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Beyond bags of words

• Traditional information retrieval and extraction models treat
documents as bags of words

• But isolated words can be misleading, especially in technical domains
such as biomedicine, finance, etc.
É a wash sale isn’t about cleaning anything
É the New York Times isn’t new, and doesn’t have anything to do
with arithmetic

É a neural net is not a (e.g., fishing) net, and doesn’t have much to
do with brains

• Many collocations are topic-specific
É the white house is non-compositional collocation in politics, but a
compositional phrase in real-estate
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Prior work on collocations and topic models
• Pipeline approaches identify collocations in corpus in a preprocessing
step, and uniformly replace each collocation in corpus with a single
token (e.g., neural net ) neural_net) before topic modelling (e.g.,
Lau et al., 2013)
+ scales well to large corpora
– collocations are not topic-dependent

• Extensions to LDA jointly find topics and collocations
É LDACOL generates each word either from a document-dependent
topic, or from the preceding word (Griffiths et al., 2007)

É The Topical N-gram model (TNG) generates each word either
from a document-dependent topic, or from a combination of the
preceding word and its topic (Wang et al., 2007)

– the algorithms generally don’t scale to large corpora
– collocations aren’t topic-dependent in LDACOL

• Our work jointly infers topics and collocation, and the inference
algorithm is parallelisable and scales to large corpora
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Outline of our approach

• We extend sequence segmentation models to learn topical collocations
É LDA topic models can be expressed as PCFGs (Johnson 2010)
É Adaptor grammars (Johnson et al 2007) are a non-parametric
Bayesian generalisation of PCFGs that can express both
segmentation models and topic models

É Goldwater et al (2006) introduced a non-parametric Bayesian
approach to word segmentation that uses point-wise sampling
over boundary indicator variables

• Here we take a topical collocation model initially defined as an adaptor
grammar, and:
É reparameterise it using a generalisation of Goldwater’s boundary
indicator variables, and

É develop an efficient, parallel sampler that exploits topic and word
sparsity (Yao et al, 2009; Newman et al., 2009)
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Probabilistic Context-Free Grammars
• Probabilistic context-free grammars (PCFGs) define probability
distributions over trees

• Each nonterminal node expands by
É choosing a rule expanding that nonterminal, and
É recursively expanding any nonterminal children it contains

• Probability of tree is product of probabilities of rules used to construct
it

Probability �r Rule r
1 S! NP VP
0:7 NP! Sam
0:3 NP! Sandy
1 VP! V NP
0:8 V! likes
0:2 V! hates

S

NP VP

Sam V NP

likes Sandy

Pr(Tree) =

1� 0:7� 1� 0:8� 0:3
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PCFGs as models of natural language syntax

• Simple PCFGs like this are not very good models of natural language
syntax
É PCFGs aren’t good parameterisations of natural language
É accurate PCFGs need thousands of nonterminal symbols and
hundreds of thousands of rules

) smoothing is an essential “black art”
É unsupervised estimators of PCFGs perform very poorly even when
initialised with correct parses

• But PCFGs can model many other interesting things!
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Topic models for document processing

• Topic models cluster words and
documents into topics
É usually unsupervised (i.e., topics
aren’t given in training data)

• Important for document analysis and
information extraction
É Example: clustering news stories for
information retrieval

É Example: tracking evolution of a
research topic over time
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Mixture versus admixture topic models

• In a mixture model, each document has a single topic
É all words in the document come from this topic

• In admixture models, each document has a distribution over topics
É a single document can have multiple topics (number of topics in a
document controlled by prior)

) can capture more complex relationships between documents than
a mixture model

• Both mixture and admixture topic models typically use a “bag of
words” representation of a document
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Example: documents from NIPS corpus

Annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to
build good predictive models. Getting a dataset labeled by experts can be expensive and
time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its light-dependent
properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology studies
of cells in several of these specialized regions revealed that at least some . . .
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Example (cont): ignore function words

Annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to
build good predictive models. Getting a dataset labeled by experts can be expensive and
time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its light-dependent
properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology studies
of cells in several of these specialized regions revealed that at least some . . .
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Example (cont): mixture topic model

Annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to
build good predictive models. Getting a dataset labeled by experts can be expensive and
time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its light-dependent
properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology studies
of cells in several of these specialized regions revealed that at least some . . .
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Example (cont): admixture topic model

Annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to
build good predictive models. Getting a dataset labeled by experts can be expensive and
time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its light-dependent
properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology studies
of cells in several of these specialized regions revealed that at least some . . .
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This paper’s goal: Collocation topic models

Annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to
build good predictive models. Getting a dataset labeled by experts can be expensive and
time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology studies
of cells in several of these specialized regions revealed that at least some . . .
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Mixture versus admixture models

• Admixture models are more complex than mixture models
) Admixture models often require more data to learn

• Mixture models can describe shorter documents (phrases, clauses or
single sentences) fairly well, where one topic per document assumption
is not too bad
É e.g., Twitter posts

• Admixture models are better for longer documents, which are likely to
have more than one topic
É e.g., long news articles
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Mixture topic models as PCFGs (1)

• Idea: Design PCFG so that:
É non-deterministic rules implement generative steps in topic model
É deterministic rules propagate information to appropriate place

Sentence! Topic0

i i 2 1; : : : ; `
Topic0

i ! Topic0

i Topici i 2 1; : : : ; `
Topic0

i ! Topici i 2 1; : : : ; `
Topici ! w i 2 1; : : : ; `

w 2W

Sentence

Topic4’

Topic4’

Topic4’

Topic4’

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic4

faster
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Mixture topic models as PCFGs (2)

• Choose a topic for sentence (non-deterministically)

Sentence! Topic0

i i 2 1; : : : ; `
Topic0

i ! Topic0

i Topici i 2 1; : : : ; `
Topic0

i ! Topici i 2 1; : : : ; `
Topici ! w i 2 1; : : : ; `

w 2W

Sentence

Topic4’

Topic4’

Topic4’

Topic4’

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic4

faster

24 / 68



Mixture topic models as PCFGs (3)

• Copy sentence topic to each word (deterministically)

Sentence! Topic0

i i 2 1; : : : ; `
Topic0

i ! Topic0

i Topici i 2 1; : : : ; `
Topic0

i ! Topici i 2 1; : : : ; `
Topici ! w i 2 1; : : : ; `

w 2W

Sentence

Topic4’

Topic4’

Topic4’

Topic4’

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic4

faster
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Mixture topic models as PCFGs (4)

• Generate each word from sentence topic (non-deterministically)

Sentence! Topic0

i i 2 1; : : : ; `
Topic0

i ! Topic0

i Topici i 2 1; : : : ; `
Topic0

i ! Topici i 2 1; : : : ; `
Topici ! w i 2 1; : : : ; `

w 2W

Sentence

Topic4’

Topic4’

Topic4’

Topic4’

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic4

faster
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Admixture topic models as PCFGs

• Admixture topic models are usually applied to entire documents

• Standard PCFG parsing algorithms require time proportional to cube of
sentence length
É while PCFGs can generate full documents, with standard parsing
algorithms they would be unacceptably slow

É see Luong et al. (2013) for a predictive parsing algorithm for very
long strings

• Document ids let us break a document into several smaller chunks
É a document id is a special nonterminal identifying the document
this input came from
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Admixture topic models as PCFGs (1)

• Prefix strings from document j with a document identifier “_j ”

Sentence! Doc0

j j 2 1; : : : ;m
Doc0

j ! _j j 2 1; : : : ;m
Doc0

j ! Doc0

j Docj j 2 1; : : : ;m
Docj ! Topici i 2 1; : : : ; `

j 2 1; : : : ;m
Topici ! w i 2 1; : : : ; `

w 2W

Sentence

Doc3’

