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How can computational models help us understand
language acquisition?

Most computational linguistics research focuses on parsing or
learning algorithms
A computational model (Marr 1982) of acquisition specifies:

▶ the input (information available to learner)
▶ the output (generalisations learner can make)
▶ a model that relates input to output

This talk compares:
▶ staged learning, which learns one kind of thing at a time, and
▶ joint learning, which learns several kinds of things simultaneously,

and demonstrates synergies in acquisition that only joint learners
exploit
We do this by comparing models that differ solely in the kinds of
generalisations they can form
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Bayesian learning as
an “ideal observer” theory of learning

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

Likelihood measures how well grammar describes data
Prior expresses knowledge of grammar before data is seen

▶ can be very specific (e.g., Universal Grammar)
▶ can be very general (e.g., prefer shorter grammars)

Prior can also express markedness preferences (“soft universals”)
Posterior is a product of both likelihood and prior

▶ a grammar must do well on both to have high posterior probability
Posterior is a distribution over grammars

▶ captures learner’s uncertainty about which grammar is correct
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The acquisition of the lexicon as non-parametric
inference

What has to be learned in order to learn a word?
▶ pronunciation (sequence of phonemes)
▶ syntactic properties
▶ semantic properties (what kinds of things it can refer to)

There are unboundedly many different possible pronunciations (and
possible meanings?)
Parametric inference: learn values of a finite number of
parameters
Non-parametric inference:

▶ possibly infinite number of parameters
▶ learn which parameters are relevant as well as their values

Adaptor grammars use a grammar to generate parameters for
learning (e.g., possible lexical items)

▶ builds on non-parametric hierarchical Bayesian inference
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Unsupervised word segmentation

Input: phoneme sequences with sentence boundaries (Brent)
Task: identify word boundaries, and hence words

j △ u ▲ w △ ɑ △ n △ t ▲ t △ u ▲ s △ i ▲ ð △ ə ▲ b △ ʊ △ k
ju wɑnt tu si ðə bʊk

“you want to see the book”
Ignoring phonology and morphology, this involves learning the
pronunciations of the lexical items in the language
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Adaptor grammars as non-parametric hierachical
Bayesian models

The trees generated by an adaptor grammar are defined by CFG
rules as in a CFG
A subset of the nonterminals are adapted
Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG
Adapted nonterminals can expand in two ways:

▶ by picking a rule and recursively expanding its children, or
▶ by generating a previously generated tree (with probability

proportional to the number of times previously generated)
Adaptor Grammars generalise from types rather than tokens at all
levels
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Unigram adaptor grammar (Brent)

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons

Words

Word

Phons

Phon

ð

Phons

Phon

ə

Words

Word

Phons

Phon

b

Phons

Phon

ʊ

Phons

Phon

k

Word nonterminal is adapted
⇒ To generate a Word:

▶ select a previously generated Word subtree
with prob. ∝ number of times it has been generated

▶ expand using Word → Phons rule with prob. ∝ αWord
and recursively expand Phons
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Unigram model of word segmentation
Unigram “bag of words” model (Brent):

▶ generate a dictionary, i.e., a set of words, where each word is a
random sequence of phonemes

– Bayesian prior prefers smaller dictionaries
▶ generate each utterance by choosing each word at random from

dictionary
Brent’s unigram model as an adaptor grammar:

Words → Word+

Word → Phoneme+
Words

Word
j u

Word
w ɑ n t

Word
t u

Word
s i

Word
ð ə

Word
b ʊ k

Accuracy of word segmentation learnt: 56% token f-score
(same as Brent model)
But we can construct many more word segmentation models using
AGs
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Adaptor grammar learnt from Brent corpus
Initial grammar

1 Words → Word Words 1 Words → Word
1 Word → Phon
1 Phons → Phon Phons 1 Phons → Phon
1 Phon → D 1 Phon → G
1 Phon → A 1 Phon → E

