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Useful R textbooks from the MQ library web site

Friedman, Tibshirani and Hastie, 2009, Elements of statistical

learning (download latest version from authors’ web site)

e James, Witten, Hastie and Tibshirani, 2013, Introduction to
statistical learning: (download latest version from authors’ web
site)

e Wickham, H. 2009 ggplot2: Elegant graphics for data analysis:

describes the ggplot2 R graphics package

e Dalgard, P. 2008 Introductory statistics with R: general
introduction to statistics and R

e Allerhand, M. 2011 A Tiny handbook of R: introduces the R
programming language
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Statistics and Probability

A statistic is a function of the data (usually chosen to summarise
it)

» example: the mean and the median are two different statistics
Probability theory is the mathematics of random phenomena

Hypothesis tests are statistics that indicate whether a hypothesis
is consistent with the data (e.g., “Is this coin fair?”)

Confidence intervals are statistics that estimate a range of values
that contains the true value of a parameter (e.g., “What are the
lowest and highest values for the probability of heads?”)

There’s a general move away from hypothesis tests to confidence
intervals
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The normal (Gaussian) distribution
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¢ 0.683 of the probability mass lies in [—0, 0]
e 0.954 of the probability mass lies in [-20, 20]
e 0.997 of the probability mass lies in [-30, 30]
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The central limit theorem
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e The central limit theorem says that the mean of independent and
identically-distributed samples approaches a normal (a.k.a.
Gaussian) distribution as the number of samples grows

» the normal distribution is usually a fairly good approximation when
there are 5 or more samples

» the standard deviation of the mean is approximately o/+4/n, where n
is the number of samples
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The binomial distribution
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e The binomial distribution is the distribution of the number of

successes in n independent Bernoulli (binary) trials, where each
trial has probability p of success

e The binomial distribution has mean u = np and standard deviation
0= +np(l—p), so
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Hypothesis testing: motivating examples

e | have a coin, which I'm not sure if is “fair”. So | throw it 10 times,
and it comes up tails 2 times. Is this evidence that the coin is
biased?

e | measure the time it takes for a group of girls to push a button in
an experiment, and then | do this for a group of boys. My data
show that on average the girls are 10msec faster than the boys.
Can | conclude that girls do this task faster than boys, and if so, by
how much?

e I've modified my syntactic parser, but I'm not sure if my
modifications have really made it more accurate. So | run both the
old and the new parsers on the same set of “test sentences” and
measure the accuracy of the parses they produce for each
sentence. On average my new parser is 2% more accurate than
the old one. Is it really better than the old parser, and by how
much?
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Hypothesis testing vs Predictive modelling

e A hypothesis test is intented to determine whether a hypothesis
(claim) is true
» e.g., coffee causes cancer,
» e.g., algorithm A is faster than algorithm B on a certain kind of data
» e.g., eating more fast food makes you fat
e A predictive model is intended to predict a value as accurately as
possible
» e.g., predict which individuals are likely to get cancer
> e.qg., predict whether algorithm A or algorithm B will run faster on a
given data item
» e.qg., predict the weight of an individual from the food they eat
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Frequentists and Bayesian approaches

e Frequentist: the probability of an event is the frequency with
which it appears in an infinite sequence of replications

e Bayesian: the probability of an event measures the degree of
certainty or belief in that event

e Frequentist and Bayesian approaches have different notions of
hypothesis testing and confidence intervals

e Frequentist approaches are often more restrictive and unnatural,
but computationally simple and better-known in the field

e Bayesian approaches can easily integrate more diverse data, but
computationally intensive

e Most “pre-packaged” software implements frequentist
approaches, and most examiners/reviewers will expect frequentist
analyses, so that's what we’ll cover here
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Is this coin fair?