Doc3’

Doc3’

Doc3’

Doc3’

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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Admixture topic models as PCFGs (2)

• Spine deterministically propagates document id up through tree

Sentence! Doc0

j j 2 1; : : : ;m
Doc0

j ! _j j 2 1; : : : ;m
Doc0

j ! Doc0

j Docj j 2 1; : : : ;m
Docj ! Topici i 2 1; : : : ; `

j 2 1; : : : ;m
Topici ! w i 2 1; : : : ; `

w 2W

Sentence

Doc3’

Doc3’

Doc3’

Doc3’

Doc3’

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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Admixture topic models as PCFGs (3)

• Docj ! Topici rules nondeterministically map documents to topics

Sentence! Doc0

j j 2 1; : : : ;m
Doc0

j ! _j j 2 1; : : : ;m
Doc0
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w 2W

Sentence

Doc3’

Doc3’

Doc3’

Doc3’

Doc3’

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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Admixture topic models as PCFGs (4)

• Topici ! w rules nondeterministically map topics to words

Sentence! Doc0

j j 2 1; : : : ;m
Doc0

j ! _j j 2 1; : : : ;m
Doc0
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j Docj j 2 1; : : : ;m
Docj ! Topici i 2 1; : : : ; `

j 2 1; : : : ;m
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w 2W

Sentence
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Doc3’

Doc3’
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Doc3’
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shallow

Doc3

Topic4
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Topic7

faster
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Why are these reductions interesting?

• Not claiming that topic modelling should be done using PCFGs
É PCFG parsing takes time proportional to cube of document length
É standard topic model algorithms take time linear in document
length

• The PCFG reductions suggest new kinds of models that merge
grammars and topic models
É easily implemented and evaluated (on small corpora at least)

• Grammars are good at:
É grouping words into hierarchically-structured larger units
É tracking relative ordering of these units
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Motivation for adaptor grammars

• PCFGs are parametric models
É a PCFG can be viewed as a set of multinomials (one for each
nonterminal)

É learning a PCFG ) setting the rule probabilities

• But in some cases the rules themselves have to be learnt

• One way to formulate this:
É there is an infinite set of possible rules
É but only finitely many have non-zero probability

• In an adaptor grammar, the possible rules are the yields of the trees
generated by a PCFG
É adaptor grammars formalise this by using a PCFG to define the
base distribution of a Dirichlet Process or a Pitman-Yor Process

É recursion in the PCFG ) hierarchical Dirichlet Processes
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Unsupervised word segmentation

• Word segmentation task: segment utterances into words (Elman 1993,
Brent 1996)

• Input: phoneme sequences with sentence boundaries

• Task: identify word boundaries, and hence words

y Í u Î w Í a Í n Í t Î t Í u Î s Í i Î D Í 6 Î b Í U Í k
“you want to see the book”

• Ignoring phonology and morphology, this involves learning the
pronunciations of the lexical items in the language
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CFG models of word segmentation

Words!Word
Words!Word Words
Word! Phons
Phons! Phon
Phons! Phon Phons
Phon! a j b j : : :

• CFG trees can describe
segmentation, but

• PCFGs can’t distinguish good
segmentations from bad ones
É PCFG rules are too small a unit of generalisation
É need to learn e.g., probability that bUk is a Word

Words

Word

Phons

Phon

D

Phons

Phon

6

Words

Word

Phons

Phon

b

Phons

Phon

U

Phons

Phon

k
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Towards non-parametric grammars

Words!Word
Words!Word Words
Word! all possible phoneme sequences

• Learn probability Word! b U k

• But infinitely many possible Word expansions
) this grammar is not a PCFG

Words

Word

D 6

Words

Word

b U k

• Given fixed training data, only finitely many useful rules
) use data to choose Word rules as well as their probabilities

• An adaptor grammar can do precisely this!
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Unigram adaptor grammar (Brent)

