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Abstract

This paper introduces adaptor grammars, a class of pragtabihodels of lan-
guage that generalize probabilistic context-free gramn{RICFGs). Adaptor
grammars augment the probabilistic rules of PCFGs with peata” that can in-
duce dependencies among successive uses. With a partiboliae of adaptor,
based on the Pitman-Yor process, nonparametric Bayesialelmof language
using Dirichlet processes and hierarchical Dirichlet psses can be written as
simple grammars. We present a general-purpose inferegodthim for adaptor
grammars, making it easy to define and use such models, asulalie how several
existing nonparametric Bayesian models can be expressbiththis framework.

1 Introduction

Probabilistic models of language make two kinds of substartssumptions: assumptions about
the structures that underlie language, and assumptiong #tm probabilistic dependencies in the
process by which those structures are generated. Typitiadlge assumptions are tightly coupled.
For example, in probabilistic context-free grammars (PE€f-&ructures are built up by applying a
sequence of context-free rewrite rules, where each ruledrséquence is selected independently at
random. In this paper, we introduce a class of probabilisticiels that weaken the independence
assumptions made in PCFGs, which we ealaptor grammars. Adaptor grammars insert addi-
tional stochastic processes calbsthptorsinto the procedure for generating structures, allowing the
expansion of a symbol to depend on the way in which that syrhaslbeen rewritten in the past.
Introducing dependencies among the applications of rewultes extends the set of distributions
over linguistic structures that can be characterized bynplg grammar.

Adaptor grammars provide a simple framework for definingpaametric Bayesian models of
language. With a particular choice of adaptor, based on itmeaR-Yor process [1, 2, 3], simple
context-free grammars specify distributions commonlyduisenonparametric Bayesian statistics,
such as Dirichlet processes [4] and hierarchical Diricpletcesses [5]. As a consequence, many
nonparametric Bayesian models that have been used in catigmal linguistics, such as models of
morphology [6] and word segmentation [7], can be expressediaptor grammars. We introduce a
general-purpose inference algorithm for adaptor grammdreh makes it easy to define nonpara-
metric Bayesian models that generate different lingusttiactures and perform inference in those
models.

The rest of this paper is structured as follows. Section Béhices the key technical ideas we
will use. Section 3 defines adaptor grammars, while Sectipredents some examples. Section 5
describes the Markov chain Monte Carlo algorithm we havelbped to sample from the posterior



distribution over structures generated by an adaptor gramBoftware implementing this algorithm
is available from http://cog.brown.edu/"mj/Softwarenht

2 Background

In this section, we introduce the two technical ideas that@mbined in the adaptor grammars
discussed here: probabilistic context-free grammarstlamdéitman-Yor process. We adopt a non-
standard formulation of PCFGs in order to emphasize thgtdhe a kind of recursive mixture, and
to establish the formal devices we use to specify adaptongrars.

2.1 Probabilistic context-free grammars

A context-free grammar (CFG) is a quadrupléN, W, R, S) whereN is a finite set ohonterminal
symbols, W is a finite set ofterminal symbols disjoint from NV, R is a finite set of productions or
rules of the formA — g whered € N andg € (N U W)* (the Kleene closure of the terminal and
nonterminal symbols), anfl € N is a distinguished nonterminal called tiart symbol. A CFG
associates with each symhéle N U W a set7, of finite, labeled, ordered trees. Afis a terminal
symbol then7, is the singleton set consisting of a unit tree (i.e., coimam single node) labeled
A. The sets of trees associated with nonterminals are defawensively as follows:

Ty = U TREEA(TB,,...,T8B,)
A—B;...B,€R4
whereR 4 is the subset of productions iR with left-hand side4, and TREEA(75,,...,75, ) iS

the set of all trees whose root node is labefedhat have: immediate subtrees, and where ilie
subtree is a member @iz, . The set of trees generated by the CFGgsand the language generated
by the CFG is the setY IELD(t) : t € T} of terminal strings or yields of the trefg.

A probabilistic context-free grammar (PCFG) is a quintupléN, W, R, S, §), where(N, W, R, S) is
a CFG and is a vector of non-negative real numbers indexed by prodosf such that

Z 9A—»B = 1.