A grammar learnt from Brent corpus
16625 Words → Word Words 9791 Words → Word
1575 Word → Phons
4962 Phons → Phon Phons 1575 Phons → Phon
134 Phon → D 41 Phon → G
180 Phon → A 152 Phon → E
460 Word → (Phons (Phon y) (Phons (Phon u)))
446 Word → (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word → (Phons (Phon D) (Phons (Phon 6)))
372 Word → (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))
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Undersegmentation errors with Unigram model
Words → Word+ Word → Phon+

Unigram word segmentation model assumes each word is generated
independently
But there are strong inter-word dependencies (collocations)
Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)

Words
Word
t ɛi k

Word
ð ə d ɑ g i

Word
ɑu t

Words
Word

j u w ɑ n t t u
Word

s i ð ə
Word
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Accuracy of unigram model
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Collocations ⇒ Words
Sentence → Colloc+
Colloc → Word+

Word → Phon+

Sentence

Colloc

Word

j u

Word

w ɑ n t t u

Colloc

Word

s i

Colloc

Word

ð ə

Word

b ʊ k

A Colloc(ation) consists of one or more words
Both Words and Collocs are adapted (learnt)
Significantly improves word segmentation accuracy over unigram
model (76% f-score; ≈ Goldwater’s bigram model)

14 / 52



Outline

Introduction
Adaptor grammars for word segmentation
Synergies in learning syllables and words
Synergies learning stress patterns and segmentation
Topic models and identifying the referents of words
Extensions and applications of these models
Conclusion

15 / 52



Two hypotheses about language acquisition

1. Pre-programmed staged acquisition of linguistic components
▶ Conventional view of lexical acquisition, e.g., Kuhl (2004)

– child first learns the phoneme inventory, which it then uses to
learn

– phonotactic cues for word segmentation, which are used to
learn

– phonological forms of words in the lexicon, . . .

2. Interactive acquisition of all linguistic components together
▶ corresponds to joint inference for all components of language
▶ stages in language acquisition might be due to:

– child’s input may contain more information about some
components

– some components of language may be learnable with less data
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Synergies: an advantage of interactive learning

An interactive learner can take advantage of synergies in
acquisition

▶ partial knowledge of component A provides information about
component B

▶ partial knowledge of component B provides information about
component A

A staged learner can only take advantage of one of these
dependencies
An interactive or joint learner can benefit from a positive feedback
cycle between A and B
Are there synergies in learning how to segment words and
identifying the referents of words?
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Jointly learning words and syllables
Sentence → Colloc+ Colloc → Word+

Word → Syllable{1:3} Syllable → (Onset) Rhyme
Onset → Consonant+ Rhyme → Nucleus (Coda)
Nucleus → Vowel+ Coda → Consonant+

Sentence
Colloc

Word
Onset

l
Nucleus

ʊ
Coda
k

Word
Nucleus

æ
Coda

t

Colloc
Word

Onset
ð

Nucleus
ɪ

Coda
s

Rudimentary syllable model (an improved model might do better)
With 2 Collocation levels, f-score = 84%
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Distinguishing internal onsets/codas helps
Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF SyllableIF → (OnsetI) RhymeF
OnsetI → Consonant+ RhymeF → Nucleus (CodaF)
Nucleus → Vowel+ CodaF → Consonant+

Sentence
Colloc
Word

OnsetI
h

Nucleus
æ

CodaF
v

Colloc
Word
Nucleus

ə

Word
OnsetI
d r

Nucleus
ɪ

CodaF
ŋ k

With 2 Collocation levels, not distinguishing initial/final clusters,
f-score = 84%
With 3 Collocation levels, distinguishing initial/final clusters,
f-score = 87%
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Collocations2 ⇒ Words ⇒ Syllables

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

ɪ

CodaF

v

Word

OnsetI

h

Nucleus

ɪ

CodaF

m

Colloc

Word

Nucleus

ə

Word

OnsetI

k

Nucleus

ɪ

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e
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Interaction between syllable phonotactics and
segmentation

