The Complexity of Inducing a Rule trom
Data

MARK JOHNSON
Broun University

1 Introduction

This paper discusses the problem of identifying the conditioning context of a rule
from two perspectives. As motivation it sketches an algorithm initially described
in Johnson (1984) for inducing an ordered set of SPE-style phonological rules
(Chomsky and Halle 1968) that account for the alternations in a set of surface
phonological forms arranged in paradigm format. Then it abstracts away from the
details of that algorithm, and uses the tools of computational complexity theory to
characterize the computational complexity of two problems that occur as sub-
problems of this and presumably most other rule discovery procedures.

The first problem asks if a rule exists that can account for data exhibiting a
single alternation, i.e., if there is a rule such that this rule’s context is satisfied in
all of cases in which the rule must apply, and fails to be satisfied in all of the cases
in which the rule does not apply. The second problem is similar to the first, except
that in this case the answer is a rule with the minimum number of features. It turns
out that the first problem can be answered in deterministic polynomial time, and
hence is tractable in the technical sense, while the universal version (Barton,
Berwick and Ristad 1987) of the second problem is NP-complete, and hence is
intractable in the technical sense (assuming P # NP). The paper concludes with a
discussion of these results and their implications for empiricist and rationalist
models of language acquisition.

The discussion in this paper is stated in terms of the identification of the
conditioning contexts for SPE-style rules because they are simple and familiar,
but the results are far more general. It shows that while the problem of
determining if there is some set of features that ‘matches’ all the members in a set
Pos of ‘positive examples’ and does not match any member of another set Neg of
‘negative examples’ is tractable, the probem of finding the minimal set of features
that distinguish Pos from Neg is in general computationally intractable.

* 1 would like to thank Motorola computer corporation for the donation of the 88k Delta
computer used in this research.

289

290 / MARK JOHNSON
2 A Phonological Rule Discovery Procedure

Johnson (1984) describes a procedure for discovering an ordered sequence of
SPE-style phonological rules that account for certain types of phonological
alternations in a data set given to it.! Specifically, it induces rules of the format
$1 = 8,/ C, where s, and s, are segments, and C is a feature bundle identifying the
contexts in which the rule applies. It does not attempt to generalize these rules to
inputs and outputs specified with feature bundles (but this does not appear
difficult to do). It also does not posit either insertion or deletion rules.

The procedure’s input consists of a table in paradigm-format of surface
phonological forms, and another table assigning each phonological segment a set
of phonological features. (It’s assumed that some other component of the
language acquistion device has assembled these tables). Table 1 shows a typical
paradigm-format input showing six alternations in Japanese surface forms.2 Table
2 shows the assignment of features to segments given as input to the procedure.’

kak+u kai+ta
tat+u tat+ta
sin+u sin+da
nom+u non+da
tor+u tot+ta
kog+u koi+da
tob+u ton+da

Table 1: A typical paradigm-format input (Japanese)

(+ back, + low, + segmental, + voiced, - consonamal, - coronal, - high, - nasal }
{ + consonantal, + segmental, + voiced, - back, - coronal, - high, - nasal }

{ + consonantal, + coronal, + high, + segmental, + voiced, - back, - low, - nasal)
{ + back, + consonantal, + low, + segmental, + voiced, - coronal, - high, - nasal }
(+ high, + segmental, + voiced, - back, - consonantal, - coronal, - low, - nasal }

{ + back, + consonanial, + low, + Segmental, - coronal, - high, - nasal, - voiced)
{ + consonantal, + nasal, + segmental, + voiced, - coronal }

(+ consonantal, + coronal, + nasal, + segmental, + voiced, - low }

{ + back, + segmental, + voiced, - consonantal, - coronal, - high, - low, - nasal }

{ + consonanial, + segmental, + voiced, - back, - coronal, - nasal }

{ + consonantal, + coronal, + segmenial, - back, - low, - nasal, - voiced)

{ + consonanial, +-coronal, + high, + segmenial, - back, - low, - nasal, - voiced }
{ + back, + high, + segmental, + voiced, - consonantal, - coronal, - low, - nasal }

R0 3Y x~0A00

Table 2: A typical segment-feature assignments input

' The procedure was first implemented at the University of California in San Diego in Franz Lisp

on a VAX 11-750 (computer time provided courtesy of Jeff Elman); this implementation required
approximately 1 hour to enumerate the rule systems generating the Japanese data presented here. It
has been reimplemented on a Motorola Delta 88k in Prolog; this implementation requires
17 seconds to enumerate the same rule systems generating the same data.

