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LOGICAL EMBEDDED PUSH-DOWN AUTOMATA IN 
TREE-ADJOINING GRAMMAR PARSING 

MARK JOHNSON 
Cognitive and Linguistic Sciences, Box 1978, Brown Universiq, Providence, RI 02906, U.S.A. 

This paper extends the “parsing as deduction” approach to tree-adjoining grammars by showing how a TAG 
recognition problem can be reduced to a Datalog deduction problem, and presents an SLD selection rule that makes 
the proof search correspond to a top-down parse using the original grammar. Just as in the DCG extension of 
context-free grammars, this approach permits nodes tn be labeled with first-order terms (rather than only atomic 
symbols). Finally the paper discusses implementation matters, and describes how the control rule can be efficiently 
implemented in Prolog. 
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1. INTRODUCTION 

The connection between context-free grammar (CFG) parsing and Horn-clause deduction 
is well-known (Pereira and Warren 1983). At the 1990 TAG conference Bernard Lang (1990) 
showed how this approach could in principle be extended to tree-adjoining grammars (TAGs) 
by describing a method for translating them into a finite set of Horn clauses. This logical 
formulation of TAGS extends straightforwardly to the case where nodes are labeled with first- 
order terms instead of atomic symbols, extending TAGs in the same way that DCGs extend 
CFGs. Thus i t  can express feature-based TAGs (Vijay-Shaker and Joshi 1988), albeit using 
the “position-value” notation of first-order terms rather the standard “attribute-value’’ notation 
of unification grammars. 

Since Prolog programs are finite sets of Horn clauses, one might also hope to obtain a 
useful TAG parser by simply running the output of this translation procedure as a Prolog 
program, in the same way that definite clause grammars (DCGs) are translated into and 
executed as Prolog programs. But as Lang noticed, when executed by Prolog these programs 
function as generate-and-test parsers that fail to terminate in most cases. In this paper we 
diagnose this problem as stemming from Prolog’s selection rule. Unlike the DCG case in 
which Prolog’s native left-to-right selection rule results in a top-down recognizer for CFGs, 
the left-to-right selection rule does not suffice in general for the TAG case; rather, a coroutining 
selection rule is required to achieve termination. We provide a simple coroutining rule which 
produces SLD proofs that correspond to top-down parses using TAGs (just as SLD proofs 
using DCG clauses correspond to top-down parses using CFGs). 

It turns out that the coroutining selection rule needed for termination has an interesting 
structure. If the negative literals awaiting reduction are stored in an embedded push-down 
automaton (EPDA) (Weir 1988), then the selection rule has a particularly simple form. This 
should come as no surprise, since EPDAs provide the basic organizational structure needed 
for top-down TAG parsing. 

Interestingly, this approach in which an SLD resolution proof is regarded as an accept- 
ing derivation of automata whose tokens are first-order atoms (rather than atomic symbols) 
was pioneered by Bernard Lang in other work on logical push-down automata (Lang 1988, 
1991). To emphasize this connection, we dub the SLD proof procedure with the EPDA-based 
selection rule a logical embedded push-down automaton (LEPDA). 

The final part of the paper focuses on the implementation of the resulting system. An 
LEPDA interpreter is easily written in Prolog, but the resulting parser is inefficient because 
of the extra layer of interpretation. However, partial evaluation can be used to remove the 
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george 
vp(hates( Subj ,Obj )) 

hates 

FIGURE 1. The initial trees in the example grammar. 

vp(violently(VP)) n (cooked(N)) 

violently cooked 

FIGURE 2. The auxiliary trees in the example grammar. 

interpretation overhead, and results in a program which can be evaluated using a standard 
Prolog interpreter. 