A—BERA

Informally, 6 4. 5 is the probability of expanding the nontermizalising the productiodl — (. 0
is used to define a distributial 4 over the treed 4 for each symboM. If A is a terminal symbol,
thenG 4 is the distribution that puts all of its mass on the unit tedgeledA. The distributions 4
for nonterminal symbols are defined recursively digras follows:

Gu = Z 0a—B,..B, TREEDISTA(GB,,...,GB,) @)
A—B1...B,ERA

where TREEDISTA(Gp,, - .., Gp, ) is the distribution over REE4 (75, , - .., TB,, ) satisfying:

A n
TREEDISTA(GY, ..., Gy) ( — ) = HGi(ti).
tl P tn i=1
That is, TREEDIST4 (G, . . ., Gy) is a distribution over trees where the root node is labelexthd
each subtree; is generated independently frof; it is this assumption that adaptor grammars
relax. The distribution over trees generated by the PCR&sisand the probability of a string is the
sum of the probabilities of all trees with that string as tly&lds.

2.2 The Pitman-Yor process

The Pitman-Yor process [1, 2, 3] is a stochastic processgiiaérates partitions of integers. It is
most intuitively described using the metaphor of seatigjamers at a restaurant. Assume we have
a numbered sequence of tables, anohdicates the number of the table at which ttrecustomer is
seated. Customers enter the restaurant sequentially. rSheustomer sits at the first tablg, = 1,

and then + 1st customer chooses a table from the distribution

ma+b Cnk—a
n yee ey ln Y 617’7, 6 2
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wherem is the number of different indices appearing in the sequenee(z1, ..., z,), nk is the
number of times: appears irng, anddy, is the Kronecker delta function, i.e., the distributionttha
puts all of its mass o. The process is specified by two real-valued parametess, [0, 1] and

b > 0. The probability of a particular sequence of assignmentsiith a corresponding vector of
table countsr = (ny,...,ny,) IS

[T (atk = 1) +) T3, G — )
[0 (i +)

From this it is easy to see that the distribution producedlkyRitman-Yor process exchangeable,

with the probability ofz being unaffected by permutation of the indices of the

P(z) = PY(n|a,b) = 3)

Equation 2 instantiates a kind of “rich get richer” dynamiggth customers being more likely to sit
at more popular tables. We can use the Pitman-Yor procesditeedlistributions with this character
on any desired domain. Assume that every table in our resthbias a value; placed on it, with
those values being generated from an exchangeable dtgiribél, which we will refer to as the
generator. Then, we can sample a sequence of variaples(ys, . . ., y,) by using the Pitman-Yor
process to produce and settingy; = x,. Intuitively, this corresponds to customers entering the
restaurant, and emitting the values of the tables they &obse distribution defined on by this
process will be exchangeable, and has two interestingapeases that depend on the parameters
of the Pitman-Yor process. When= 1, every customer is assigned to a new table, andtaee
drawn fromG. Whena = 0, the distribution on the; is that induced by the Dirichlet process [4],
a stochastic process that is commonly used in nonparanBatyiesian statistics, with concentration
parameteb and base distributio6'.

We can also identify another scheme that generates thédt#n outlined in the previous para-
graph. LetH be a discrete distribution produced by generating a sebofis& from G and weights
on those atoms from the two-parameter Poisson-Dirichstidution [2]. We could then generate a
sequence of samplgsfrom H. If we integrate over values df, the distribution ory is the same
as that obtained via the Pitman-Yor process [2, 3].

3 Adaptor grammars

In this section, we use the ideas introduced in the previeaah to give a formal definition of
adaptor grammars. We first state this definition in full gaiigr, allowing any choice of adaptor,
and then consider the case where the adaptor is based onrtfenPYor process in more detail.