2 This data was kindly provided by Yuki Kuroda (p.c.).

* This feature assignment is for illustrative purposes only. In practice, a larger and more
phonologically-realistic set of features is used. The implementation allows a more complex
encoding which encodes syllable and morpheme structure as well.

—

THE COMPLEXITY OF INDUCING A RULE FROM Data / 291

Given these inputs, the procedure returns an underlying form for each row and
column of the paradigm format input, and an ordered sequences of rules that when
applied to these underlying forms yield the surface input. (In general it finds not
just one solution but several, which it simply enumerates). For example, one of
the solutions returned by the procedure when given the data in Tables | and 2 is
displayed in Tables 3 and 4. Each entry in Table 4 actually abbreviates several
rules, since any one of the rule contexts listed in each cell correctly conditions that
alternation (e.g. the m — n rule is consistent with the data if it is conditioned by
either a + consonantal, a + coronal or a + back following segment).

Stems: kak tat sin nom tor kog tob
Suffixes: u da

Table 3: Underlying forms for the data in Table 1 discovered by the
procedure

mon/ — [+ consonantal]
_ [+ coronal}.
__[- back]
bon/ — [+ consonantal]
__ [+ coronal]
__[- back]
r—¢/ — [+ consonantal]
__ [+ coronal]
__[- back]
d— ¢t/ [-voiced] __

k—i/ — [+ consonantal]
__ [+ coronal]
__[- back]

[~ voiced]

__ [+ consonantal]
__ [+ coronal]
__[- back]

g—oil

Table 4: Ordered rules for the data in Table 1 discovered by the procedure

The procedure enumerates the rules in the reverse order in which they would be
applied in a derivation. It relies on the fact that the conditioning context of the lgst
rule to apply cannot be ‘opaque’, since no other rule can have applied to alter its
context. The top-level structure of the discovery procedure is shown in Figure |
(comments appear in parentheses).

292 / MARK JOHNSON

If there are no alternating pairs of segments, return the data set and the
reversed list of rules, otherwise:

Non-deterministically pick an alternation (say m~n),
(Could all ns that alternate with m be derived by some rulem - n/C?)

Let Pos be the set of examples in which an n that alternates with anm
appears. (/n Table 1, Pos = { #no +da#))

Let Neg be the set of examples in which an m appears on the surface.
(InTable 1, Neg = { #no_+u# })

Determine if there is a rule context C such that C matches every context in
Pos, and C does not match any context in Neg. If so, positrulem = n/C.

If there is such a context C, replace with an m every n that alternates with
an m in the data, and repeat.

Figure 1: The top-level structure of the rule discovery procedure

The subprocedure for determining if there is a rule context C that matches every
context in Pos and does not match any context in Neg is described and analysed
below. At this point, all that is important is that if there is an effective procedure
for doing this, then the procedure described in Figure 1 is also effective.

3 Identifying a single rule’s context

The discovery procedure in Figure 1 calls an auxiliary procedure to determine a
rule context C such that C matches every example in Pos (i.e., the rule context
matches all the of the phonological forms in which the rule applies), and C does
not match any example in Neg (i.c., the rule context does not match any context in

which the rule does not apply). Two versions of this problem are actually of
interest.

* The EXISTENCE problem: does there exist a C such that C matches every
example in Pos and none of the examples in Neg?

* The MINIMALITY problem: what is the ‘simplest’ C such that C matches every
example in Pos and none of the examples in Neg (where ‘simplest’ is defined
with respect to some ‘evaluation metric’)?