2. THE HORN AXIOMATIZATION OF TAGS 

This section reviews Lang’s method for axiomatizing a TAG in Horn clauses (Lang 1990), 
using a grammar inspired by the one presented by Shieber and Schabes (1990). The initial 
trees in the example grammar are shown in Fig. 1 and the auxiliary trees are shown in Fig. 2. 
The subscript down arrow indicates an obligatory substitution point and the subscript star 
indicates the adjunction foot. Adjunction sites are given two labels; they correspond directly 
to the ‘upper’ and ‘lower’ feature components in feature-based TAGs (Vijay-Shaker and 
Joshi 1988). The procedure which translates TAGs into Horn clauses has two parts. The first 
part consists of three steps. The first two steps deal with logical variables that appear in node 
labels, and have no effect in a grammar in which all labels are atomic symbols. 

1. Add all the arguments appearing in the foot node of an auxiliary tree as additional 
arguments of the root node. 

2. Introduce additional variables so that all dependencies are local. This affects only internal 
nodes. 

3. Rename uniquely the category label of each interior node in every tree. 
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FIGURE 3. The initial trees in the example grammar after assigning unique internal node labels and making 
all dependencies local. 

vp(violently(VP), Vpo) n(cooked(N), NO) 

violently cooked 

FIGURE 4. The auxiliary trees in  the example grammar after assigning unique internal node labels and 
making all dependencies local. 

Step 1 copies the foot node features into the corresponding root node, so that both foot and 
root node features are accessible in a single place. Steps 2 and 3 localize all of the nonlocal 
dependencies in the initial and auxiliary trees. Because each local tree (i.e., a node and its 
immediate descendants) will be encoded as a separate clause, the first part of the translation 
procedure localizes all nonlocal variable dependencies by adding the shared variables to all 
intermediate nodes. In addition, the procedure assigns every internal node a unique label. 
Thus the resulting node labels identify a particular node in a particular tree. 

Figures 3 and 4 show renamed versions of the initial and auxiliary trees of Figs. 1 and 2, 
respectively, where renaming is performed by adding a unique number subscript. In addition, 
variables added in steps 1 and 2 are shown underlined. The second part of the translation 
converts each local tree into a Horn clause. For simplicity in specifying the translation, in this 
section category labels are assumed to be atomic symbols. To deal with non-atomic category 
labels, additional arguments are added to literals just as in the DCG translation procedure. 

Informally, each occurence of a label in an initial tree will be associated with two string 
positions, just as in a DCG. Because adjunction sites have two labels (the 'upper' and 'lower' 
components), an adjunction node is associated with four string positions. Figure 5 diagrams 
these four positions. Suppose an auxiliary tree (shown darkly shaded) is adjoined to a node 
labeled X in an initial tree (shown lightly shaded), producing the composite structure depicted 
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Initial Tree Auxiliary Tree 

OutLeft InLeft InRight OutRight 

The result of adjoining the initial tree to the auxiliary tree 

FIGURE 5.  The four string positions involved in an adjunction. 

at the bottom of the figure. The pair of string positions labeled OutLeft and OutRight are 
associated with the upper component of the adjunction site X in the initial tree, and the 
pair of string positions labeled InLeft and InRight are associated are associated with its lower 
component. The root node of the auxiliary tree is also associated with the four string positions 
OutLeft, InLeft, InRight and OutRight. 

More precisely, a local tree consists of a parent node with label a and its sequence of 
children nodes with labels P I ,  . . . , f i n .  If the parent node is an adjunction site (i.e., has a 
fractional label) then a is the lower component of the label, whereas if the ith child node is 
an adjunction site then Pi is the upper component of the label. 

The Horn translation of a local tree depends on whether it occurs on the path from the 
foot node to the root node in an auxiliary tree, and whether or not it contains a lexical item. 
There are three cases to consider; the first two are exactly the same as the corresponding cases 
in the DCG translation procedure. In the following S, Si and for 0 5 i 5 n are distinct 
logical variables. 