Word segmentation accuracy depends on the kinds of
generalisations the model can learn

words as units (unigram) 56%
+ associations between words (collocations) 76%
+ syllable structure 84%
+ interaction between

segmentation and syllable structure 87%

Synergies in learning words and syllable structure
▶ joint inference permits the learner to explain away potentially

misleading generalizations
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Accuracy of Collocation + Syllable model
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Accuracy of Collocation + Syllable model by word frequency
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F-score of collocation + syllable word segmentation model
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F-score of collocation + syllable word segmentation model
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Exploiting stress in word segmentation
Stress is the “accentuation of syllables within words”

▶ 2-syllable words with initial stress: GIant, PICture, HEAting
▶ 2-syllable words with final stress: toDAY, aHEAD, aLLOW

English has a strong preference for initial stress (Cutler 1987)
▶ 50% of tokens / 85% of types have initial stress
▶ but: 50% of tokens / 5% of types are unstressed

Strong evidence that English-speaking children use stress for word
segmentation
Data preparation: stress marked on vowel nucleus

j △ u ▲ w △ ɑ* △ n △ t ▲ t △ u ▲ s △ i* ▲ ð △ ə ▲ b △ ʊ* △ k
“you want to see the book”

▶ c.f. Johnson and Demuth (2010) tone annotation in Chinese
▶ function words are unstressed (contra Yang and others)
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Learning stress patterns with AGs

Grammar can represent all possible stress patterns (up to 4
syllables)
Stress pattern probabilities learned jointly with phonotactics and
segmentation

Word
StressedUnstressed

SSyll
Onset

p
SRhyme

SNucleus
ɪ *

Coda
k

USyll
Onset
t ʃ

UNucleus
ə

Coda
r

Word
UnstressedStressed
USyll

Onset
t

URhyme
UNucleus

ə

SSyll
Onset

d
SRhyme
SNucleus

e *
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Stress and phonotactics in word segmentation
Models differ only in kinds of generalisations they can form

▶ phonotactic models learn generalisations about word edges
▶ stress models learn probability of strong/weak sequences

Model Accuracy
collocations + syllable structure 0.81
+ phonotactic cues 0.85
+ stress 0.86
+ both 0.88

Token f-score on the Alex portion of the Providence corpus
Both phonotactics and stress are useful cues for word segmentation
Performance improves when both are used ⇒ complementary cues
for word segmentation
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Stress and phonotactics over time
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Joint stress+phonotactic model is best with small data
Models with either eventually catch up
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More on learning stress

Probability of initial stress and unstressed word rules rapidly
converges on their type frequencies in the data
Consistently underestimates probability of stress-second patterns
(true type frequency = 0.07, estimated type frequency = 0.04)

▶ stress-second is also problematic for English children
Probability of word rules with more than one stress approaches
zero as data grows
⇒ Unique stress constraint (Yang 2004) can be acquired
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Prior work: mapping words to topics

Input to learner:
▶ word sequence: Is that the pig?
▶ objects in nonlinguistic context: dog, pig

Learning objectives:
▶ identify utterance topic: pig
▶ identify word-topic mapping: pig 7→ pig
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Frank et al (2009) “topic models” as PCFGs
Prefix sentences with possible
topic marker, e.g., pig|dog
PCFG rules choose a topic from
topic marker and propagate it
through sentence
Each word is either generated
from sentence topic or null
topic ∅

Sentence
Topicpig

Topicpig
Topicpig

Topicpig
Topicpig
pig|dog

Word∅
is

Word∅
that

Word∅
the

Wordpig
pig

Grammar can require at most one topical word per sentence
Bayesian inference for PCFG rules and trees corresponds to
Bayesian inference for word and sentence topics using topic model
(Johnson 2010)
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AGs for joint segmentation and topic-mapping
Combine topic-model PCFG with word segmentation AGs
Input consists of unsegmented phonemic forms prefixed with
possible topics:

pig|dog ɪ z ð æ t ð ə p ɪ g

E.g., combination of Frank “topic model”
and unigram segmentation model

▶ equivalent to Jones et al (2010)

Easy to define other
combinations of topic
models and
segmentation models

Sentence
Topicpig

Topicpig
Topicpig

Topicpig
Topicpig
pig|dog

Word∅
ɪ z

Word∅
ð æ t

Word∅
ð ə

Wordpig
p ɪ g
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Collocation topic model AG