In order to analyse these problems further, it is necessary to specify more
precisely what ‘rule contexts’, ‘examples’, and ‘matching’ are. In the rest of this
paper, it is assumed that both rule contexts C and the examples in the sets Pos and

* ‘The procedure in Figure 1 is non-deterministic, in that in general there will be several
alternations in the data. But because the data set is finite, the number of alternations is also finite,
and hence the non-determinism is also finite, and hence can be simulated by a deterministic
algorithm in a standard fashion. Further, each (non-deterministic) iteration reduces the number of
alternating pairs of segments in the data by one, and since the data set and hence the number of
alternating pairs of segments are finite, eventually the procedure must terminate. Thus the
procedure is effective.

THE COMPLEXITY OF INDUCING A RULE FROM DATA / 293

((~2,+ consonantal) {~1,+back) (+1,+consonantal) (+2,+back)
(-2,+coronal) (-1.+segmental) (+1,+coronal) (+2.+low)
(-2,+ nasal) {(~1,+voiced) (+1.+ high) (+2,+segmental)
(=2,+segmental) (~1,—consonanial) (+1,+segmenal) (+2,+voiced) {
<(~2,+voiced) {(~1,— coronal) (+1.+voiced) (+2,~ consonantal)
(-2,~low) (-1,— high) (+1.—back) (+2,~coronal)
(~1,~low) (+1,—low) (+2,—high)
{~1,~ nasal) (+1,—nasal) (+2.—nasal)

Table 5: The set of pairs encoding the example no_+da

Neg are sets of features, and a rule context C matches an example E iff C g {5. ie.
if every feature in C also appears in E.* Both rule contexts and the examples in the
sets Pos and Neg are encoded as sets of ordered pairs {p,f), where p is a non-zero
integer indicating the ‘offset’ or relative position of feature f to the segment that
the rule changes.

For example, the rule context [+ voiced] _ [+ high] is encoded as the set of
pairs { (-1, + voiced), {+1, + high) }, and the example no_+da would be encoded
as the set of pairs in Table 5. Since this rule context’s features are a subset of the
example’s features, it matches the example.When rule contexts, examples and
matching are defined in this way, the requirements that the rule context C must
match every example in Pos and must not match any example in Neg are
equivalent to the two following set-theoretic formulae.

1. VPe Pos,CgP
2. ¥ Ne Neg, CEN

Johnson (1984) describes an algorithm that computes the mini'mal C that
simultaneously satisfy these formulae, to which the implementation-oriented
reader is referred. The remainder of this paper takes a more abstract approaph, aqd
rather than analyse the properties of this or any other particular al gpnthm, it
applies computational complexity theory to chuactcﬁge thf: complexity of any
algorithm that correctly answers the existence and minimality problems for this
particular formalization.

4 The complexity of inducing a single rule’s context from data

This section shows that the existence problem can be answered in deterministic
polynomial time, whereas the minimality problem is NP-complete.

. . - . ible.
5 There are two important things to note here. First, other definitions of matching are possible,
e.g., based on unification, as in Shieber (1984) and Pollard and Sag (1989). Secqnd. nolhmg_hcre
depends on features being binary valued, so the results presented below generalize to non-binary
valued feature systems.

294 / MARK JOHNSON

Before presenting the technical details of the proof, this section discusses in
very general terms the goals of computational complexity theory. For a technical
introduction see Garey and Johnson (1979), and for other linguistic applications
of complexity theory see Barton, Berwick and Ristad (1987). Hopcroft and

Ullman (1979) is a standard text covering automata theory, the Chomsky -

hierarchy, and computational complexity theory.

Many linguists will be familiar with the Chomsky hierarchy of classes of
languages. This hierarchy classifies a language in terms of the type of machine
that can recognize it. For example, every finite state language can be recognized
by some finite-state automaton (i.e., a machine with a finite memory capacity),
whereas every context-free language can be recognized by some push-down
automaton (i.e., a machine with memory organized as a stack), and every context-
sensitive language can be recognized by some linear-bounded automaton (i, a
machine the size of whose memory is linearly related to the length of the string
being recognized).

This classification tells us something about the architectural constraints on
machines that recognize various classes of languages, but says little about the time
or space resources that the machine consumes in recognizing a string.5 For
example, the language a"h*c” is a context-sensitive language but not a context-free
language, and hence located fairly ‘high’ on the Chomsky hierarchy. But clearly it
can be recognized in linear time and logarithmic space by checking the linear
order constraints and that the numbers of a’s, b's and ¢’s are equal. This is a case
where the Chomsky hierarchy gives little insight into the inherent computational
complexity of a problem.

