Rational Inferences and Bayesian Inferences

Mark Johnson

Dept of Computing Macquarie University Sydney, Australia

October 2015

Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work

What is rational inference?

A theory of rational inference is a theory about the conditions under which it is rational for a person's beliefs to change.

Dayton (1975) "Towards a theory of rational inference"

- *Inference* is the process of drawing conclusions (i.e., forming beliefs) from available information, such as observations
- What is rational?

Logic as rational inference

- Deductive logic describes inferences of the form $A, A \Rightarrow B \vdash B$
- It involves statements which are either true or false claims about the world
 - but we don't know which; our knowledge is incomplete
- Gödel's Completeness Theorem shows that the rules of first-order logic satisfy:
 - Soundness: if the premises are true, the conclusions are always true
 - Completeness: if a statement must be true given the premises, then the rules can derive it
- Gödel's Incompleteness Theorem shows that no inference system for a sufficiently complicated domain, such as arithmetic, can be both sound and complete
 - deeply related to the undecidability of the Turing machine halting problem

What is Bayesian inference?

- Bayesian inference associates statements with probabilities:
 - ▶ Objectivist interpretation: P(A) = 0.7 means "A is true in 70% of the relevant situations"
 - ► Subjectivist interpretation: **P**(A) is the strength of agent's belief that A is true
- Bayes rule is used to *update* these probabilities based on evidence:

$$\underbrace{ \begin{array}{c} \textbf{P}(\mathsf{Belief} \mid \mathsf{Evidence}) \\ \mathsf{Posterior} \end{array} } \propto \underbrace{ \begin{array}{c} \textbf{P}(\mathsf{Evidence} \mid \mathsf{Belief}) \\ \mathsf{Likelihood} \end{array} } \underbrace{ \begin{array}{c} \textbf{P}(\mathsf{Belief}) \\ \mathsf{Prior} \end{array}$$

- But where do the original prior probabilities come from?
 - in practice, influence of prior often become neglible after just a few observations

When is Bayesian inference rational?

- Axiomatic justification: if strength of belief is represented by a real number, then probability theory and Bayes rule is the only reasonable way of manipulating these numbers
- Decision-theoretic justification: if the world is really probabilistic in the way that Bayesian theory assumes, then Bayesian inference leads to optimal decisions
- Dutch book justification: if you're willing to make bets with odds based on the strength of your beliefs, and your beliefs aren't consistent with probability theory, then a Dutch book sequence of bets can be made that guarantee you lose money

Comparing logical and Bayesian inference

- Logical inference ignores frequency information
 - ⇒ Bayesian inference extracts more information from data
 - ► Bayesian inference is *probabilistic*, while logical inference is *possiblistic*
- In logical inference, an inference is either correct or incorrect, while Bayesian inference is successful if the estimated probability is close to the true probability
 - we're happy if $\widehat{\mathbf{P}}(A) = 0.7$ when $\mathbf{P}(A) = 0.70001$
- ⇒ Bayesian inference can succeed on problems that logical inference cannot solve because:
 - ► Bayesian inference gets *more information from data*, and has *a weaker criterion for success*
 - ⇒ Bayesian inference can learn languages that logical inference cannot (e.g., PCFGs)

Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work

The logical problem of language acquisition

- Poverty of the stimulus: A human language has an infinite number of sentences, but we learn it from a finite number amount of experience
- No negative evidence: Parents don't correct children's grammatical errors (and when they do, the children don't pay any attention)
- ⇒ Subset problem: How can children ever learn that a sentence is not in their language?

I gave some money to the museum.

I gave the museum some money.

I donated some money to the museum.

*I donated the museum some money.

Bayesian solutions to the subset problem

- Problem: how to learn that *I donated the museum some money is ungrammatical without negative evidence?
- Possible approach (Amy Perfors and others): use Bayesian inference for two hypotheses
 - Hypothesis 1: donates does not appear in the Dative-shift construction
 - Hypothesis 2: donates does appear in the Dative-shift construction with frequency distributed according to some prior
- Note: this still requires innate knowledge!
 - where do the hypotheses and priors come from?
 - ▶ in Dative shift, the generalisations seem to be over semantic classes of verbs, rather than individual verbs

Occam's Razor

- In Aspects, Chomsky (1965) hypothesises that learners use an evaluation metric that prefers a simpler grammar to a more complex one when both are consistent with the linguistic data
- In Bayesian inference, the prior plays exactly the same role:

$$\underbrace{ \begin{array}{ccc} \underline{P(Grammar \mid Data)} & \propto & \underline{P(Data \mid Grammar)} & \underline{P(Grammar)} \\ & & \underline{P(Grammar)} & \underline{P(Grammar)} \\ \end{array} }_{Posterior}$$

• Information-theoretic connection: If the grammar is written in an optimal code based on the prior, then the Bayes-optimal analysis will be the shortest description of the data (*Minimum Description Length* learning)

What information is available to the child?

