
Compufational Inrelligence, Volume 10, Number 4, 1994

LOGICAL EMBEDDED PUSH-DOWN AUTOMATA IN
TREE-ADJOINING GRAMMAR PARSING

MARK JOHNSON
Cognitive and Linguistic Sciences, Box 1978, Brown Universiq, Providence, RI 02906, U.S.A.

This paper extends the “parsing as deduction” approach to tree-adjoining grammars by showing how a TAG
recognition problem can be reduced to a Datalog deduction problem, and presents an SLD selection rule that makes
the proof search correspond to a top-down parse using the original grammar. Just as in the DCG extension of
context-free grammars, this approach permits nodes tn be labeled with first-order terms (rather than only atomic
symbols). Finally the paper discusses implementation matters, and describes how the control rule can be efficiently
implemented in Prolog.

Key words: natural language. logic programming, program transformations.

1. INTRODUCTION

The connection between context-free grammar (CFG) parsing and Horn-clause deduction
is well-known (Pereira and Warren 1983). At the 1990 TAG conference Bernard Lang (1990)
showed how this approach could in principle be extended to tree-adjoining grammars (TAGs)
by describing a method for translating them into a finite set of Horn clauses. This logical
formulation of TAGS extends straightforwardly to the case where nodes are labeled with first-
order terms instead of atomic symbols, extending TAGs in the same way that DCGs extend
CFGs. Thus i t can express feature-based TAGs (Vijay-Shaker and Joshi 1988), albeit using
the “position-value” notation of first-order terms rather the standard “attribute-value’’ notation
of unification grammars.

Since Prolog programs are finite sets of Horn clauses, one might also hope to obtain a
useful TAG parser by simply running the output of this translation procedure as a Prolog
program, in the same way that definite clause grammars (DCGs) are translated into and
executed as Prolog programs. But as Lang noticed, when executed by Prolog these programs
function as generate-and-test parsers that fail to terminate in most cases. In this paper we
diagnose this problem as stemming from Prolog’s selection rule. Unlike the DCG case in
which Prolog’s native left-to-right selection rule results in a top-down recognizer for CFGs,
the left-to-right selection rule does not suffice in general for the TAG case; rather, a coroutining
selection rule is required to achieve termination. We provide a simple coroutining rule which
produces SLD proofs that correspond to top-down parses using TAGs (just as SLD proofs
using DCG clauses correspond to top-down parses using CFGs).

It turns out that the coroutining selection rule needed for termination has an interesting
structure. If the negative literals awaiting reduction are stored in an embedded push-down
automaton (EPDA) (Weir 1988), then the selection rule has a particularly simple form. This
should come as no surprise, since EPDAs provide the basic organizational structure needed
for top-down TAG parsing.

Interestingly, this approach in which an SLD resolution proof is regarded as an accept-
ing derivation of automata whose tokens are first-order atoms (rather than atomic symbols)
was pioneered by Bernard Lang in other work on logical push-down automata (Lang 1988,
1991). To emphasize this connection, we dub the SLD proof procedure with the EPDA-based
selection rule a logical embedded push-down automaton (LEPDA).

The final part of the paper focuses on the implementation of the resulting system. An
LEPDA interpreter is easily written in Prolog, but the resulting parser is inefficient because
of the extra layer of interpretation. However, partial evaluation can be used to remove the

0 1994 Blackwell Publishers, 238 Main Street, Cambridge, MA 02142, USA, and 108 Cowley Road, Oxford, OX4 IJF, UK.

496 COMPUTATIONAL INTELLIGENCE

george
vp(hates(Subj ,Obj))

hates

FIGURE 1. The initial trees in the example grammar.

vp(violently(VP)) n (cooked(N))

violently cooked

FIGURE 2. The auxiliary trees in the example grammar.

interpretation overhead, and results in a program which can be evaluated using a standard
Prolog interpreter.