Computational complexity theory attempts to abstract away from the details of
architectures and algorithms, and identify the minimum time and space resources
required by any algorithm and machine to answer a problem. There is a
corresponding hierarchy of problems, ordered by the resources they require. Here
only two classes in the hierarchy will be used: P, the class of problems that can be
answered by a deterministic automaton in time (and hence space) bounded by
some polynomial function of the length of its input, and NP, the class of problems
that can be answered by a non-deterministic automaton in time (and hence space)
bounded by some polynomial function of the length of its input.”

Currently, it is not known whether NP actually differs from P, i.e., if there is a
problem in NP that is not also in P. However, the best known algorithms for
solving problems in NP on deterministic machines require exponential time, and
moreover there exists a large number of NP-complete problems, i.., problems to

¢ 1t does tell us something, however. Because every finite-state language is also a deterministic
finite-state language, every finite-state language can be recognized in deterministic linear time.
Because every context-sensitive language can be recognized in linear space, it follows that every
context-sensitive language is contained in PSPACE. Garey and Johnson (1979) mention that there
are contexi-sensitive grammars which have PSPACE-complete recognition problems.

7 In the definition of these classes the automata are usually taken to be Turing machines.
However the classes of problems that can be answered in deterministic polynomial time and in
non-deterministic polynomial time is the same for most uni-processor architectures.

THE COMPLEXITY OF INDUCING A RULE FROM DaTa / 295

which any problem in NP is translatable in deterministic polynomial time. Thus if
P # NP, then the NP-complete problems are not in P.

Given an NP-complete problem (), a proof of the NP-completeness of
another problem Q; can be established by showing (i) that any instancF of Q) can
be translated in deterministic polynomial time into an instance of Q7 (i.e., there is
a deterministic polynomial reduction of Q; to @), and (ii) that Q; can be
answered by a non-deterministic Turing machine in polynomial time. A large
number of problems have already been shown NP-complete; Garey and Johnson
(1979) list hundreds of the more important ones.

The classes P and NP are important because problems in P are generally
regarded as ‘tractible’, i.e., amenable to actual implementation, whereas problems
in NP are generally regarded as ‘intractible’, i.e., in general it is not possible to
solve these problems exactly on any type of computing machine.

Two problems are now presented that abstractly correspond to the existence
and minimality problems for the single rule context identification problem. The
examples in the sets Neg and Pos are formalized here as sets of features in order
to avoid reliance on assumptions about the nature of phonological representations.
The problems’ complexities remain the same if an example is formalized as a
string of segments, and a segment-feature assignment table is provided as input to
the procedure.

This formalization of the problems relies on there being an unbounded number
of features, and that any combination of features can condition any alternation.
This corresponds to the UNIVERSAL problem, where a language may have an
arbitrary number of ‘diacritic’ phonetic features that interact in essentially
arbitrary fashion. Imposing a finite bound on the number of possible features and
on the number of distinct rule contexts that can condition an alternation simplifies
these problems enormously, so that both are in P.

For technical reasons explained in Garey and Johnson (1979), the minimality
problem is posed in terms of the existence of a context set C of size less than
some constant K. (An algorithm that solves this latter problem can be used to
determine size of the smallest context set C using binary search, and its witness
could be used to identify the corresponding context C).

RULE CONTEXT EXISTENCE
INSTANCE: A finite set F (of feature pairs), and two sets Pos and Neg of

subsets of F.
QUESTION: Does there exists a subset C ¢ F such thatV P € Pos, C C P,

and V Ne Neg, C@N?

RULE CONTEXT MINIMALITY

INSTANCE: A finite set F (of feature pairs), two sets Pos and Neg of
subsets of F, and a positive integer K < | F [.

QUESTION: Does there exists a subset C ¢ F with | C | £ K such that
VPe Pos,CgP,andVNe Neg, CEN?