3.1 A general definition of adaptor grammars

Adaptor grammars extend PCFGs by inserting an additiomapoment called aadaptor into the
PCFG recursion (Equation 1). An adaptoris a function from a distributiods to a distribution
over distributions with the same support@sAn adaptor grammar is a sextuplé N, W, R, S, 0, C)
where(N, W, R, S, 0) is a PCFG and the adaptor vecris a vector of (parameters specifying)
adaptors indexed byv. That is,C'4 maps a distribution over tre€g; to another distribution over
T4, for eachA € N. An adaptor grammar associates each symbol with two distoibsG 4 and

H 4 over7y. If Ais aterminal symbol theé 4 and H 4 are distributions that put all their mass on
the unit tree labeled!, while G4 and H 4 for nonterminal symbols are defined as follotvs:

GA = Z eAﬁBl...BleREEDISTA(HBl" o ’HB”) (4)
A—B1...B,€ERA

Hy ~ Ca(Ga)

The intuition here is that? 4 instantiates the PCFG recursion, while the introductiofi/af makes

it possible to modify the independence assumptions beliaddsulting distribution through the
choice of the adaptor;4. If the adaptor is the identity function, witH 4 = G4, the result is
just a PCFG. However, other distributions over trees candfieed by choosing other adaptors. In
practice, we integrate ovéf 4, to define a single distribution on trees for any choice opaolsC.

This definition allows an adaptor grammar to include setfarsive or mutually recursive CFG productions
(g, X - XYorX —-Y Z, Y — X W). Such recursion complicates inference, so we restriciedues
to grammars where the adapted nonterminals are not reeursiv



3.2 Pitman-Yor adaptor grammars

The definition given above allows the adaptors to be any apjai® process, but our focus in the
remainder of the paper will be on the case where the adaptmsisd on the Pitman-Yor process.
Pitman-Yor processes can cache, i.e., increase the plitpahifrequently occurring trees. The ca-
pacity to replace the independent selection of rewritesruligh an exchangeable stochastic process
enables adaptor grammars based on the Pitman-Yor procdsfite probability distributions over
trees that cannot be expressed using PCFGs.

A Pitman-Yor adaptor grammar (PYAG) is an adaptor grammar where the adap@mre based on

the Pitman-Yor process. A Pitman-Yor adapfor(G 4 ) is the distribution obtained by generating a
set of atoms from the distributiod 4 and weights on those atoms from the two-parameter Poisson-
Dirichlet distribution. A PYAG has an adapt6ét, with parameters 4 andb 4 for each non-terminal

A € N. As noted above, iy = 1 then the Pitman-Yor process is the identity function, A&
expanded in the standard manner for a PCFG. Each ad@ptavill also be associated with two
vectors, x4 andn,, that are needed to compute the probability distributioerdxees.x 4 is the
sequence of previously generated subtrees with root natleteldA. Having been “cached” by the
grammar, these now have higher probability than other eabtn 4 lists the counts associated with
the subtrees i 4. The adaptor state can thus be summarized.as- (a4,ba,x4,04).

A Pitman-Yor adaptor grammar analysis u = (¢,¢) is a pair consisting of a parse treec 7g
together with an index functioé(-). If ¢ is a nonterminal node inlabeledA, then¢(q) gives the
index of the entry inc 4 for the subtree’ of ¢ rooted atg, i.e., such thak 4,(,) = t’. The sequence
of analysea1 = (uq,...,u,) generated by an adaptor grammar contains sufficient infiloméo
compute the adaptor sta€g(u) after generatingr: the elements ok 4 are the distinctly indexed
subtrees ofx with root label A, and their frequencies 4, can be found by performing a top-down
traversal of each analysis in turn, only visiting the cleldof a node; when the subanalysis rooted
atq is encountered for the first time (i.e., when it is addedt 9.

4 Examples of Pitman-Yor adaptor grammars

Pitman-Yor adaptor grammars provide a framework in whiéh @asy to define compositional non-
parametric Bayesian models. The use of adaptors based d?itthan-Yor process allows us to
specify grammars that correspond to Dirichlet processeand hierarchical Dirichlet processes
[5]. Once expressed in this framework, a general-purpdsednce algorithm can be used to calcu-
late the posterior distribution over analyses produced impéel. In this section, we illustrate how
existing nonparametric Bayesian models used for word setatien [7] and morphological anal-
ysis [6] can be expressed as adaptor grammars, and dedezibesults of applying our inference
algorithm in these models. We postpone the presentatidreadlgorithm itself until Section 5.

