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ML as an engineering discipline

- A mature engineering discipline should be able to predict
the cost of a project before it starts

- Collecting/producing training data is typically the most
expensive part of an ML or NLP project
- We usually have only the vaguest idea of how accuracy is
related to training data size and quality
» More data produces better accuracy

» Higher quality data (closer domain, less noise) produces
better accuracy

» But we usually have no idea how much data or what quality
of data is required to achieve a given performance goal

- Imagine if engineers designed bridges the way we build
systems!
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Goals of this research project

- Given desiderata (accuracy, speed, computational and data
resource pricing, etc.) for an ML/NLP system, design for a
system that meets these

- Example: design a classifier that identifies terrorism-related
tweets with at least 1% precision and 50% recall and handles
1M tweets/sec. Sample terrorism-related tweets cost $1
each, while random tweets cost $107° each.

» What hardware/software should I use?
» How many of each kind of tweet should | buy?
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What this paper contributes

- Studies how accuracy varies as a function of training data
size for several NLP models and tasks

- Discusses three methods for extrapolating accuracy
predictions as a function of training data size

- Proposes a new accuracy extrapolation task, provides
datasets and results for the three extrapolation methods
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Empirical models of accuracy vs training data size
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Overview

- Three models of how Error (= 1 — accuracy) depends on
training data size n
» Power law: Error = bn=¢
» Inverse square root: Error = a+bn="
» Extended power law: Error = a+bn=°

- Parameters estimated from multiple runs using weighted
least squares regression

» Model is run on different-sized subsets of training data

Same test set is used to evaluate each run

The evaluation of each model training/test run is a data point
Each data point (run) is weighted by training data size n
Perhaps another loss function would be more motivated?

If evaluation returns f-score, assume Error = 1 — f-score?
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Error vs training size: MNIST digits (1)

Power-law regression for MNIST logistic regression (shallow) and CNN (deep) models
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* Error = 1— Accuracy
+ Error and training size axes have linear scale

» Highly non-linear relationship
» Non-linear regression (loess) to fit error curve
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Error vs training size: MNIST digits (2)

Power-law regression for MNIST logistic regression (shallow) and CNN (deep) models
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* Error = 1— Accuracy
- Error axis has linear scale, training size axis has log scale
» Linear regression to fit error curve
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Power-law relationship

Power-law regression for MNIST logistic regression (shallow) and CNN (deep) models
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+ Error = bn~¢, where n = training data size
+ Predicts that Error - 0asn — o ifc>0
- Linear relationship between log(Error) and log(n)
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Inverse square-root relationship

Inverse sqrt regression for MNIST logistic regression (shallow) and CNN (deep) models

_ 004- model_type
e deep
5]

=== shallow

10000 20000 30000 4000650000
train_size

- Error = a+ bn~"”, where n = training data size
- Predicts that Error - aas n —
- Inspired by Bias-Variance decomposition (Geman et al., 1992)

» ais a bias term due to model mis-specification
» From Central Limit Theorem, variance « '/n
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Extended power law relationship

Extended power—-law regression for MNIST logistic regression (shallow) and CNN (deep) models
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« Error = a+ bn~¢ where n = training data size
+ Predicts that Error - aasn — o« ifc>0
- ¢ =/ (inverse sqrt) assumes test items are independent
= ¢ < ' if there are dependencies among test items
- Estimating these parameters involves non-linear
least-squares optimisation, which can be unstable or fail
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Using an accuracy model to predict data
requirements

- High-level description:

» Determine error rate of target system on data sets of various
sizes
» Estimate parameters of accuracy model

» Find the training size f that the accuracy model predicts
achieves the desired error rate

- More sophisticated approaches:
» Use bootstrap resampling for confidence intervals on f

13/33



Outline

Extrapolating accuracy in NLP applications
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Error extrapolation task

- Given error on training data sets of size "/k (where k =2 or
10) or less, predict error on data set size n.

» Report absolute difference of predicted and true error
» Perhaps an asymmetric loss would be more appropriate?
- All evaluations use same test set

- The training data subsets are all contained in the same
subset of size "/k
» Motivation: the only training data you have is of size "/, but
you can do anything you want with it



Extrapolating English dependency parsing

2ndMST iPTI Stanford
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- Black points: training error

- Red point: test error (which we are predicting)

- Orange: power law relationship, Error = bn~¢

- Blue: inverse sqrt relationship, Error = a+bn™"

- Green: extended power law relationship, Error = a+bn~*¢
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Extrapolating Chinese dependency parsing

2ndMST Stanford
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- Black points: training error

- Red point: test error (which we are predicting)

- Orange: power law relationship, Error = bn~¢

- Blue: inverse sqrt relationship, Error = a+bn™"

- Green: extended power law relationship, Error = a+bn~*¢

17133



Dependency parsing, extrapolating % data

language parser obs plaw isqrt ext.plaw
1 Chinese  1stMST 9 0.00880 0.00724 0.00656
2 Chinese 2ndMST 9 0.00780 0.00806 0.00293
3 Chinese jPTDP 9 0.01096 0.00527 0.00313
4 Chinese  Stanford 9 0.01641 0.00037 0.01109
5 English  1stMST 9 0.00412 0.00586 0.00183
6 English  2ndMST 9 0.00367 0.00591 0.00166
7 English  jPTDP 9 0.00383 0.00413 0.00194
8 English Stanford 9 0.00581 0.00337 0.00067