296 / MARK JOHNSON

There is an algorithm that answers the existence problem in deterministic
polynomial time. To see this, first note that C is bounded above by C’=1Pos.
Then observe that if any subset C of C* satisfies V N e Neg, Cg N then C’does
also. Hence the rule context existence problem can be answered in deterministic
polynomial time by first computing C”and then checking if V N € Neg, C’g N.

The rule context minimality problem is clearly in NP, since a non-
deterministic machine can simply ‘guess’ a set C of size K and then ‘check’ that it
satisfies the constraints involving Neg and Pos. We show that it is NP-hard (and
therefore NP-complete) via a reduction from HITTING SET, a problem already
known to be NP-complete (Garey and Johnson 1979, page 222).

HITTING SET

INSTANCE: A set S of subsets of a finite set U, a positive integer K < 1U I.
QUESTION: Is there a subset U ¢ U with | U’ €K such that U/’ contains at
least one element from each subset in S ?

Given an instance of HITTING SET, we construct an instance of RULE CONTEXT
MINIMALITY as follows. Let F=U, Pos= (U },and Neg = (F-W W e §).

Clearly, V N € Neg, C g N just in case C contains at least one element from each
subset of S, so the reduction is correct. The size of the rule context minimality
problem is at most the square of the size of the hitting set problem, and it can be
computed in deterministic polynomial time.

5 Conclusion

This paper has shown that the general problem of inducing even a single rule from
a set of positive and negative examples is intractible (assuming P # NP). This
result seems to bear on the debate between rationalist and empiricist positions on
language acquisition. The rationalist holds that the structure of a human language
is essentially determined by the nature of the human mind, whereas the empiricist
holds that the structure of a language is learned from the examples of it that the
language learner is exposed to. There are several possible interpretations of this
result.

One might take it-as computational evidence for the rationalist position. As
remarked above, the reduction relies on the unboundedness of the set of features
that might potentially trigger the rule being learnt. If additional ‘rationalist’
‘constraints imposed a bound on this set—as a theory of ‘universal grammar’
might plausibly do—then the reduction would no longer go through, and finding
even the minimal rule context that accounts for an alternation could be a
computationally tractable problem

However, such a conclusion may be too strong. Although every NP-complete
problem must contain ‘intractible instances’, some instances of an NP-complete
problem may be easy, or even trivial, to decide. In fact, it can be the case that the
average time complexity of an intractible problem grows relatively slowly with

THE COMPLEXITY OF INDUCING A RULE FROM DATA / 297

respect to problem size. To make the argument above stronger then, one might try
to show that the minimal rule context problem was intractible even in the average
case. But this might be hard to do, since it would require assumptions about the
nature of the distribution of instances.

An empiricist could also weaken the assumption that the language learner is
required to induce the minimal rule context, and claim that all that is necessary is
that the language learner induce a rule whose context feature set is approximately
minimal. Again, some intractible problems become tractable when weakened
appropriately in this manner.

Finally, an empiricist might freely admit that the human language faculty in
fact can put to use grammars which its grammar learning procedure cannot
acquire. Such a grammar would never be learnt, therefore would never be spoken,
and hence would never appear as input to a language learner. Thus ‘performance
constraints’ on the grammar learning procedure would impose restrictions on the
class of human languages. Functionally these constraints would appear to be
similar to those posited by the rationalists, and it might be difficult to distinguish
the two positions.

Bibliography

Barton, E., R. Berwick and E. Ristad (1987) Computational Complexity and
Natural Language. The MIT Press.

Chomsky, N. and M. Halle (1968) The Sound Pattern of English. New York:
Harper and Row.

Garey, M. and D. Johnson (1979) Computers and Intracrability, A Guide to the
Theory of NP-completeness. W.H. Freeman

Hopcroft, J. and J. Ullman (1979) Introduction to Automata Theory, Languages
and Computation. Addison-Wesley.

Johnson, M. (1984) “A Discovery Procedure for Certain Phonological Rules”, in
The Proceedings of the I0th International Conference on Computational
Linguistics, Stanford, California.

Pollard, C. and 1. Sag (1989) Information-based Syntax and Semantics, Volume 1.
CSLI Lecture Notes, Chicago University Press.

Shieber, S. (1984) An Introduction ro Unification-based Theories of Grammar.
CSLI Lecture Notes Serics, Chicago University Press.