2. THE HORN AXIOMATIZATION OF TAGS

This section reviews Lang’s method for axiomatizing a TAG in Horn clauses (Lang 1990),
using a grammar inspired by the one presented by Shieber and Schabes (1990). The initial
trees in the example grammar are shown in Fig. 1 and the auxiliary trees are shown in Fig. 2.
The subscript down arrow indicates an obligatory substitution point and the subscript star
indicates the adjunction foot. Adjunction sites are given two labels; they correspond directly
to the ‘upper’ and ‘lower’ feature components in feature-based TAGs (Vijay-Shaker and
Joshi 1988). The procedure which translates TAGs into Horn clauses has two parts. The first
part consists of three steps. The first two steps deal with logical variables that appear in node
labels, and have no effect in a grammar in which all labels are atomic symbols.

1. Add all the arguments appearing in the foot node of an auxiliary tree as additional
arguments of the root node.

2. Introduce additional variables so that all dependencies are local. This affects only internal
nodes.

3. Rename uniquely the category label of each interior node in every tree.

LOGICAL EMBEDDED PUSH-DOWN AUTOMATA IN TREE-ADJOINING GRAMMAR PARSING 497

FIGURE 3. The initial trees in the example grammar after assigning unique internal node labels and making
all dependencies local.

vp(violently(VP), Vpo) n(cooked(N), NO)

violently cooked

FIGURE 4. The auxiliary trees in the example grammar after assigning unique internal node labels and
making all dependencies local.

Step 1 copies the foot node features into the corresponding root node, so that both foot and
root node features are accessible in a single place. Steps 2 and 3 localize all of the nonlocal
dependencies in the initial and auxiliary trees. Because each local tree (i.e., a node and its
immediate descendants) will be encoded as a separate clause, the first part of the translation
procedure localizes all nonlocal variable dependencies by adding the shared variables to all
intermediate nodes. In addition, the procedure assigns every internal node a unique label.
Thus the resulting node labels identify a particular node in a particular tree.

Figures 3 and 4 show renamed versions of the initial and auxiliary trees of Figs. 1 and 2,
respectively, where renaming is performed by adding a unique number subscript. In addition,
variables added in steps 1 and 2 are shown underlined. The second part of the translation
converts each local tree into a Horn clause. For simplicity in specifying the translation, in this
section category labels are assumed to be atomic symbols. To deal with non-atomic category
labels, additional arguments are added to literals just as in the DCG translation procedure.

Informally, each occurence of a label in an initial tree will be associated with two string
positions, just as in a DCG. Because adjunction sites have two labels (the 'upper' and 'lower'
components), an adjunction node is associated with four string positions. Figure 5 diagrams
these four positions. Suppose an auxiliary tree (shown darkly shaded) is adjoined to a node
labeled X in an initial tree (shown lightly shaded), producing the composite structure depicted

498 COMPUTATIONAL INTELLIGENCE

Initial Tree Auxiliary Tree

OutLeft InLeft InRight OutRight

The result of adjoining the initial tree to the auxiliary tree

FIGURE 5. The four string positions involved in an adjunction.

at the bottom of the figure. The pair of string positions labeled OutLeft and OutRight are
associated with the upper component of the adjunction site X in the initial tree, and the
pair of string positions labeled InLeft and InRight are associated are associated with its lower
component. The root node of the auxiliary tree is also associated with the four string positions
OutLeft, InLeft, InRight and OutRight.

More precisely, a local tree consists of a parent node with label a and its sequence of
children nodes with labels P I , . . . , f i n . If the parent node is an adjunction site (i.e., has a
fractional label) then a is the lower component of the label, whereas if the ith child node is
an adjunction site then Pi is the upper component of the label.

The Horn translation of a local tree depends on whether it occurs on the path from the
foot node to the root node in an auxiliary tree, and whether or not it contains a lexical item.
There are three cases to consider; the first two are exactly the same as the corresponding cases
in the DCG translation procedure. In the following S, Si and for 0 5 i 5 n are distinct
logical variables.

1. A local tree consisting of a parent category a dominating the terminal w i s translated as
the unit clause'

(.([wlSI* S) . (1)

'Here it is assumed that lexical items are always exhaustively dominated by some node. It is tedious, but possible, to
remove this restriction.

LOGICAL EMBEDDED P~SH-DOWN AUTOMATA IN TREE-ADJOINING GRAMMAR PARSING 499

For example, the local tree rooted at v3 in Fig. 3 is translated as the clause

v-3 ([hates I S] , S) .