Words!Word
Words!Word Words
Word! Phons
Phons! Phon
Phons! Phon Phons

Words

Word

Phons

Phon

D

Phons

Phon

6

Words

Word

Phons

Phon

b

Phons

Phon

U

Phons

Phon

k

• Word nonterminal is adapted

) To generate a Word:
É select a previously generated Word subtree
with probability / number of times it has been generated

É expand using Word! Phons rule with probability / �Word
and recursively expand Phons
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Adaptor grammars as a non-parametric extension of
PCFGs

• An adaptor grammar reuses previously-generated subtrees TA of
adapted nonterminals A

• This is equivalent to adding a rule A! w to the grammar, where w is
the yield of TA
É for implementation efficiency, adaptor grammars constrain w to
only consist of terminals

É Fragment Grammars (O’Donnell 2009) lift this restriction
• If the base CFG generates an infinite number of trees TA for A, then
the adaptor grammar is non-parametric

• But any set of sample parses for a finite training corpus only contains a
finite number of number of adapted subtrees
) sampling methods (e.g., MCMC) are a natural approach to

learning and parsing adaptor grammars
É in implementation terms, an adaptor grammar is like a PCFG with
a constantly changing set of rules
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Computation with adaptor grammars
• Adaptor grammars are strictly more expressive than PCFGs

É non-parametric ) can’t be represented by a finite parameter
vector

• But the posterior predictive distribution can be approximated by a
PCFG where the rules vary depending on the data

) Metropolis-within-Gibbs MCMC sampler (Johnson et al., 2007)
repeat forever:
É randomly pick a string from training data
É compute approximating PCFG for posterior predictive distribution
given parses for other sentences

É sample a parse from approximating PCFG
É use a Metropolis-Hastings accept-reject step to correct for
approximation

• The parsing step is usually the slowest (cubic in length of string)
• Cohen et al. (2010) have developed a mean-field variational Bayes
inference algorithm for adaptor grammars
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Unigram model of word segmentation
• Unigram “bag of words” model (Brent):

É generate a dictionary, i.e., a set of words, where each word is a
random sequence of phonemes
– Bayesian prior prefers smaller dictionaries

É generate each utterance by choosing each word at random from
dictionary

• Brent’s unigram model as an adaptor grammar:

Words!Word+

Word! Phoneme+
Words

Word

j u

Word

w a n t

Word

t u

Word

s i

Word

D 6

Word

b U k

• Accuracy of word segmentation learnt: 56% token f-score
(same as Brent model)

• But we can construct many more word segmentation models using AGs
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Adaptor grammar learnt from Brent corpus
• Initial grammar

1 Words!WordWords 1 Words!Word
1 Word! Phon
1 Phons! PhonPhons 1 Phons! Phon
1 Phon! D 1 Phon! G
1 Phon! A 1 Phon! E

• A grammar learnt from Brent corpus

16625 Words!WordWords 9791 Words!Word
1575 Word! Phons
4962 Phons! PhonPhons 1575 Phons! Phon
134 Phon! D 41 Phon! G
180 Phon! A 152 Phon! E
460 Word! (Phons (Phon y) (Phons (Phon u)))
446 Word! (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word! (Phons (Phon D) (Phons (Phon 6)))
372 Word! (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))
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More complex adaptor grammar models of word
segmentation

• Because adaptor grammar models generalise PCFGs, we can combine
the topic model grammars and word segmentation grammars
É non-linguistic context does improve word segmentation
É social cues do not improve word segmentation (as far as we can
tell)

• We can learn the internal structure of words too
É words are a sequence of syllables
É learn syllable structure jointly with word segmentation
É we can learn different structures for word-peripheral and
word-internal syllables

) the best reported accuracy for unsupervised word segmentation
(89% f-score)
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Topical collocation models

Annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to
build good predictive models. Getting a dataset labeled by experts can be expensive and
time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology studies
of cells in several of these specialized regions revealed that at least some . . .
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Topic model with collocations

