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What is rational inference?

A theory of rational inference is a theory about the
conditions under which it is rational for a person’s beliefs to
change.

Dayton (1975) “Towards a theory of rational inference”

• Inference is the process of drawing conclusions (i.e., forming
beliefs) from available information, such as observations

• What is rational?
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Logic as rational inference
• Deductive logic describes inferences of the form A,A⇒ B ⊢ B
• It involves statements which are either true or false claims

about the world
▶ but we don’t know which; our knowledge is incomplete

• Gödel’s Completeness Theorem shows that the rules of
first-order logic satisfy:
▶ Soundness: if the premises are true, the conclusions are

always true
▶ Completeness: if a statement must be true given the

premises, then the rules can derive it
• Gödel’s Incompleteness Theorem shows that no inference

system for a sufficiently complicated domain, such as
arithmetic, can be both sound and complete
▶ deeply related to the undecidability of the Turing machine

halting problem
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What is Bayesian inference?
• Bayesian inference associates statements with probabilities:

▶ Objectivist interpretation: P(A) = 0.7 means “A is true in
70% of the relevant situations”

▶ Subjectivist interpretation: P(A) is the strength of agent’s
belief that A is true

• Bayes rule is used to update these probabilities based on
evidence:

P(Belief | Evidence)︸ ︷︷ ︸
Posterior

∝ P(Evidence | Belief)︸ ︷︷ ︸
Likelihood

P(Belief)︸ ︷︷ ︸
Prior

• But where do the original prior probabilities come from?
▶ in practice, influence of prior often become neglible after

just a few observations
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When is Bayesian inference rational?

• Axiomatic justification: if strength of belief is represented by a
real number, then probability theory and Bayes rule is the only
reasonable way of manipulating these numbers

• Decision-theoretic justification: if the world is really probabilistic
in the way that Bayesian theory assumes, then Bayesian
inference leads to optimal decisions

• Dutch book justification: if you’re willing to make bets with
odds based on the strength of your beliefs, and your beliefs
aren’t consistent with probability theory, then a Dutch book
sequence of bets can be made that guarantee you lose money
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Comparing logical and Bayesian inference
• Logical inference ignores frequency information
⇒ Bayesian inference extracts more information from data
▶ Bayesian inference is probabilistic, while logical inference is

possiblistic

• In logical inference, an inference is either correct or incorrect,
while Bayesian inference is successful if the estimated probability
is close to the true probability
▶ we’re happy if bP(A) = 0.7 when P(A) = 0.70001

⇒ Bayesian inference can succeed on problems that logical
inference cannot solve because:
▶ Bayesian inference gets more information from data, and

has a weaker criterion for success
⇒ Bayesian inference can learn languages that logical

inference cannot (e.g., PCFGs)
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The logical problem of language acquisition

• Poverty of the stimulus: A human language has an infinite
number of sentences, but we learn it from a finite number
amount of experience

• No negative evidence: Parents don’t correct children’s
grammatical errors (and when they do, the children don’t pay
any attention)

⇒ Subset problem: How can children ever learn that a sentence is
not in their language?

I gave some money to the museum.
I gave the museum some money.
I donated some money to the museum.
⋆I donated the museum some money.
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Bayesian solutions to the subset problem

• Problem: how to learn that ⋆I donated the museum some
money is ungrammatical without negative evidence?

• Possible approach (Amy Perfors and others): use Bayesian
inference for two hypotheses
▶ Hypothesis 1: donates does not appear in the Dative-shift

construction
▶ Hypothesis 2: donates does appear in the Dative-shift

construction with frequency distributed according to some
prior

• Note: this still requires innate knowledge!
▶ where do the hypotheses and priors come from?
▶ in Dative shift, the generalisations seem to be over

semantic classes of verbs, rather than individual verbs
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Occam’s Razor

• In Aspects, Chomsky (1965) hypothesises that learners use an
evaluation metric that prefers a simpler grammar to a more
complex one when both are consistent with the linguistic data

• In Bayesian inference, the prior plays exactly the same role:

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

• Information-theoretic connection: If the grammar is written in
an optimal code based on the prior, then the Bayes-optimal
analysis will be the shortest description of the data (Minimum
Description Length learning)
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What information is available to the child?