4.1 Dirichlet processes and word segmentation

Adaptor grammars can be used to define Dirichlet processbsdigicrete base distributions. It is
straightforward to write down an adaptor grammar that defaaBirichlet process over all strings:

Word —  Chars
Chars —  Char (5)
Chars —  Chars Char

The productions expandir(ghar to all possible characters are omitted to save space. Ttisgia-
bol for this grammar iSVord. The parametergcy., andacyars are set tol, so the adaptors for
Char andChars are the identity function anfl ¢y,..s = Gonars 1S the distribution over words pro-
duced by sampling each character independently (i.e., akeys at typewriters” model). Finally,
awordq IS Set to0, so the adaptor foWord is a Dirichlet process with concentration paramétes, .

This grammar generates all possible strings of charactetsssigns them simple right-branching
structures of no particular interest, but ¥Werd adaptor changes their distribution to one that reflects
the frequencies of previously generated words. Initidlig Word adaptor is empty (i.eXworq iS
empty), so the first word; generated by the grammar is distributed accordingd@..s. However,

the second word can be generated in two ways: either it ievett from the adaptor’s cache (and



hence iss;) with probability1/(1 4 bwora), Or else with probabilithwora/ (1 + bword) it is a new
word generated b¥7 ¢y, After n words have been emitte®yord puts massi/(n + bwora) ON
those words and reserves magg,q/(n + bwora) for new words (i.e., generated hars).

We can extend this grammar to a simple unigram word segnientabdel by adding the following
productions, changing the start labeM®rds and settingiworas = 1.

Words —  Word
Words —  Word Words

This grammar generates sequence®ofd subtrees, so it implicitly segments strings of terminals
into a sequence of words, and in factimplements the word satation model of [7]. We applied the
grammar above with the algorithm described in Section 5 wrpus of unsegmented child-directed
speech [8]. The input strings are sequences of phonemesasWtizit. A typical parse might
consist ofWords dominating threéVord subtrees, each in turn dominating the phoneme sequences
Wat Iz and It respectively. Using the sampling procedure described oti@e5 with bworq =

30, we obtained a segmentation which identified words in unseged input with 0.64 precision,
0.51 recall, and 0.56 f-score, which is consistent with #mults presented for the unigram model
of [7] on the same data.

4.2 Hierarchical Dirichlet processes and morphological aalysis

An adaptor grammar with more than one adapted nonterminahgalement a hierarchical Dirichlet
process. A hierarchical Dirichlet process that usesWhed process as a generator can be defined
by adding the productioWordl — Word to (5) and makingVord1 the start symbol. Informally,
Word1 generates words either from its own cachg,.q1 or from theWord distribution. Word
itself generates words either fragjy..a Or from the “monkeys at typewriters” mod€hars.

A slightly more elaborate grammar can implement the mompdiokl analysis described in [6].
Words are analysed into stem and suffix substrings; e.gwithd jumpingis analysed as a stem
jumpand a suffixing. As [6] notes, one of the difficulties in constructing a prbitiatic account
of such suffixation is that the relative frequencies of seffixaries dramatically depending on the
stem. That paper used a Pitman-Yor process to effectivatypea this frequency variation, and
the adaptor grammar described here does exactly the sante fhihe productions of the adaptor
grammar are as follows, whefghars is “monkeys at typewriters” once again:

Word —  Stem Suffix
Word — Stem

Stem —  Chars
Suffix —  Chars

We now give an informal description of how samples might beegated by this grammar. The
nonterminal$Word, Stem andSuffix are associated with Pitman-Yor adaptors. Stems and suffixes
that occur in many words are associated with highly probedtde entries, and so have much higher
probability than under th€hars PCFG subgrammar.

Figure 1 depicts a possible state of the adaptors in thistadgpammar after generating the three
wordswalking, jumpingandwalked Such a state could be generated as follows. Before angstrin
are generated all of the adaptors are empty. To generateshedird we must sample frofworq,

as there are no entries in tord adaptor. Sampling fronifyy,.q requires sampling fromrscm,
and perhaps als@'sumx, and eventually from th€hars distributions. Supposing that these return
walk anding as Stem and Suffix strings respectively, the adaptor entries after geneydkia first
word walking consist of the first entries fdVord, Stem andSuffix.