Hypothesis H1: this coin is not fair, i.e., ppeads # 0.5
Null hypothesis Hg: this coin is fair, i.e., Pheads = 0.5
Data: out of 10 flips, 2 are tails
Events as or more extreme than the data:

» 0 tails, 1 tail, 2 tails, 0 heads, 1 head, 2 heads

Probability of these extreme events under null hypothesis:
p=0.109
» it's conventional to reject the null hypothesis Hgp when p is less than
0.05, 0.01 or 0.001
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Hypothesis tests and the null hypothesis

e The Neymann/Pearson/Wald approach to hypothesis testing:

>

given a hypothesis to be tested Hj, formulate an alternative null
hypothesis Ho

pick a test statistic T and a significance level a

calculate the value T(D) of the test statistic on the data D

calculate the probability p of data sets with test statistics as or more
extreme than T(D)

if p < a then accept Hy, otherwise reject H;
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Type 1 and type 2 errors

Hg is true H1 is true
coin really is fair | coin really is biased
Accept Hyg Type 2 error
report coin is fair false negative
Accept H; Type 1 error
report coin is biased false positive

e In order to bound the probability of Type 2 errors below a small
value a, we may have to accept a high probability of making a
Type 1 error
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What could ppeaqs be?

Data: out of 10 throws, 8 are heads

The maximum likelihood estimate Ppeags = 0.8, but 8/10 heads is
not that unlikely if ppeags = 0.7

A 95% confidence interval is a statistic such were we to flip coins
with various values of ppeads 10 times, 95% of the time ppeads
would be within the confidence interval

» A 95% confidence interval ppeags for this data is [0.444, 0.975]
Confidence intervals can be derived from hypothesis tests

> 0.5 is in the 95% confidence interval for ppeads
< Ho : pheads = 0.5 is not rejected at the 0.05 level
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Warning about implicit stopping rules

e If the significance level a = 0.05, then the null hypothesis will be
rejected about one in every twenty experiments, even if the null
hypothesis is true

= If you just keep redoing your experiment, eventually the results
will be significant
» E.g., if we keep flipping a fair coin, eventually we’ll see 10 heads in a
row

e Doing this deliberately is scientific fraud, but it's easy to do this
accidentally:

» e.g., keep adjusting your program/experiment until the results are
good

» this is called a stopping rule, and significance levels are affected by
the stopping rule

e This can be minimised by first selecting the experimental settings
on development data, and then performing a single experiment on
the test data
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Compound hypotheses and Bonferroni
correction

e Often we want to test multiple hypotheses at once
» Example: Model A is better than model B and model C
e If we run a large number of hypothesis tests, some will hold “by
chance”
e Bonferroni correction: To simultaneously test m hypotheses at a

significance level a, test each individual hypothesis at the
significance level a/m

» Example: To test that Model A is better than model B and model C, at
level a = 0.01, run 2 tests (that A is better than B, and that A is
better than C) at the a = 0.005 level
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Classical hypothesis tests

e These are the tests usually found in statistics text books

» Statistical software packages (like R) provide good implementations
of these

¢ Not computationally intensive (devised before modern computers)
e The test statistic is the sum of individual item scores

e The test usually relies on the Central Limit Theorem and a Normal
approximation
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Unpaired vs. paired tests

e Some test data is a set of paired observations

» E.g., the predictions of two different classifiers on the same set of
test items is paired data
» E.g., the number of people who survive after two different treatments
is not paired data
¢ In general it is possible to use an unpaired statistical test on
paired data

» An unpaired test usually has less power than a paired test, but the
results are still correct

e Using a paired test on unpaired data produces meaningless results
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Parametric vs. non-parametric tests

e A parametric test assumes that the test statistic is distributed
according to some family of distributions (usually the Normal
distribution).

» often reasonable if there is a sufficient number of observations
(Central Limit Theorem)

e A non-parametric test does not make any assumptions about the
distribution of the test statistic.
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Two-sample t-test

e A two-sample t-test tests whether two sequences of real-valued
samples come from distributions with different means.