• Language acquisition with logical inference from positive
examples alone only works when the possible languages are very
restricted

⇒ Strong innate constraints on possible human languages
• But maybe the context also supplies useful information?
• Wexler and Culicover (1980) showed that transformational

grammars are learnable when:
▶ the learner knows the sentence’s semantics (its deep

structure) as well as its surface form, and
▶ the surface form does not differ “too much” from the

semantics

• Steedman has developed Bayesian models that do this when the
semantic form is uncertain
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Broad-coverage evaluation of computational
models

• In computational linguistics we’ve discovered that many models
that work well on small artificial data sets don’t scale up well

⇒ Computational linguistics now discounts research that doesn’t
use “real data”

• (But all modelling involves idealisations, and it’s not clear that
working with small data is the worst of our modelling
assumptions)
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Parametric and non-parametric inference

• A parametric model is one defined by values of a pre-defined
finite set of parameters
▶ Chomskyian parameter-setting is parametric inference
▶ learning a parametric model is “just optimisation” of the

parameter values

• A non-parametric model is one that can’t be characterised by a
finite number of parameters
▶ learning a non-parametric model involves learning what the

appropriate units of generalisation are
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Lexicon learning and unsupervised word
segmentation

• Input: phoneme sequences with sentence boundaries (Brent)
• Task: identify word boundaries, and hence words

j Í u ▲ w Í ɑ Í n Í t ▲ t Í u ▲ s Í i ▲ ð Í ə ▲ b Í ʊ Í k
ju wɑnt tu si ðə bʊk

“you want to see the book”

• Ignoring phonology and morphology, this involves learning the
pronunciations of the lexicon of the language

• No obvious bound on number of possible lexical entries
⇒ learning the lexicon is a non-parametric learning problem
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Adaptor grammars: a framework for
non-parametric Bayesian inference

• Idea: use a grammar to generate potential parameters for a
non-parametric model

• In an adaptor grammar, each subtree that the grammar
generates is a parameter of the model

• The prior specifies:
▶ the grammar rules which define the possible generalisations

the model can learn
▶ a distribution over the rule probabilities

• The inference procedure learns:
▶ which generalisations (subtrees) best describe the data
▶ the probability of these generalisations
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Adaptor grammars for word segmentation

Words→Word
Words→Word Words
Word→ Phons
Phons→ Phon
Phons→ Phon Phons

Words

Word

Phons

Phon

ð

Phons

Phon

ə

Words

Word

Phons

Phon

b

Phons

Phon

ʊ

Phons

Phon

k

• The grammar generates an infinite
number of Word subtrees

• A parse of a sentence segments
the phonemes into words
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Adaptor grammar learnt from Brent corpus
• Prior grammar

1 Words→WordWords 1 Words→Word
1 Word→ Phon
1 Phons→ Phon Phons 1 Phons→ Phon
1 Phon→ D 1 Phon→ G
1 Phon→ A 1 Phon→ E

• Grammar sampled from posterior after learning on Brent corpus
16625 Words→WordWords 9791 Words→Word
1575 Word→ Phons
4962 Phons→ PhonPhons 1575 Phons→ Phon
134 Phon→ D 41 Phon→ G
180 Phon→ A 152 Phon→ E
460 Word→ (Phons (Phon y) (Phons (Phon u)))
446 Word→ (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word→ (Phons (Phon D) (Phons (Phon 6)))
372 Word→ (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))

19 / 39



Undersegmentation errors with Unigram model

Words→Word+ Word→ Phon+

• Unigram word segmentation model assumes each word is
generated independently

• But there are strong inter-word dependencies (collocations)
• Unigram model can only capture such dependencies by analyzing

collocations as words (Goldwater 2006)

Words

Word

t ɛi k
Word

ð ə d ɑ g i
Word

ɑu t
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Word segmentation improves when modelling
syllable structure and context

• Word segmentation accuracy depends on the kinds of
generalisations learnt.

Generalization Accuracy
words as units (unigram) 56%
+ associations between words (collocations) 76%
+ syllable structure 84%
+ interaction between

segmentation and syllable structure 87%

• Synergies in learning words and syllable structure
▶ joint inference permits the learner to explain away

potentially misleading generalizations
• We’ve also modelled word segmentation in Mandarin (and

showed tone is a useful cue) and in Sesotho 21 / 39



Accuracy of Collocation + Syllable model
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F-score of collocation + syllable word segmentation model
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F-score of collocation + syllable word segmentation model
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Mapping words to referents

• Input to learner:
▶ word sequence: Is that the pig?
▶ objects in nonlinguistic context: dog, pig

• Learning objectives:
▶ identify utterance topic: pig
▶ identify word-topic mapping: pig ⇝ pig
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Frank et al (2009) “topic models” as PCFGs

• Prefix sentences with
possible topic marker, e.g.,
pig|dog

• PCFG rules choose a topic
from topic marker and
propagate it through
sentence

• Each word is either
generated from sentence
topic or null topic ∅

Sentence

Topicpig

Topicpig

Topicpig

Topicpig

Topicpig

pig|dog

Word∅

is

Word∅

that

Word∅

the

Wordpig

pig

• Grammar can require at most one topical word per sentence
• Bayesian inference for PCFG rules and trees corresponds to