• Combines PCFG for admixture topic model and segmentation adaptor
grammar

Sentence! Docj j 2 1; : : : ; m
Docj ! _j j 2 1; : : : ; m
Docj ! Docj Topici i 2 1; : : : ; `;

j 2 1; : : : ; m
Topici !Words i 2 1; : : : ; `
Words!Word
Words!Words Word
Word! w w 2W

Sentence

Doc3

Doc3

Doc3

_3

Topic5

Words

Words

Word

polynomial

Word

size

Topic15

Words

Words

Word

threshold

Word

circuits
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Data preparation in Griffiths et al (2007)

• Documents are papers from NIPS proceedings (� 3 million words)

• Case normalised

• Segmented at punctuation and function words

annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to
build good predictive models. getting a dataset labeled by experts can be expensive and
time consuming. with the advent of crowdsourcing services . . .

the task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading , shadows , specular highlights , . . .
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Finding topical collocations in NIPS abstracts

• Run topical collocation adaptor grammar on NIPS corpus

• Run with ` = 20 topics (i.e., 20 distinct Topici nonterminals)

• Corpus is segmented by punctuation
É terminal strings are fairly short
) inference is fairly efficient

• Used Pitman-Yor adaptors
É sampled Pitman-Yor a and b parameters
É flat and “vague Gamma” priors on Pitman-Yor a and b parameters
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Sample output on NIPS corpus, 20 topics

• Multiword subtrees learned by adaptor grammar:
T_0 ! gradient descent T_1 ! associative memory
T_0 ! cost function T_1 ! standard deviation
T_0 ! fixed point T_1 ! randomly chosen
T_0 ! learning rates T_1 ! hamming distance
T_3 ! membrane potential T_10 ! ocular dominance
T_3 ! action potentials T_10 ! visual field
T_3 ! visual system T_10 ! nervous system
T_3 ! primary visual cortex T_10 ! action potential

• Sample skeletal parses:
_3 (T_5 polynomial size) (T_15 threshold circuits)
_4 (T_11 studied) (T_19 pattern recognition algorithms)
_4 (T_2 feedforward neural network) (T_1 implements)
_5 (T_11 single) (T_10 ocular dominance stripe) (T_12 low)

(T_3 ocularity) (T_12 drift rate)
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Some collocations found in NIPS corpus
Count Topic Collocation

2 T0 unites states israeli binational science foundation bsf
2 T5 batch k-means empty circles online gradient

12 T1 partially observable markov decision processes
12 T2 defense advanced research projects agency
7 T5 radial basis function rbf network
5 T6 analog vlsi neural network chip
4 T12 national science foundation graduate fellowship
3 T10 globally optimal on-line learning rules
3 T12 radial basis function rbf units
3 T13 non-parametric multi-scale statistical image model
3 T15 weight vector estimate requires knowledge
3 T17 orientation bands intersect ocular dominance
3 T18 optimal brain damage le cun
3 T6 normalized mean squared prediction error

47 T5 markov chain monte carlo
43 T12 radial basis function rbf
41 T12 radial basis function networks
39 T7 independent component analysis ica
35 T11 principal component analysis pca
29 T11 hidden markov models hmms
23 T12 radial basis function network
21 T11 hidden markov model hmm
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Some collocations found in NIPS corpus (cont.)
Count Topic Collocation