- Extended power law is more accurate than other

extrapolations, except for Stanford parser on Chinese
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Dependency parsing, extrapolating %o data

language parser obs plaw isqrt ext.plaw
Chinese  1stMST 0.00760 0.03715 0.04847
Chinese  2ndMST 0.00545 0.03927 0.02431
Chinese  jPTDP 0.01665 0.03104 0.05008
Chinese  Stanford 0.01891 0.02738 0.01873
English  1stMST 0.00939 0.01998

English ~ 2ndMST 0.00973 0.01837

English  jPTDP 0.00574 0.01792 0.01098
English Stanford 0.01920 0.00741  0.02195
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- Extended power law regression failed to converge on 2
settings

- Power law regression gives most accurate extrapolation on 6
settings
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Extrapolating English POS tagging
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- Black points: training error

- Red point: test error (which we are predicting)

- Orange: power law relationship, Error = bn~¢

- Blue: inverse sqrt relationship, Error = a+bn™"

- Green: extended power law relationship, Error = a+bn~*¢
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Extrapolating Chinese POS tagging
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- Black points: training error

- Red point: test error (which we are predicting)

- Orange: power law relationship, Error = bn~¢

- Blue: inverse sqrt relationship, Error = a+bn™"

- Green: extended power law relationship, Error = a+bn~*¢
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POS tagging, extrapolating % data

language tagger obs plaw isqrt ext.plaw
1 Chinese jPTDP 9 0.00198 0.00289 0.00164
2 Chinese Marmot 9 0.00278 0.00180 0.00053
3 English  jPTDP 9 0.00372 0.00182 0.00172
4 English Marmot 9 0.00198 0.00010 0.00037

- Extended power law gives most accurate extrapolation on 3

settings
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POS tagging, extrapolating %o data

language tagger obs plaw isqrt ext.plaw
Chinese  jPTDP 4 0.00867 0.00496 0.00703
Chinese  Marmot 4 0.00603 0.00740 0.01932
4
4

English  jPTDP 0.00769 0.00278
English Marmot 0.00634 0.00121
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- Extended power law regression failed to converge on 2
settings

- Inverse sqrt regression gives most accurate extrapolation on
3 settings
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Machine translation
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- BLEU is close to linearly related to log training size

- Predicts that BLEU will grow unboundedly as training data
gets larger
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- Black points: training error, where Error = 1 - BLEU/100
- Red point: test error (which we are predicting)

- Orange: power law relationship, Error = bn~¢

- Blue: inverse sqrt relationship, Error = a+ bn="

- Green: extended power law relationship, Error = a+bn=¢

(FAILED TO CONVERGE)
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Predicting accuracy as a function of training
size
- Mukherjee et al. (2003) and Figueroa et al. (2012) predict

classifier accuracy in a biomedical setting by fitting a
power-law curve equivalent to one used here

- Beleites et al. (2013) discuss classifier accuracy with very
small training sets (tens of examples) in chemical
applications

- Hajian-Tilaki (2014) discusses how ROC and AUC vary with
sample size in biomedical applications

- Cho et al. (2015) investigate how much data is needed to
train a medical image deep learning system

- Sun et al. (2017) observe that performance of a deep
learning machine translation system increases even with
very large training data sets
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Sample complexity

- Sample complexity is the name used in machine learning for

the relationship between classifier accuracy and training
data size

- Plays an important theoretical role in Empirical Risk
Minimisation and Support Vector Machines

- Not studied empirically, AFAIK
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Power calculations

- In statistics, a power calculation is used to determine how
many samples are required in an experiment to test a
hypothesis

» Widely used in drug trials

- Given a hypothesis test and an effect size (difference
between two conditions), a power calculation returns the
sample size for which it is likely that the test will reject the
null hypothesis
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Bias-Variance Trade-off

- Geman et al. (1992) decompose the squared error of a
- regression model into two terms:

» A bias term, due to model errors

» A variance term, due to statistical noise

- As the model gets more complex, bias decreases but
variance increases

- Bias does not vary with training data size n, but variance
should decrease as 1/n if observations are independent

» If observations are not independent, variance will decrease
more slowly

- Domingos (2000a) and Domingos (2000b) generalise the

Bias-Variance decomposition to 0 — 1 loss and squared loss

» They also propose a bootstrap procedure to estimate Bias
and Variance
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Conclusion and future work

- If ML and NLP are to become reliable engineering
disciplines, we need to be able to predict how much effort a
project will require

- Training data is often the most expensive and difficult
resource to acquire = need to predict training data
requirements

- This paper describes three different procedures for
extrapolating the performance of a system on a large
training data set from the performance on a smaller data set

- We introduce an extrapolation task that compares
extrapolation procedures

- Undoubtedly there are much better ways of extrapolating
system performance!
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