1. A local tree consisting of a parent category a dominating the terminal w i s  translated as 
the unit clause' 

(.([wlSI* S ) .  (1) 

'Here it is assumed that lexical items are always exhaustively dominated by some node. It is tedious, but possible, to 
remove this restriction. 
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For example, the local tree rooted at v3 in Fig. 3 is translated as the clause 

v-3 ( [hates I S ] ,  S) . 

2. A local tree not lying on a foot to root path of an auxiliary tree is translated as the clause 

( 2 )  

For example, the local tree rooted at vp, in Fig. 3 is translated (when argument variables 
are taken into account) as the clause 

a(S0,  Sn) + Bl(S0, Sl>, . . . , Bn(Sn-I, Sn). 

vp_2(SO, S, hates(Subj,Obj), Subj) : -  
v_3(SO, Sl), 
np(S1, S, Obj). 

3. A local tree lying on a foot to root path of an auxiliary tree, where the mth child node 
dominates the foot node, is translated as the clause 

 SO, S m ,  Tm. Tn> + 

(3) BI(SO, SI), . . ., B m - l ( S m - 2 ,  Srn-~) ,  
B r n ( S m - 1 ,  s m ,  Tin, T ~ + I ) ,  
Bm+l(Tm+l, Trn+2)?. . . ,  Bn(Tn-1, Tn). 

For example, the local tree rooted at the root node of the left-most auxiliary tree of Fig. 4 
is translated as the following clause. 

vp(S0, S, TO, T, violently(VP), VPO) : -  
vp(S0, S, TO, T1, VP, VPO), 
advp-7 (Tl, T) . 

Now we turn to internal adjunction sites. Each internal adjunction site is translated as a Horn 
clause. There are two cases to be considered here. 

4. An internal adjunction site not lying on a foot to root path of an auxiliary tree with a 
numerator labeled a and a denominator labeled B is translated as the clause 

(4) 

where y is the “original” label of the node before the renaming step (3) above. For 
example, the adjunction site vp, /vp2 is translated as the following clause. 

vp-l(S0, T ,  SS,  Subj) : -  

a(S0,  TI) + Y(S07 s1, To, TI), B(S1, To) 

vp(S0, S, TO, T, SS, hates(Subj,Obj)), 
vp_2(S, TO, hates(Subj,Obj), Subj). 

5. An internal adjunction site lying on a foot to root path of an auxiliary tree with labels as 
above is translated as the clause 

( 5 )  a (S0 ,  s27 To, T2) + Y(S07 s1, TI, T2)7 B(Sl, Sz. TO> TI). 

Finally, we require a clause for each (unrenamed) category that labels an adjunction site 
which expresses that adjunction is optional. (If these clauses are omitted, then adjunction at 
adjunction sites will be obligatory). 
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:- op(700, xfx ,  < - ) .  

s ( S 0 ,  s ,  SS) <- 
[np!SO, S1, Subjil-[vp-l(Sl, S, SS, Subj)]-[J. 

vp-l(SO, T, SS, Sub]) <- [ 1 - [  
vp!SO, S, TO, T, SS, hates(Subj.Obj)), 
vp-2 ( S ,  TO, hates (Subj, Obj 1 ,  Subj ) 1 - [I . 

vp-2(SO, S ,  hates(Subj,Obj), Subj) C I -  

[ V - 3 ( S o ,  S1)1-[np(Sl, S ,  Obj)]-[] 

~-3(thateslSO!, SO) <- [ 1 - [ 1 - [ 1  

vpiS, S, T, T, VP, VP) <- []-[I-[]. 
vp(S0,  S, TO, T, violently(VP), VPO) <- 

[]-[~~(so, S, TO, T1, VP. VPO)]-[advp_7(Tl, TI]. 

advp-7 ( [violently IS] , s )  < -  [ ] - [ 1 - [] ~ 

np([georgelsl, s ,  george) <- [1-l1-[1. 

n_4(SO, T1, N) <- 
[]-[~~(so, S1, TO, T1, N, NO), n-5(S1, TO, NO)]-[] 

n-5( [broccolilS], S, broccoli) <- [1-[1-[1 

FIGURE 6. Horn clause grammar axioms. 