» this is a parametric test, which assumes that both sequences are
normally distributed with the same variance

e Example: Is the highway miles-per-gallon better in 2008 than in
19997

t.test(hwy~year, data=mpg)

#it

## Welch Two Sample t-test

#it

## data: hwy by year

## t = -0.032864, df = 231.64, p-value = 0.9738
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:

## -1.562854 1.511572

## sample estimates:

## mean in group 1999 mean in group 2008

## 23.42735 23.45299

See Dalgaard (2008) section 5.3
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Two-sample Wilcoxon test

e A two-sample Wilcoxon test tests whether two sequences of
real-valued samples come from distributions with different
medians

» it rank orders the values, and tests the distribution of ranks
= tied values can be problematic for this test

e It is more robust but less powerful than the two-sample t-test

wilcox.test(hwy~year, data=mpg)

##

## Wilcoxon rank sum test with continuity correction

##

## data: hwy by year

## W = 6526, p-value = 0.5377

## alternative hypothesis: true location shift is not equal to 0

See Dalgaard (2008) section 5.5
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Paired t-test

e A paired t-test is used when there are two measurements on each

item. The statistics are basically one-sample tests of the
difference between the two measurements.
» paired tests are more powerful than unpaired tests
» this is a parametric test, which assumes that the differences are
normally distributed
e Example: Is the highway miles-per-gallon better than the city
miles-per-gallon?

t.test(mpg$hwy, mpg$cty, paired=TRUE)

##

## Paired t-test

##

## data: mpg$hwy and mpg$cty

## t = 44.492, df = 233, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:

## 6.289765 6.872628

## sample estimates:

## mean of the differences

## 6.581197

See Dalgaard (2008) section 5.6
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The matched-pairs Wilcoxon test

e The matched-pairs Wilcoxon test is a non-parametric version of
the paired t-test

e Ties are ignored

wilcox.test(mpg$hwy, mpg$cty, paired=TRUE)

##

## Wilcoxon signed rank test with continuity correction

##

## data: mpg$hwy and mpg$cty

## V = 27495, p-value < 2.2e-16

## alternative hypothesis: true location shift is not equal to 0

See Dalgaard (2008) section 5.7
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What is linear regression?

e Regression estimates the relationship between two or more
random variables

e In simple linear regression there is a response or predicted
variable Y and a explanatory or predictor variable X, which we
assume are related by:

Y ~ a+BX+N(0,0%)

where N(0, 02) is a normal distribution with zero mean and
standard deviation o.

e Given data D =((x1,¥1),-..,(Xn, ¥n)) the goal of simple linear
regression is to find the regression coefficient 8 and the intercept
a

» (B is the slope of the line relating X and Y
» a is the expected value of Y when X =0

e A Generalised Linear Model can fit a Logistic Regression model to

discrete (e.g., binary) data
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Regression on highway and city mpg

Im(hwy~cty, data=mpg)

##

## Call:

## m(formula = hwy ~ cty, data = mpg)
##

## Coefficients:

## (Intercept) cty

#Ht 0.892 1.337

e This says:
Hwy ~ 1.337Cty+0.892+ N(0, 0?)
See Dalgaard (2008) section 6.1
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Understanding a model formula

e “~" means “distributed as” or “distributed according to”
e So a formula like

Hwy ~ 1.337Cty+0.892+N(0, 0?)

can be read as: to generate a sample value for Hwy, sum the
following values:

» 1.337 x Cty

» 0.892

» a sample from N(0, 02) (a normal distribution with variance o?)
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Regression parameter estimates

m = lm(hwy~cty, data=mpg)
summary (m)

## Call:
## Im(formula = hwy ~ cty, data = mpg)

## Residuals:
#i# Min 1Q Median 3Q Max
## -5.3408 -1.2790 0.0214 1.0338 4.0461

## Coefficients:

#i#t Estimate Std. Error t value Pr(>|t]|)

## (Intercept) 0.89204 0.46895 1.902 0.0584 .

## cty 1.33746 0.02697 49.585 <2e-16 *x*x

##H - --

## Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

## Residual standard error: 1.752 on 232 degrees of freedom
## Multiple R-squared: 0.9138,Adjusted R-squared: 0.9134
## F-statistic: 2459 on 1 and 232 DF, p-value: < 2.2e-16