17 T11 principal components analysis pca
16 T11 hidden markov models hmm
14 T18 artificial neural network ann
13 T15 optimal brain damage obd
12 T4 kanerva sparse distributed memory
11 T14 hybrid monte carlo method
11 T19 artificial neural networks ann
10 T0 mean square error mse
10 T12 radial basis functions rbfs
10 T16 markov decision process pomdp
10 T11 hidden markov model hmm
10 T3 atr human information processing
10 T18 artificial neural networks anns
10 T9 spin spin correlation function
9 T2 naive mean field approximation
9 T0 mean squared error mse
9 T7 support vector machines svms
9 T8 owl sound localization system
8 T1 compatible lateral bipolar transistors
8 T13 nsf presidential young investigator
8 T14 basic differential multiplier method
8 T18 recurrent analog neural nets
8 T2 stochastic gradient descent algorithm
7 T1 mean squared prediction error
7 T13 online maximum margin algorithm
7 T15 delay neural network tdnn
7 T17 projection pursuit learning network
7 T17 support vector machine svm
7 T8 hybrid reinforcement learning system
7 T9 contrast sensitive silicon retina
6 T2 akaike information criterion aic
6 T10 gradient descent learning rule
6 T11 fully connected committee machine
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Boundary indicators in word segmentation models

y Íu Îw Ía Ín Ít Ît Íu Îs Íi ÎD Í6 Îb ÍU Ík
“you want to see the book”

• Boolean boundary indicator variables are located between each
adjacent pair of elements

• Isomorphism between assignments to boundary indicator variables and
sequence segmentations

• Goldwater et al. (2006) word segmentation model samples possible
segmentations by Gibbs sampling the boundary indicator variables
É each Gibbs step only requires the ratio of the probabilities of
segmentations with the boundary present and without the
boundary present

) no difficult-to-compute partition function!
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Boundary indicator representation of topical collocations
• Boundary indicator variables range over possible topics,
plus a special “null topic” 0

polynomial Í
0
size Î

5
threshold Í

0
circuits Î

15

• An assignment to the boundary
indicator variables uniquely
determines a parse tree for the string

• We use Gibbs sampling over these
boundary indicators instead of
sampling parse trees
) avoids cubic time complexity of

PCFG parsing
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Doc3
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Words

Words

Word
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Boundary sampling algorithm for topical collocation
models

• Because of the isomorphism between adaptor grammar parses and
boundary indicator variable assignments, we can sample parses by
sampling boundary indicator variable values

• Gibbs sampling algorithm for boundary indicator variables:
repeat forever:
É pick a random boundary indicator variable
É compute relative probabilities of all parses corresponding to
possible values of variable
– most of parse tree is fixed ) strictly local computation

É sample a new value for boundary indicator variable according to
these relative probabilities

• Basically same as Griffiths et al. (2004) Gibbs sampler for LDA,
except for the “null topics”
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Speeding inference for topical collocation models

• Because our sampler is so similiar to standard LDA sampler, we can
use most of the implementation tricks developed for LDA

• Document ! topic and topic ! word distributions are sparse
) use sparse sampling techniques of Yao et al. (2009) that divide
topic probabilities into three “buckets”:
É Smoothing only bucket: base distribution
É Document topic bucket: non-zero count document-topic pairs
É Topic word bucket: non-zero count topic-word pairs

• We parallelise our inference algorithm by generalising the
multi-threaded algorithm used in Distributed LDA (Newman et al.,
2009)
É we improve their algorithm by parallelising the reduction operation
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Overview of experiments
• We evaluate our model in four ways:

É Document classification: evaluates how well topics are assigned to
documents

É Topic coherence: evaluates how well topics are assigned to words
É Information retrieval: evaluates how well topics are assigned to
both documents and words

É Efficiency: measures how fast an implementation is
• We compare the Topical Collocation Model (TCM) to the following
models:
É LDA (Mallet implementation)
É Pipeline Approach (PA) (Lau et al., 2013)
É The LDA collocation model (LDACOL) (Griffiths et al., 2007)
É Topic N-gram model (TNG) (Wang et al., 2007)
É The Adaptor Grammar topical collocation model (AG-colloc)
(Johnson, 2010)

Only the first two models can be run on larger data sets.
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Document classification and information retrieval on
small corpora