Bayesian inference for word and sentence topics using topic
model (Johnson 2010)
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AGs for joint segmentation and referent-mapping
• Combine topic-model PCFG with word segmentation AGs
• Input consists of unsegmented phonemic forms prefixed with

possible topics:
pig|dog ɪ z ð æ t ð ə p ɪ g

• E.g., combination of Frank “topic model”
and unigram segmentation model

• Easy to define other
combinations of topic
models and
segmentation models

Sentence

Topicpig

Topicpig

Topicpig

Topicpig

Topicpig

pig|dog

Word∅

ɪ z

Word∅

ð æ t

Word∅

ð ə

Wordpig

p ɪ g
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Experimental set-up

• Input consists of unsegmented phonemic forms prefixed with
possible topics:

pig|dog ɪ z ð æ t ð ə p ɪ g

▶ Child-directed speech corpus collected by Fernald et al
(1993)

▶ Objects in visual context annotated by Frank et al (2009)

• We performed Bayesian inference for the posterior Adaptor
Grammar using a Markov Chain Monte Carlo algorithm
(Johnson et al 2009)
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Accuracy of topical and non-topical by frequency under topic-collocation (Tcolloc1) model
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Results on grounded learning and word
segmentation

• Word to object mapping is learnt more accurately when words
are segmented more accurately
▶ improving segmentation accuracy improves topic detection

and acquisition of topical words

• Word segmentation accuracy improves when exploiting
non-linguistic context information
▶ incorporating word-topic mapping improves segmentation

accuracy (at least with collocation grammars)

⇒ There are synergies a learner can exploit when learning word
segmentation and word-object mappings
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Modelling the role of social cues in word learning
• Everyone agrees social interactions are important for children’s

early language acquisition
▶ e.g. children who engage in more joint attention with

caregivers (e.g., looking at toys together) learn words
faster (Carpenter 1998)

• Can computational models exploit social cues?
▶ we show this by building models that can exploit social

cues, and show they learns better on data with social cues
than on data with social cues removed

• Many different social cues could be relevant: can our models
learn the importance of different social cues?
▶ our models estimate probability of each cue occuring with

“topical objects” and probability of each cue occuring with
“non-topical objects”

▶ they do this in an unsupervised way, i.e., they are not told
which objects are topical 32 / 39



Exploiting social cues for learning word referents

• Frank et al (2012) corpus of 4,763 utterances with the
following information:
▶ the orthographic words uttered by the care-giver,
▶ a set of available topics (i.e., objects in the non-linguistic

objects),
▶ the values of the social cues, and
▶ a set of intended topics, which the care-giver refers to.

• Social cues annotated in corpus:
Social cue Value
child.eyes objects child is looking at
child.hands objects child is touching
mom.eyes objects care-giver is looking at
mom.hands objects care-giver is touching
mom.point objects care-giver is pointing to
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Example utterance and its encoding as a string

Input to learner:
.dog
.pig child.eyes mom.eyes mom.hands
wheres the piggie
Intended topic: .pig
Word-topic associations: piggie ⇝ .pig
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Example parse tree for social cues

Sentence

Topic.pig

T.None

.dog

NotTopical.child.eyes

NotTopical.child.hands

NotTopical.mom.eyes

NotTopical.mom.hands

NotTopical.mom.point

#

Topic.pig

T.pig

.pig

Topical.child.eyes

child.eyes

Topical.child.hands

Topical.mom.eyes

Topical.mom.hands

mom.hands
Topical.mom.point

#

Topic.None

##

Words.pig

Word.None

wheres

Words.pig

Word.None

the

Words.pig

Word.pig

piggie
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Results for learning words and social cues

• In the four different models we tried, social cues improved the
accuracy of:
▶ recovering the utterance topic
▶ identifying the word(s) referring to the topic, and
▶ learning a lexicon (word ⇝ topic mapping)

• kideyes was the most important social cue for each of these
tasks in all of the models

• Social cues don’t seem to improve word segmentation
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Summary of Bayesian models of word
segmentation

• Close to 90% accuracy in word segmentation with models
combining:
▶ distributional information (including collocations)
▶ syllable structure

• Synergies are available when learning words and syllable
structure jointly

• Grounded learning of word ⇝ topic mapping
▶ improves word segmentation
▶ another synergy in learning

• Social cues improve grounded learning
▶ but not word segmentation (so far)
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General conclusions and future work

• Bayesian learners don’t have to be tabula rasa learners
▶ the model structure and the prior can incorporate rich a

priori knowledge

• Non-parametric models can learn a finite set of relevant
generalisations out of an infinite set of potential generalisations

• There is useful information in distributional statistics that a
Bayesian learner can take advantage of

• The models make predictions about order of acquisition that
could be tested against real children’s behaviour
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