In order to generate anoth&ord we first decide whether to select an existing word from the
adaptor, or whether to generate the word ugiRg,.q. Suppose we choose the latter. Then we must
sample fromHg.,, and perhaps also frofig.mx. Suppose we choose to generate the new stem
Jjumpfrom Gster, (resulting in the second entry in tBeem adaptor) but choose to reuse the existing
Suffix adaptor entry, resulting in the wojfdmping The third wordwalkedis generated in a similar
fashion: this time the stem is the first entry in em adaptor, but the suffiedis generated from
Gsumix @nd becomes the second entry in fhghix adaptor.
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Figure 1. A depiction of a possible state of the Pitman-Yoagdrs in the adaptor grammar of
Section 4.2 after generatingalking, jumpingandwalked

The model described in [6] is more complex than the one justrileed because it uses a hidden
“morphological class” variable that determines which st&uffix pair is selected. The morpholog-
ical class variable is intended to capture morphologicehtian; e.g., the present continuous form
skippingis formed by suffixingpinginstead of théng form using inwalkingandjumping This can
be expressed using an adaptor grammar with productionstantiate the following schema:

Word — Word, Stem, — Chars
Word, — Stem, Suffix, Suffix, — Chars
Word, — Stem,

Here ¢ ranges over the hidden morphological classes, and the giods expandinghars and
Char are as before. We set the adaptor paramejgrq = 1 for the start nonterminal symbol
Word, so we adapt th&ord,., Stem. andSuffix, nonterminals for each hidden class

Following [6], we used this grammar with six hidden classdse segment 170,015 orthographic
verb tokens from the Penn Wall Street Journal corpus, and seb andb = 500 for the adapted
nonterminals. Although we trained on all verbs in the corpuss evaluated the segmentation pro-
duced by the inference procedure described below on justaties whose infinitival stems were a
prefix of the verb itself (i.e., we evaluats#tippingbut ignoredwrote since its stenwrite is not a
prefix). Of the 116,129 tokens we evaluated, 70% were cdyreegmented, and of the 7,170 verb
types, 66% were correctly segmented. Many of the errors imdiet linguistically plausible: e.g.,
easedvas analysed as a stesasfollowed by a suffixed permitting the grammar to also generate
easingaseasplusing.

5 Bayesian inference for Pitman-Yor adaptor grammars

The results presented in the previous section were obtéipeing a Markov chain Monte Carlo
(MCMC) algorithm to sample from the posterior distributiover PYAG analysea = (uq, ..., u,)
given strings = (s1, ..., s, ), wheres; € W* andu;, is the analysis of;. We assume we are given
a CFG(N, W, R, S), vectors of Pitman-Yor adaptor parameterandb, and a Dirichlet prior with
hyperparameters over production probabilitie®, i.e.:

1
POla) = ]] I 0a-s**"" where:
aen Bloa) , o2p,




I‘(ZA‘?,@GRA CYA_)ﬁ)
with T'(z) being the generalized factorial function, amg is the subsequence ofindexed byR 4
(i.e., corresponding to productions that expat)d The joint probability ofu under this PYAG, in-

tegrating over the distributiond 4 generated from the two-parameter Poisson-Dirichletibigtion
associated with each adaptor, is

dla.a _ B(aA+fA(XA))
Puloa) = 11 ==5a)

where f4_.3(x4) is the number of times the root node of a treexin is expanded by production
A — B, andf(x4) is the sequence of such counts (indexed lay R 4). Informally, the first term
in (6) is the probability of generating the topmost node ioheanalysis in adaptar'y (the rest of
the tree is generated by another adaptor), while the seeomd(from Equation 3) is the probability
of generating a Pitman-Yor adaptor with counts.

B(aA) =

PY(n4(u)la, b) (6)

The posterior distribution over analysagiven stringss is obtained by normalizing(® |, a, b)
over all analysea that haves as their yield. Unfortunately, computing this distriburtis intractable.
Instead, we draw samples from this distribution using a comept-wise Metropolis-Hastings sam-
pler, proposing changes to the analysjsfor each strings; in turn. The proposal distribution is
constructed to approximate the conditional distributivara:; givens; and the analyses of all other
stringsu_;, P(u;|s;, u_;). Since there does not seem to be an efficient (dynamic pragnag) al-
gorithm for directly sampling from Rz;|s;, u_;),% we construct a PCFG’(u_;) on the fly whose
parse trees can be transformed into PYAG analyses, andigsestbur proposal distribution.