Task Classification accuracy IR MAP
Dataset MReview SJMN-2k
Mallet-LDA 71.30 18.85
LDACOL 71.75 19.03
TNG 71.40 19.06
PA 72.74 19.16
AG-colloc 73.15 19.37
Non-sparse TCM 73.14 19.30
Sparse TCM 73.13 19.31

• The movie review (MReviews) corpus (Pang and Lee, 2012) consists
of 1,000 positive and 1,000 negative movie reviews

• The San Jose Mercury News (SJMN-2k) corpus consists of 2,000
news articles

• All non-boldface scores are significantly different (p < 0:05) to best
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Classification accuracy on larger corpora

Mallet-LDA PA TCM
Politics 89.1 89.2 89.2
Comp 86.3 87.4 87.9
Sci 92.0 93.2 93.4

Sports 91.6 91.7 92.6
Reuters-21578 97.3 97.5 97.6

• The Politics, Comp, Sci and Sports are subsets of the 20 Newsgroups
corpus with 4,891, 3,952, 1,993 and 2,625 documents respectively

• The Reuters-21578 corpus has 21,578 Reuters news stories

• Evaluation procedure:
É find document ! topic assignments for each model and corpus
É randomly split corpus into train (80%) and test (20%)
É train SVM to predict document label
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Information retrieval on larger corpora

Mallet-LDA PA TCM
SJMN 20.7 20.9 21.2

AP News 24.0 24.5 24.8

• The SJMN corpus has 90,257 documents

• The AP News corpus has 242,918 documents

• Experimental procedure:
É use the Wei and Croft (2006) information retrieval system, where
the topic model is used (together with a unigram language model)
to predict the probability of the query given the document

É for the collocation models, the query is retokenised using
collocations

É we report Mean Averaged Precision (MAP) scores
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Topic coherence evaluation

Models p(w jt) p(tjw)

Mallet-LDA 71.9 73.2
PA 72.8 76.7
TCM 73.2 79.7

• The intrusion detection task detects how well Mechanical Turkers can
spot “intruders” in lists of topical words (Chang et al., 2009)
É train models on the San Jose Mercury News corpus
É select 10 words or collocations that maximise p(w jt) or p(tjw)
É randomly select a high-probability word or collocation from
another topic

É measure the accuracy with which the Turkers spot the intruder
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Running time per iteration

Dataset MReview SJMN-2k
Number of Topics 100 800 100 800
AG-colloc 84.9 1305 37.5 692
Non-sparse TCM 13.8 233 6.6 85.7
Sparse TCM 0.28 0.35 0.14 0.2

• The non-sparse TCM sampler performs each iteration about 6 times
faster than the adaptor grammar sampler
É but blocked samplers (e.g., the adaptor grammar sampler) often
need fewer iterations than pointwise samplers (e.g., the TCM
sampler)

• The sparse sampler is more than 50 times faster!
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Evaluating the parallelisation speedup

• Experiments on a machine with 80 Xeon E7-4850 processors (2.0GHz)
and 96 GB memory.

Figure: Plot of speedup in running time for the Mallet-LDA and our TCM.
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Conclusions

• Grammars can encode topic models and a wide range of
generalisations of them
É The topical collocation model jointly identifies topics and
collocations

• By re-expressing the models in terms of boundary indicator variables
we can derive a fast, parallelisable Gibbs sampler for the Topical
Collocation Model (TCM)
É we have also used boundary indicator sampling in document
segmentation and phonology induction models

• The TCM performs well on document classification, information
retrieval and topic coherence evaluations.

• The sparse sampler significantly speeds inference for topical
collocations
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Future work

• Can we exploit sparsity more generally in the adaptor grammar
sampler?
É the adaptor grammar sampler uses block sampling, which samples
an entire parse at a time, rather than the point-wise sampling
used in LDA and here

• Investigate other structural sensitivity in topical collocations
É Johnson (2010) uses adaptor grammars to learn and classify
named entities

É perhaps topical collocations also have an asymmetric structure?

• Learn and exploit latent feature representations for words and
collocations
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