2. A local tree not lying on a foot to root path of an auxiliary tree is translated as the clause

(2)

For example, the local tree rooted at vp, in Fig. 3 is translated (when argument variables
are taken into account) as the clause

a(S0, Sn) + Bl(S0, Sl>, . . . , Bn(Sn-I, Sn).

vp_2(SO, S, hates(Subj,Obj), Subj) : -
v_3(SO, Sl),
np(S1, S, Obj).

3. A local tree lying on a foot to root path of an auxiliary tree, where the mth child node
dominates the foot node, is translated as the clause

 SO, S m , Tm. Tn> +

(3) BI(SO, SI), . . ., B m - l (S m - 2 , Srn-~) ,
B r n (S m - 1 , s m , Tin, T ~ + I) ,
Bm+l(Tm+l, Trn+2)?. . . , Bn(Tn-1, Tn).

For example, the local tree rooted at the root node of the left-most auxiliary tree of Fig. 4
is translated as the following clause.

vp(S0, S, TO, T, violently(VP), VPO) : -
vp(S0, S, TO, T1, VP, VPO),
advp-7 (Tl, T) .

Now we turn to internal adjunction sites. Each internal adjunction site is translated as a Horn
clause. There are two cases to be considered here.

4. An internal adjunction site not lying on a foot to root path of an auxiliary tree with a
numerator labeled a and a denominator labeled B is translated as the clause

(4)

where y is the “original” label of the node before the renaming step (3) above. For
example, the adjunction site vp, /vp2 is translated as the following clause.

vp-l(S0, T , SS, Subj) : -

a(S0, TI) + Y(S07 s1, To, TI), B(S1, To)

vp(S0, S, TO, T, SS, hates(Subj,Obj)),
vp_2(S, TO, hates(Subj,Obj), Subj).

5. An internal adjunction site lying on a foot to root path of an auxiliary tree with labels as
above is translated as the clause

(5) a (S0 , s27 To, T2) + Y(S07 s1, TI, T2)7 B(Sl, Sz. TO> TI).

Finally, we require a clause for each (unrenamed) category that labels an adjunction site
which expresses that adjunction is optional. (If these clauses are omitted, then adjunction at
adjunction sites will be obligatory).

500 COMPUTATIONAL INTELLIGENCE

:- op(700, xfx , < -) .

s (S 0 , s , SS) <-
[np!SO, S1, Subjil-[vp-l(Sl, S, SS, Subj)]-[J.

vp-l(SO, T, SS, Sub]) <- [1 - [
vp!SO, S, TO, T, SS, hates(Subj.Obj)),
vp-2 (S , TO, hates (Subj, Obj 1 , Subj) 1 - [I .

vp-2(SO, S , hates(Subj,Obj), Subj) C I -

[V - 3 (S o , S1)1-[np(Sl, S , Obj)]-[]

~-3(thateslSO!, SO) <- [1 - [1 - [1

vpiS, S, T, T, VP, VP) <- []-[I-[].
vp(S0, S, TO, T, violently(VP), VPO) <-

[]-[~~(so, S, TO, T1, VP. VPO)]-[advp_7(Tl, TI].

advp-7 ([violently IS] , s) < - [] - [1 - [] ~

np([georgelsl, s , george) <- [1-l1-[1.

n_4(SO, T1, N) <-
[]-[~~(so, S1, TO, T1, N, NO), n-5(S1, TO, NO)]-[]

n-5([broccolilS], S, broccoli) <- [1-[1-[1

FIGURE 6. Horn clause grammar axioms.

6. For each distinct y that appeared in steps (4) and (5) above, add a clause of the form

For example, the translation contains the following clause, which expresses the fact that
adjunction at vp is optional.

T (S , S , T, T, VP, VP) -

The Horn clauses that result in this translation are shown in Fig. 6, albeit in a slightly strange
notation. The left arrow <: - should be read as a right-to-left implication sign, and the negative
literals of the clause are the result of appending the atoms in all three lists to its right (the
reason for separating the negative literals into three groups is explained below).