5.1 The PCFG approximationG’(u_;)

A PYAG can be viewed as a special kind of PCFG which adaptsadyztion probabilities depend-
ing on its history. The PCFG approximati6fi(u_,;) = (N, W, R’, S, ¢’) is a static snapshot of the
adaptor grammar given the sentenses(i.e., all of the sentences inexcepts;). Given an adaptor
grammarHd = (N, W, R, S, C), let:

R = RU |J{A— YEED(z):z €xa}
AEN
y _ [(maaa+ba fasp(xa) +aasp NA, — GA
A=g = na+0b ma+Y. «Q * Z na+0b
AT oA A A—pBER, FA—S k:Y1ELD(X 4, )=8 AT0A

where YiELD(z) is the terminal string or yield of the treeandm 4 is the length ok 4. R’ contains
all of the productionsR, together with productions representing the adaptor ey for each
A € N. These additional productions rewrite directly to strimjserminal symbols, and their
probability is the probability of the adapt6r, generating the corresponding valug, .

The two terms to the left of the summation specify the prolitstnf selecting a production from
the original production&. The first term is the probability of adapt6él, generating a new value,
and the second term is the MAP estimate of the productiommbatrility, estimated from the root
expansions of the trees, .

It is straightforward to map parses of a stringroduced byG’ to corresponding adaptor analyses
for the adaptor grammail (it is possible for a single production dt’ to correspond to several
adaptor entries so this mapping may be non-determiniskicis means that we can use the PCFG
G’ with an efficient PCFG sampling procedure [9] to generatesipbes adaptor grammar analyses
for u;.

5.2 A Metropolis-Hastings algorithm

The previous section described how to sample adaptor awaly®r a strings from a PCFG ap-
proximationG’ to an adaptor grammdi. We use this as our proposal distribution in a Metropolis-

2The independence assumptions of PCFGs play an importanirrahaking dynamic programming possi-
ble. In PYAGs, the probability of a subtree adapts dynarhiadpending on the other subtreeainincluding
those inu,;.



Hastings algorithm. I, is the current analysis of; andu; # u; is a proposal analysis sampled
from P(U;|s;, G'(u_;)) we accept the proposa) with probability A(u;, u;), where:
. P(u'|a,a,b) P(u; | s;, G'(u_;))
A i / — 1 3 ) )
(is ) mm{ " P(u]a,a,b)P(u) | s;, G'(u_;))
whereu’ is the same aa except that, replaces:;. Except when the number of training strings

is very small, we find that only a tiny fraction (less thH¥) of proposals are rejected, presumably
because the probability of an adaptor analysis does nogehsignificantly within a single string.

Our inference procedure is as follows. Given a set of trgirsimingss we choose an initial set of
analyses for them at random. At each iteration we pick agtrjrfrom s at random, and sample a
parse fors; from the PCFG approximatioi’ (u_;), updatingu when the Metropolis-Hastings pro-
cedure accepts the proposed analysis. At convergeneegheduced by this procedure are samples
from the posterior distribution over analyses giwgrand samples from the posterior distribution
over adaptor stateS(u) and production probabilitieécan be computed from them.

6 Conclusion

The strong independence assumptions of probabilisticegbifitee grammars tightly couple com-
positional structure with the probabilistic generativeqass that produces that structure. Adaptor
grammars relax that coupling by inserting an additionatiséstic component into the generative
process. Pitman-Yor adaptor grammars use adaptors bashd Bitman-Yor process. This choice
makes it possible to express Dirichlet process and hieiGkbirichlet process models over dis-
crete domains as simple context-free grammars. We haveopedpa general-purpose inference
algorithm for adaptor grammars, which can be used to sampha the posterior distribution over
analyses produced by any adaptor grammar. While our foagshaes been on demonstrating that
this algorithm can be used to produce equivalent resultsistirg nonparametric Bayesian models
used for word segmentation and morphological analysigythat promise of this framework lies in
its simplification of specifying and using such models, jdowg a basic toolbox that will facilitate
the construction of more sophisticated models.
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