See Dalgaard (2008) section 6.1
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Using regression to identify significant
predictors

e Fit a (logistic) regression model to your experimental results

» Model predicts each test item

» Regression software estimates significance of each predictor

e More flexible than classical statistical tests
» Prefer a classical statistical test if one is appropriate

m = lm(hwy~year, data=mpg)
summary (m)

##
## Call:
## Im(formula = hwy ~ year, data = mpg)

## Residuals:
#i# Min 1Q Median 3Q Max
## -11.4530 -5.4530 0.5726 3.5726 20.5726

## Coefficients:

#t Estimate Std. Error t value Pr(>|t]|)
## (Intercept) 1.773e+01 1.737e+02 0.102 0.919
## year 2.849e-03 8.669e-02 0.033 0.974
#i#t

## Residual standard error: 5.967 on 232 degrees of freedom

H4 Mii1+inle R_ocAaliarad - A ARREa_-NA Adiiicted R_ocalmarad - N ANARMNA
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Sampling-based hypothesis tests

e More flexible than classical hypothesis tests and regression

» Can use test statistics which aren’t sums of individual scores
» Example: F-score

2 x # of correctly proposed items
f-score =

# of proposed items + # of true items

Computationally intensive

» Requires generating millions of samples
» Often requires you to write a program

High-level idea:

» Sample a large number of variants of test results, modified in a way
that should preserve the test statistic if the null hypothesis is true

» Calculate the test statistic on each sample

» Count the fraction of samples that have a test statistic at least as
large as the actual test results

Smucker, Allan and Carterette (2007) “A Comparison of Statistical Significance
Tests for Information Retrieval Evaluation”

e Berg-Kirkpatrick, Burkett and Klein (2012) “An Empirical Investigation of Statistical
Significance in NLP”
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Permutation tests

e Hypothesis: Model A has a different f-score than model B on test
data D
e Null hypothesis: Model A has the same f-score as model B on test
data D
= Randomly permuting (swapping) the results for model A and model B
on any test item x € D should have no effect on f-score
e The results are a matrix R = ((A(x1), B(x1)), ..., (A(xn), B(xn)))
» For f-score, results for each test item are (# correct, # proposed, #
correctly proposed)
e A permutation R’ of R is produced by randomly swapping each row
(A(xi), B(xi))
e Permutation test:

» Calculate the test results R = ((A(x1), B(x1)),. .., (A(xn), B(xn)))
Calculate f-score difference 6 = f-score(R.,1) — f-score(R.,2)
Generate n random permutations R’ of data set R:

Calculate the f-score difference 6’ = f-score(R! ) — f-score(R’ )

The significance level a is the fraction of samples for which |§/] > |§|
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Bootstrap tests using the shift method

The Bootstrap tests whether model A has a different f-score to
model B on test data sets D’ from the same distribution as D
Bootstrap resampling:

» Draw |D| items with replacement from uniform distribution over D

» In general, a bootstrap sample will have repeated items
Bootstrap samples D’ from D in general will not have zero mean
f-score difference &’ (why?)

» The “shift method” shifts the samples so they do have zero mean
Bootstrap test with the shift method:

Calculate f-score difference 6 on test data D
Generate n bootstrap samples based on D:
Calculate the f-score difference &’ for each sample
The significance level a is fraction of samples for which |6’ — §| > |6]
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Permutation vs. the Bootstrap

Efron and Tibshirani (1998):

Permutation methods tend to apply to only a narrow range
of problems. However when they apply, as in testing F=G in a
two-sample problem, they give gratifyingly exact answers
without parametric assumptions.

The bootstrap distribution was originally called the
“combination distribution.” It was designed to extend the
virtues of permutation testing to the great majority of
statistical problems where there is nothing to permute. When
there is something to permute ... it is a good idea to do so,
even if other methods like the bootstrap are also brought to
bear.
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Summary and conclusions

e Many reviewers/examiners will expect you to provide statistical
significance results

e Classical statistical methods typically require test statistics that
are sums of statistics for individual items

e Modern sampling based methods can work with virtually any test
statistics
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