Sentence

Topicpig
Topicpig

Topicpig
pig|dog

Colloc∅
Word∅
ɪ z

Word∅
ð æ t

Collocpig
Word∅
ð ə

Wordpig
p ɪ g

Collocations are either “topical” or not
Easy to modify this grammar so

▶ at most one topical word per sentence, or
▶ at most one topical word per topical collocation

36 / 52



Does non-linguistic context help segmentation?
Model word segmentation

segmentation topics token f-score
unigram not used 0.533
unigram any number 0.537
unigram one per sentence 0.547

collocation not used 0.695
collocation any number 0.726
collocation one per sentence 0.719
collocation one per collocation 0.750

Not much improvement with unigram model
▶ consistent with results from Jones et al (2010)

Larger improvement with collocation model
▶ most gain with one topical word per topical collocation

(this constraint cannot be imposed on unigram model)
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Does better segmentation help topic identification?
Task: identify object (if any) this sentence is about

Model sentence topic
segmentation topics accuracy f-score

unigram not used 0.709 0
unigram any number 0.702 0.355
unigram one per sentence 0.503 0.495

collocation not used 0.709 0
collocation any number 0.728 0.280
collocation one per sentence 0.440 0.493
collocation one per collocation 0.839 0.747

The collocation grammar with one topical word per topical
collocation is the only model clearly better than baseline
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Does better segmentation help learning word-topic
mappings?

Task: identify head nouns of NPs referring to topical objects
(e.g. pɪg 7→ pig in input pig | dog ɪ z ð æ t ð ə p ɪ g)

Model topical word
segmentation topics f-score

unigram not used 0
unigram any number 0.149
unigram one per sentence 0.147

collocation not used 0
collocation any number 0.220
collocation one per sentence 0.321
collocation one per collocation 0.636

The collocation grammar with one topical word per topical
collocation is best at identifying head nouns of topical NPs

39 / 52



Accuracy as a function of grammar and topicality
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Summary of jointly learning word segmentation
and word-to-topic mappings

Word to object mapping is learnt more accurately when words are
segmented more accurately

▶ improving segmentation accuracy improves topic detection and
acquisition of topical words

Word segmentation accuracy improves when exploiting
non-linguistic context information

▶ incorporating word-topic mapping improves segmentation accuracy
(at least with collocation grammars)

⇒ There are synergies a learner can exploit when learning word
segmentation and word-object mappings

41 / 52



Outline

Introduction
Adaptor grammars for word segmentation
Synergies in learning syllables and words
Synergies learning stress patterns and segmentation
Topic models and identifying the referents of words
Extensions and applications of these models
Conclusion

42 / 52



Social cues and word-topic mapping

Social interactions are important for early language acquisition
Can computational models exploit social cues?

▶ we show this by building models that can exploit social cues, and
show they learns better word-topic mappings on data with social
cues than when social cues are removed

▶ no evidence that social cues improve word-segmentation accuracy
Our models learn relative importance of different social cues

▶ estimate probability of each cue occuring with “topical objects”
and probability of each cue occuring with “non-topical objects”

▶ they do this in an unsupervised way, i.e., they are not told which
objects are topical

▶ ablation tests show that eye-gaze is the most important social cue
for learning word-topic mappings
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Function words in word segmentation

Some psychologists believe children exploit function words in early
language acquisition

▶ function words often are high frequency and phonologically simple
⇒ easy to learn?

▶ function words typically appear in phrase-peripheral positions
⇒ provide “anchors” for word and phrase segmentation

Modify word segmentation grammar to optionally generate
sequences of mono-syllabic “function words” at collocation edges

▶ improves word segmentation f-score from 0.87 to 0.92
Model can learn directionality of function word attachment

▶ Bayes factor hypothesis test overwhelmingly prefers left to right
function word attachment in English
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Jointly learning word segmentation and
phonological alternation

Word segmentation models so far don’t account for phonological
alternations (e.g., final devoicing, /t/-deletion, etc.)