LOGICAL EMBEDDED PUSH-DOWN AUTOMATA IN TREE-ADJOINING GRAMMAR PARSING 50 1

The Horn clauses produced by the translation procedure correctly specify the strings
generated by the grammar, but the Prolog program functions as a ‘generate and test’ parser
which in general does not terminate on all input strings.

The problem arises because Prolog’s native left-to-right selection rule is not flexible
enough to ensure that (goals corresponding to) terminals are resolved in the order they ap-
pear in the input to be parsed. Consider again the tree depicted in Fig. 5 that results from
adjunction. The clause corresponding to (the root node of) the auxiliary tree directly or indi-
rectly introduces subgoals corresponding to the terminals between the pair of string positions
OutLeft and InLeft, as well between the pair of string positions InRight and OutRight.

Now, the clause corresponding to the initial tree directly or indirectly introduces subgoals
that correspond to the terminals between InLeft and InRight. How should these subgoals be
ordered in the clause with respect to the goal that introduces the auxiliary tree, which is also
contained in the clause corresponding to the initial tree? It turns out that no goal ordering is
satisfactory. Because subgoals corresponding to terminals in the auxiliary tree are responsible
for instantiating the string position variable InLeft, none of these subgoals can be ordered
before the goal that introduces auxiliary tree, otherwise InLeft would be uninstantiated.
Because every terminal can be ‘recognized’ at an uninstantiated left string position, such a
goal ordering results in a ‘generate-and-test’ parsing strategy.

The other option-that the subgoals corresponding to the terminals between InLeft and
InRight are ordered after the goal that introduces the auxiliary tree-also results in a ‘generate-
and-test’ behavior, because the goals corresponding to the terminals between InRight and
OutRight in the auxiliary tree would be recognized before the terminals in the initial tree that
span InLeft to Inkght.

It seems as if what is needed is an ability to insert subgoals from the clause corresponding
to the initial tree bemeen the subgoals from the auxiliary tree. Prolog’s native left-to-right
selection rule provides no way to do this, but the EPDA-based selection rule described below
can do this. It is no surprise that an EPDA-based selection rule suffices to control a proof that
corresponds to a top-down TAG parse, since EPDAs are the basic automata model of TAG
parsing.*

3. THREE IMPLEMENTATIONS

This section describes three successively refined implementations of a top-down TAG
parser that uses SLD resolution on clauses produced by the translation just described. All of
the implementations reduce goals in the same order (which corresponds exactly to the order
in which the corresponding nodes would be enumerated in a top-down parse).

1. The first implementation uses a selection rule which only selects goals whose first (i.e.,
leftmost) string arguments are instantiated (all other goals are delayed). It is easy to
implement this strategy using a metainterpreter, and it can be tolerably efficiently im-
plemented in extended Prolog implementations which incorporate coroutining control
extensions such as freeze or w a i t .

2. The second implementation uses a metainterpreter which stores unresolved goals in an
embedded push-down stack. This metainterpreter, called a logical embedded push-down
automaton (LEPDA), uses the original Horn clause axiomatization annotated with control
information (as in Fig. 6) which tells it how to manipulate the embedded push-down

*Similiarly, Prolog’s native PDA-based selection rule enables a resolution proof to correspond directly to a top-down CFG
parse.

502 COMPUTATIONAL INTELLIGENCE

stacks. Even though it resolves goals in the same order as implementation 1, it does not
require coroutining primitives.

3. Finally, a Prolog program can be obtained by partially evaluating the,metainterpreter just
mentioned with the grammar axioms and performing additional program transformations.
The resulting program passes a stack of additional goals from goal to goal in ‘continuation-
passing’ style.3 It is probably the most efficient of all of the implementations, and does
not require coroutining primitives.

The crucial observation that the second and third control strategies depend on is that the
order in which literals should be selected can be enumerated by an embedded push-down
automaton, so the inference procedure can be implemented by a LEPDA.

The state information of the LEPDA metainterpreter of implementation 2 consists of an
EPDS that holds the goals that still remain to be reduced. A LEPDA program is set of Horn
clauses in which the negative literals have been partitioned into three sequences, so each Horn
clause is of the form a t B1 - 8 2 - B3, where each Bi is a sequence of atoms.4

There are two basic operations in a LEPDA that are continued until the EPDS is empty.