6. For each distinct y that appeared in steps (4) and (5) above, add a clause of the form 

For example, the translation contains the following clause, which expresses the fact that 
adjunction at vp is optional. 

T ( S ,  S ,  T, T, VP, VP) - 

The Horn clauses that result in this translation are shown in Fig. 6, albeit in a slightly strange 
notation. The left arrow <: - should be read as a right-to-left implication sign, and the negative 
literals of the clause are the result of appending the atoms in all three lists to its right (the 
reason for separating the negative literals into three groups is explained below). 
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The Horn clauses produced by the translation procedure correctly specify the strings 
generated by the grammar, but the Prolog program functions as a ‘generate and test’ parser 
which in general does not terminate on all input strings. 

The problem arises because Prolog’s native left-to-right selection rule is not flexible 
enough to ensure that (goals corresponding to) terminals are resolved in the order they ap- 
pear in the input to be parsed. Consider again the tree depicted in Fig. 5 that results from 
adjunction. The clause corresponding to (the root node of) the auxiliary tree directly or indi- 
rectly introduces subgoals corresponding to the terminals between the pair of string positions 
OutLeft and InLeft, as well between the pair of string positions InRight and OutRight. 

Now, the clause corresponding to the initial tree directly or indirectly introduces subgoals 
that correspond to the terminals between InLeft and InRight. How should these subgoals be 
ordered in the clause with respect to the goal that introduces the auxiliary tree, which is also 
contained in the clause corresponding to the initial tree? It turns out that no goal ordering is 
satisfactory. Because subgoals corresponding to terminals in the auxiliary tree are responsible 
for instantiating the string position variable InLeft, none of these subgoals can be ordered 
before the goal that introduces auxiliary tree, otherwise InLeft would be uninstantiated. 
Because every terminal can be ‘recognized’ at an uninstantiated left string position, such a 
goal ordering results in a ‘generate-and-test’ parsing strategy. 

The other option-that the subgoals corresponding to the terminals between InLeft and 
InRight are ordered after the goal that introduces the auxiliary tree-also results in a ‘generate- 
and-test’ behavior, because the goals corresponding to the terminals between InRight and 
OutRight in the auxiliary tree would be recognized before the terminals in the initial tree that 
span InLeft to Inkght.  

It seems as if what is needed is an ability to insert subgoals from the clause corresponding 
to the initial tree bemeen the subgoals from the auxiliary tree. Prolog’s native left-to-right 
selection rule provides no way to do this, but the EPDA-based selection rule described below 
can do this. It is no surprise that an EPDA-based selection rule suffices to control a proof that 
corresponds to a top-down TAG parse, since EPDAs are the basic automata model of TAG 
parsing.* 

3. THREE IMPLEMENTATIONS 

This section describes three successively refined implementations of a top-down TAG 
parser that uses SLD resolution on clauses produced by the translation just described. All of 
the implementations reduce goals in the same order (which corresponds exactly to the order 
in which the corresponding nodes would be enumerated in a top-down parse). 

1. The first implementation uses a selection rule which only selects goals whose first (i.e., 
leftmost) string arguments are instantiated (all other goals are delayed). It is easy to 
implement this strategy using a metainterpreter, and it can be tolerably efficiently im- 
plemented in extended Prolog implementations which incorporate coroutining control 
extensions such as freeze or w a i t .  

2. The second implementation uses a metainterpreter which stores unresolved goals in an 
embedded push-down stack. This metainterpreter, called a logical embedded push-down 
automaton (LEPDA), uses the original Horn clause axiomatization annotated with control 
information (as in Fig. 6) which tells it how to manipulate the embedded push-down 

*Similiarly, Prolog’s native PDA-based selection rule enables a resolution proof to correspond directly to a top-down CFG 
parse. 
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stacks. Even though it resolves goals in the same order as implementation 1, it does not 
require coroutining primitives. 