▶ fundamental operation in CFG is string concatenation
▶ no principled reason why adaptor grammars can’t be combined

with phonological operations
Börschinger, Johnson and Demuth (2013) generalises Goldwater’s
bigram word segmentation model to allow word-final /t/-deletion

▶ applied to Buckeye corpus of adult speech
Current work: incorporate a MaxEnt “Harmony theory” model of
phonological alternation
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On-line learning using particle filters
The Adaptor Grammar software uses a batch algorithm that
repeatedly parses the data

▶ in principle, all the algorithm requires is a source of random
samples from the training data

⇒ Adaptor Grammars can be learned on-line
Particle filters are a standard technique for on-line Bayesian
inference

▶ a particle filter updates multiple analyses in parallel
Börschinger and Johnson (2011, 2012) explore on-line particle filter
algorithms for Goldwater’s bigram model

▶ a particle filter needs tens of thousands of particles to approach
the Metropolis-within-Gibbs algorithm used for Adaptor Grammars
here

▶ adding a rejuvenation step reduces the number of particles needed
dramatically
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Synergy failure: morphology and word
segmentation

We haven’t found a synergy between morphology and word
segmentation

▶ failure to find ̸⇒ non-existence
Why might we not have found any synergy?

▶ no synergies exist:
– morphological acquisition is largely independent of word

segmentation
▶ wrong data:

– child-directed English doesn’t contain enough inflectional
morphology to be useful

⇒ study languages with richer inflectional morphology
▶ wrong models:

– our models didn’t learn morpho-phonology, which plays a big
role in English

⇒ extend MaxEnt Harmony-theory models of word
segmentation and phonology to include morphology 47 / 52
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Conclusions and future work
Joint learning often uses information in the input more effectively
than staged learning

▶ Learning syllable structure and word segmentation
▶ Learning word-topic associations and word segmentation

Do children exploit such synergies in language acquisition?
Adaptor grammars are a flexible framework for stating
non-parametric hierarchical Bayesian models

▶ the accuracies obtained here are the best reported in the literature
Future work: make the models more realistic

▶ extend expressive power of AGs (e.g., incorporating
MaxEnt/Harmony-theory components)

▶ richer data (e.g., more non-linguistic context)
▶ more realistic data (e.g., phonological variation)
▶ cross-linguistic research (we’ve applied our models to French,

Sesotho and Chinese)
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How specific should our computational models be?
Marr’s (1982) three levels of computational models:

▶ computational level (inputs, outputs and relation between them)
▶ algorithmic level (steps involved in mapping from input to output)
▶ implementation level (physical processes involved)

Algorithmic-level models are extremely popular, but I think we
should focus on computational-level models first

▶ we know almost nothing about how hierarchical structures are
represented and manipulated in the brain

⇒ we know almost nothing about which data structures and
operations are neurologically plausible

▶ current models only explain a tiny fraction of language processing
or acquisition

▶ typically computational models can be extended, while algorithms
need to be completely changed

⇒ today’s computational models have a greater chance of being
relevant than today’s algorithms
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Why a child’s learning algorithm may be nothing
like our algorithms

Enormous differences in “hardware” ⇒ different feasible algorithms
As scientists we need generic learning algorithms, but a child only
needs a specific learning algorithm

▶ as scientists we want to study the effects of different modelling
assumptions on learning

⇒ we need generic algorithms that work for a range of different
models, so we can compare them

▶ a child only needs an algorithm that works for whatever model
they have

⇒ the child’s algorithm might be specialised to their model, and need
not work at all for other kinds of models

The field of machine learning has developed many generic learning
algorithms: Expectation-maximisation, variational Bayes, Markov
chain Monte Carlo, Gibbs samplers, particle filters, . . .
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The future of Bayesian models of language
acquisition

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

So far our grammars and priors don’t encode much linguistic
knowledge, but in principle they can!

▶ how do we represent this knowledge?
▶ how can we learn efficiently using this knowledge?

Should permit us to empirically investigate effects of specific
universals on the course of language acquisition
My guess: the interaction between innate knowledge and learning
will be richer and more interesting than either the rationalists or
empiricists currently imagine!
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