1. If the top stack of the EPDS is empty, pop it.
2. Remove the top goal a! from the top stack of the EPDS, and nondeterministically attempt

to unify it with the head a!’ of each clause a’ t /!I1 - 8 2 - 83 in the program. If this
succeeds, then push 8 2 in reverse order onto the top stack, insert 8 3 as a “new” stack
immediately below the top stack, and finally push B1 as a new stack on top of the top
stack.

An LEPDA implements an SLD resolution proof procedure; the goal sequences in the clauses
determine only the order in which goals are reduced.

Figure 6 is in fact a LEPDA program that recognizes the grammar depicted in Figs. 1
and 2. The control information, which determines how the negative literals are assigned to
stacks when the clause’s head is reduced, is generated as follows. (The “type” of a clause
refers to the translation rule used to produce it).

1. In clauses of type (2) each negative literal is assigned to its own stack. (Since the heads
of these clauses can only appear at the bottom of an EPDS stack, it does not matter which
stacks these are).

2. In clauses of type (3) each negative literal is assigned to its own stack, and in addition
the literal corresponding to the mth child (the one on the path from the foot to the root)
must be in the current stack (Le., it must be pushed onto the stack the head literal was
popped from).

3. In clauses of type (4) and (5) both negative literals are assigned to the current stack (i.e.,
they are both pushed on to the stack that was just popped).

Figure 7 contains a Prolog interpreter for LEPDA programs. Note that the “outer stack” of
the EPDS is implemented using Prolog’s own stack of pending goals.

While conceptually elegant, the metainterpreter approach of implementation 2 is quite
inefficient. The metainterpreter overhead can be eliminated by partial evaluation and other
program transformation techniques. Specifically, the LEPDA interpreter can be partially

3Martin Kay has independently developed a Prolog encoding of TAGS very similar to this one.
4Thc language of LEPDA programs can be extended to allow the creation of an arbibary number of new stacks per

reduction, at the cost of a minor increase in complexity of the metainterpreter described below, but the language presented here
suffices for a grammar with at most binary branching.

LOGICAL EMBEDDED PUSH-DOWN AUTOMATA IN TREE-ADJOINING GRAMMAR PARSING 503

prove(Goa1) :-
lepda ([Goall I .

lepta([I) .
lepca([GoallGoalsOl) : -

Goal <- Before-Goalsl-After,
append (Goalsl, Goalso, Goals),
lepda (Before) ,
lepda (Goals),
lepda (After) .

FIGURE 7. A Prolog interpreter for LEPDA programs

evaluated with respect to LEPDA program clauses and the append clauses in the usual
manner (see, e.g., Pereira and Shieber 1987 for details). In addition to partial evaluation, the
Prolog program for implementation 3, in Fig. 8, is obtained by

0 Partially evaluating any deterministic call to lepda,
0 Promoting category labels to predicate names (i.e., systematically replacing every atom

of the form lepda ([P(T1, . . . , T,) 1 L]) with the atom P(T1, . . . , T,, L)) , and
0 Promoting the category labels over the list of pending goals manipulated by lepda.’

When we do this, we see that the list of goals is playing the role of a continuation in the manner
described by Sat0 and Tamalu (1989); suggesting the renaming of the lepda relation to cont
and using true to name the “empty list” of pending goals. In the program in Fig. 8 the last
argument holds the continuation of goals, and the predicate cont calls the appropriate goal
with the appropriate arguments. Roughly speaking, adjunction pushes a goal on to the current
continuation (cf., the clauses for vp-1 and np-4), which is activated when the left-hand side
of that adjunction has been processed.

Note that further optimization of this program is possible. For example, since the heads
of clauses of types (1) and (2) can only appear at the bottom of some stack in the EPDS,
the continuation associated with these heads will always be true; these clauses can be
specialized for this case and the continuation argument omitted.

4. CONCLUSION

This paper has shown that there is a systematic, automatizable method of proceeding
from Lang’s Horn clause axiomatization of a TAG to a Prolog program that functions as a
top-down parser of that TAG. Only a comparatively small residue of the LEPDA interpreter
(the cont predicate) remains.