3. Finally, a Prolog program can be obtained by partially evaluating the,metainterpreter just 
mentioned with the grammar axioms and performing additional program transformations. 
The resulting program passes a stack of additional goals from goal to goal in ‘continuation- 
passing’ style.3 It is probably the most efficient of all of the implementations, and does 
not require coroutining primitives. 

The crucial observation that the second and third control strategies depend on is that the 
order in which literals should be selected can be enumerated by an embedded push-down 
automaton, so the inference procedure can be implemented by a LEPDA. 

The state information of the LEPDA metainterpreter of implementation 2 consists of an 
EPDS that holds the goals that still remain to be reduced. A LEPDA program is set of Horn 
clauses in which the negative literals have been partitioned into three sequences, so each Horn 
clause is of the form a t B1 - 8 2  - B3, where each Bi is a sequence of atoms.4 

There are two basic operations in a LEPDA that are continued until the EPDS is empty. 

1. If the top stack of the EPDS is empty, pop it. 
2. Remove the top goal a! from the top stack of the EPDS, and nondeterministically attempt 

to unify it with the head a!’ of each clause a’ t /!I1 - 8 2  - 83 in the program. If this 
succeeds, then push 8 2  in reverse order onto the top stack, insert 8 3  as a “new” stack 
immediately below the top stack, and finally push B1 as a new stack on top of the top 
stack. 

An LEPDA implements an SLD resolution proof procedure; the goal sequences in the clauses 
determine only the order in which goals are reduced. 

Figure 6 is in fact a LEPDA program that recognizes the grammar depicted in Figs. 1 
and 2. The control information, which determines how the negative literals are assigned to 
stacks when the clause’s head is reduced, is generated as follows. (The “type” of a clause 
refers to the translation rule used to produce it). 

1. In clauses of type (2) each negative literal is assigned to its own stack. (Since the heads 
of these clauses can only appear at the bottom of an EPDS stack, it does not matter which 
stacks these are). 

2. In clauses of type (3) each negative literal is assigned to its own stack, and in addition 
the literal corresponding to the mth child (the one on the path from the foot to the root) 
must be in the current stack (Le., it must be pushed onto the stack the head literal was 
popped from). 

3. In clauses of type (4) and ( 5 )  both negative literals are assigned to the current stack (i.e., 
they are both pushed on to the stack that was just popped). 

Figure 7 contains a Prolog interpreter for LEPDA programs. Note that the “outer stack” of 
the EPDS is implemented using Prolog’s own stack of pending goals. 

While conceptually elegant, the metainterpreter approach of implementation 2 is quite 
inefficient. The metainterpreter overhead can be eliminated by partial evaluation and other 
program transformation techniques. Specifically, the LEPDA interpreter can be partially 

3Martin Kay has independently developed a Prolog encoding of TAGS very similar to this one. 
4Thc language of LEPDA programs can be extended to allow the creation of an arbibary number of new stacks per 

reduction, at the cost of a minor increase in complexity of the metainterpreter described below, but the language presented here 
suffices for a grammar with at most binary branching. 
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prove(Goa1) :- 
lepda ( [Goall I . 

lepta( [ I ) .  
lepca([GoallGoalsOl) : -  

Goal <- Before-Goalsl-After, 
append (Goalsl, Goalso, Goals), 
lepda (Before) , 
lepda (Goals), 
lepda (After) . 

FIGURE 7. A Prolog interpreter for LEPDA programs 

evaluated with respect to LEPDA program clauses and the append clauses in the usual 
manner (see, e.g., Pereira and Shieber 1987 for details). In addition to partial evaluation, the 
Prolog program for implementation 3, in Fig. 8, is obtained by 

0 Partially evaluating any deterministic call to lepda, 
0 Promoting category labels to predicate names (i.e., systematically replacing every atom 

of the form lepda ( [ P(T1, . . . , T,) 1 L ]  ) with the atom P(T1, .  . . , T,, L ) ) ,  and 
0 Promoting the category labels over the list of pending goals manipulated by lepda.’ 

