compatible with linguistic theory
◮ permits quantitative study of models and information

sources
◮ helps understand why a learning model succeeds or fails

◮ Bayesian learning lets us combine statistical learning with
with prior information

◮ priors can encode “Occam’s razor” preferences for sparse
grammars, and

◮ universal grammar and markedness preferences
◮ evaluate usefulness of different types of linguistic

universals are for language acquisition



Future work

◮ Integrate the morphology and word segmentation systems
◮ Are their synergistic interactions between these

components?

◮ Include other linguistic phenomena
◮ Would a phonological component improve lexical and

morphological acquisition?

◮ Develop more realistic training data corpora
◮ Use forced alignment to identify pronunciation variants

and prosodic properties of words in child-directed speech

◮ Develop priors that encode linguistic universals and
markedness preferences

◮ quantitatively evaluate their usefulness for acquisition



Thank you!
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