But like all top-down parsers, these parsers will fail to terminate on certain inputs when
the grammar is left-recursive. The VP adjunction rule in the grammar in Fig. 2 is an example
of such a left-recursive construction.

In the domain of CFG parsing, alternative control strategies, such as left-corner and shift-
reduce strategies, terminate with left-recursive grammars, and the left-comer algorithm can
be naturally implemented as a Horn program transformation. It would be interesting to inves-

5For example, by promoting function symbols the list [a , b , c 1 becomes the term a (b (c (I 1 1 i) .

504 COMPUTATIONAL INTELLIGENCE

S (S 0 , s , s s , C) :-

np(S0, S1, Subj, true), vp-l(S1, S, SS, Subj, C).

vp-l(S0, T, SS, Subj, C) :-
vp(S0, S, TO, T, SS, hates(Subj,Obj),

vp-2(S, TO, hates(Subj,Obj), Subj, C))

vp-2(SO, S, hates(Subj,Obj), Subj, C) : -

v-3(SO, S1, true), np(S1, S, Obj, c) .

~-3([hateslSO], SO, C) : - cont(C).

vp(S, S, T, T, VP, VF, C) :- cont (C) .
vp(S0, S, TO, T, violently(VP), VPO, C) : -

~ (s o . S. TO. T1, VP, VPO. C) . advp_7(T1, T, true).

advp-7 ([violentlylSl, S , C) : - cont(C)

np([georgelSl, S, george, C) : - cont(C

np(S0, S1, NP, C) : - n_4(SO, S1, NF, C i

n-4(SO, T1, N, C) :-
n(S0, S1, TO, T1, N, NO, n_5(S1, TO, NO, C)) .

n_5([broccolilS], S, broccoli, C) : - cont(C).

n (S , S , T , T, N, N, C) :- cont(C).
n(S0, S, TO, T, cooked(NO), N, C) :-

ap_6(sO, S1, true), n(S1, S , TO, T , NO, N. C).

ap-6 ([cookedl Sl , S, C) : - cont (C) .

cont (true) .
cont(vp-2(Al, A2, A3, A4, A5)) : - vp_2(Al, A2, A3, A4, A5).
cont(n_5(Al, A2, A3, A4)) : - n-S(A1, A2, A3, A4).

FIGURE 8. The result of partial evaluation and transformation.

tigate how these techniques can be formalized as control rules for appropriate axiomatizations
of TAGS.

REFERENCES

LANG, B. 1988. Complete evaluation of Horn clauses: an automata-theoretic approach. Research Report 913,

LANG, B. 1990. Horn axiomatization of tree-adjoining grammars. Presentation at the TAG conference, Schloss

LANG, B. 199 1 . Towards a uniform formal framework for parsing. In Current issues in parsing technology. Edited

INRIA.

Dagstchl.

by M. Tomita. Kluwer Academic. Boston, MA.

LOGICAL EMBEDDED PUSH-DOWN AUTOMATA IN TREE-ADJOINING GRAMMAR PARSING 5 05

PEREIRA, F., and S . SHIEBER. 1987. Prolog and natural language analysis. C.S.L.I. Lecture Notes Series 10.
Chicago University Press, Chicago.

PEREIRA, F., and D. H. D. WARREN. 1983. Parsing as deduction. In The Proceedings of the 21st Annual Meeting
of the Association for Computational Linguistics, Massachusetts Institute of Technology, pp. 137-144.

SATO, T., and H. TAMAKI. 1989. Existential continuation. New Generation Computing, 6(4):421-438.
SHIEBER, S . M., and Y. SCHABES. 1990. Synchronous tree-adjoining grammars. In The Proceedings of the 13th

International Conference on Computational Linguistics (COLING '90), Helsinki, Finland.
VIJAY-SHANKER, K., and A. K. JOSHI. 1988. Feature based tree adjoining grammars. In Proceedings of the 12th

International Conference on Computational Linguistics, Budapest, Hungary.
WEIR, D. J. 1988. Characterizing mildly context-sensitive grammar formalisms. Ph.D. thesis, University of

Pennsylvania.