When we do this, we see that the list of goals is playing the role of a continuation in the manner 
described by Sat0 and Tamalu (1989); suggesting the renaming of the lepda relation to cont 
and using true to name the “empty list” of pending goals. In the program in Fig. 8 the last 
argument holds the continuation of goals, and the predicate cont calls the appropriate goal 
with the appropriate arguments. Roughly speaking, adjunction pushes a goal on to the current 
continuation (cf., the clauses for vp-1 and np-4), which is activated when the left-hand side 
of that adjunction has been processed. 

Note that further optimization of this program is possible. For example, since the heads 
of clauses of types (1) and (2) can only appear at the bottom of some stack in the EPDS, 
the continuation associated with these heads will always be true; these clauses can be 
specialized for this case and the continuation argument omitted. 

4. CONCLUSION 

This paper has shown that there is a systematic, automatizable method of proceeding 
from Lang’s Horn clause axiomatization of a TAG to a Prolog program that functions as a 
top-down parser of that TAG. Only a comparatively small residue of the LEPDA interpreter 
(the cont  predicate) remains. 

But like all top-down parsers, these parsers will fail to terminate on certain inputs when 
the grammar is left-recursive. The VP adjunction rule in the grammar in Fig. 2 is an example 
of such a left-recursive construction. 

In the domain of CFG parsing, alternative control strategies, such as left-corner and shift- 
reduce strategies, terminate with left-recursive grammars, and the left-comer algorithm can 
be naturally implemented as a Horn program transformation. It would be interesting to inves- 

5For example, by promoting function symbols the list [ a ,  b ,  c 1 becomes the term a (b ( c  ( I 1 1 i ) . 
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S ( S 0 ,  s ,  s s ,  C )  :- 

np(S0, S1, Subj, true), vp-l(S1, S, SS, Subj, C). 

vp-l(S0, T, SS, Subj, C) :- 
vp(S0, S, TO, T, SS, hates(Subj,Obj), 

vp-2(S, TO, hates(Subj,Obj), Subj, C ) )  

vp-2(SO, S, hates(Subj,Obj), Subj, C )  : -  

v-3(SO, S1, true), np(S1, S, Obj, c ) .  

~-3([hateslSO], SO, C) : -  cont(C). 

vp(S, S, T, T, VP, VF, C) :- cont (C) . 
vp(S0, S,  TO, T, violently(VP), VPO, C) : -  

~ ( s o .  S. TO. T1, VP, VPO. C ) .  advp_7(T1, T, true). 

advp-7 ([violentlylSl, S ,  C )  : -  cont(C) 

np([georgelSl, S, george, C) : -  cont(C 

np(S0, S1, NP, C )  : -  n_4(SO, S1, NF, C i  

n-4(SO, T1, N, C) :- 
n(S0, S1, TO, T1, N, NO, n_5(S1, TO, NO, C ) ) .  

n_5([broccolilS], S, broccoli, C )  : -  cont(C). 

n ( S ,  S ,  T ,  T, N, N, C) :- cont(C). 
n(S0, S, TO, T, cooked(NO), N, C )  :- 

ap_6(sO, S1, true), n(S1, S ,  TO, T ,  NO, N. C). 

ap-6 ( [cookedl Sl , S, C) : - cont (C) . 

cont (true) . 
cont(vp-2(Al, A2, A3, A4, A5)) : -  vp_2(Al, A2, A3, A4, A5). 
cont(n_5(Al, A2, A3, A4)) : -  n-S(A1, A2, A3, A4). 

FIGURE 8. The result of partial evaluation and transformation. 

tigate how these techniques can be formalized as control rules for appropriate axiomatizations 
of TAGS. 
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