- Language acquisition with logical inference from positive examples alone only works when the possible languages are very restricted
- ⇒ Strong innate constraints on possible human languages
 - But maybe the context also supplies useful information?
 - Wexler and Culicover (1980) showed that transformational grammars are learnable when:
 - ► the learner knows the sentence's semantics (its deep structure) as well as its surface form, and
 - the surface form does not differ "too much" from the semantics
 - Steedman has developed Bayesian models that do this when the semantic form is uncertain

Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work

Broad-coverage evaluation of computational models

- In computational linguistics we've discovered that many models that work well on small artificial data sets don't scale up well
- ⇒ Computational linguistics now discounts research that doesn't use "real data"
 - (But all modelling involves idealisations, and it's not clear that working with small data is the worst of our modelling assumptions)

Parametric and non-parametric inference

- A parametric model is one defined by values of a pre-defined finite set of parameters
 - Chomskyian parameter-setting is parametric inference
 - learning a parametric model is "just optimisation" of the parameter values
- A *non-parametric model* is one that can't be characterised by a finite number of parameters
 - learning a non-parametric model involves learning what the appropriate units of generalisation are

Lexicon learning and unsupervised word segmentation

- Input: phoneme sequences with *sentence boundaries* (Brent)
- Task: identify word boundaries, and hence words

```
j և u w և a և n և t և t և u և s և i և ð և ə և b և u և k
ju want tu si ðə bok
"you want to see the book"
```

- Ignoring phonology and morphology, this involves learning the pronunciations of the lexicon of the language
- No obvious bound on number of possible lexical entries
 - \Rightarrow learning the lexicon is a non-parametric learning problem

Adaptor grammars: a framework for non-parametric Bayesian inference

- Idea: use a grammar to generate potential parameters for a non-parametric model
- In an adaptor grammar, each subtree that the grammar generates is a parameter of the model
- The prior specifies:
 - ► the *grammar rules* which define the *possible generalisations* the model can learn
 - a distribution over the rule probabilities
- The inference procedure learns:
 - which generalisations (subtrees) best describe the data
 - the probability of these generalisations

Adaptor grammars for word segmentation

 $Words \rightarrow Word$

Words → Word Words

Word \rightarrow Phons

 $Phons \rightarrow Phon$

Phons → Phon Phons

 The grammar generates an infinite number of Word subtrees

 A parse of a sentence segments the phonemes into words

Adaptor grammar learnt from Brent corpus

Prior grammar

1	$vvorus \rightarrow \underline{vvoru} vvorus$	Т	$vvorus \rightarrow \underline{vvoru}$
1	$\underline{Word} \to Phon$		
1	$Phons \to PhonPhons$	1	$Phons \to Phon$
1	$Phon \to D$	1	$Phon \to G$
1	Phon o A	1	Phon $\rightarrow E$

Mords / Mord Mords 1 Mords / Mord

Grammar sampled from posterior after learning on Brent corpus

16625	Words \rightarrow Word Words	9791	Words \rightarrow Word	
1575	$\underline{Word} \to Phons$			
4962	$Phons \to PhonPhons$	1575	$Phons \to Phon$	
12/	Phon \ D	11	Phon C	

1.34 Phon $\rightarrow D$ 41 Phon \rightarrow G

180 Phon $\rightarrow A$ 152 Phon $\rightarrow E$

Word \rightarrow (Phons (Phon D) (Phons (Phon 6)))

 $\underline{\overline{\text{Word}}} \rightarrow (\text{Phons (Phon \&) (Phons (Phon n) (Phons (Phon d)_{19/39})})$

Word \rightarrow (Phons (Phon y) (Phons (Phon u))) Word \rightarrow (Phons (Phon w) (Phons (Phon A) (Phons (Phon t)) 446

Undersegmentation errors with Unigram model

$$\mathsf{Words} \to \underline{\mathsf{Word}}^+ \qquad \underline{\mathsf{Word}} \to \mathsf{Phon}^+$$

- Unigram word segmentation model assumes each word is generated independently
- But there are strong inter-word dependencies (collocations)
- Unigram model can only capture such dependencies by analyzing collocations as words (Goldwater 2006)

Word segmentation improves when modelling syllable structure and context

 Word segmentation accuracy depends on the kinds of generalisations learnt.

Generalization	Accuracy	
words as units (unigram)	56%	
+ associations between words (collocations)	76%	
+ syllable structure	84%	
+ interaction between		
segmentation and syllable structure	87%	

- Synergies in learning words and syllable structure
 - ▶ joint inference permits the learner to *explain away* potentially misleading generalizations
- We've also modelled word segmentation in *Mandarin* (and showed tone is a useful cue) and in *Sesotho*

Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work

Mapping words to referents

- Input to learner:
 - word sequence: Is that the pig?
 - objects in nonlinguistic context: dog, pig
- Learning objectives:
 - identify utterance topic: pig
 - ▶ identify word-topic mapping: pig → pig

Frank et al (2009) "topic models" as PCFGs

- Prefix sentences with possible topic marker, e.g., pig|dog
- PCFG rules choose a topic from topic marker and propagate it through sentence
- Each word is either generated from sentence topic or null topic Ø

- Grammar can require at most one topical word per sentence
- Bayesian inference for PCFG rules and trees corresponds to Bayesian inference for word and sentence topics using topic model (Johnson 2010)

AGs for joint segmentation and referent-mapping

- Combine topic-model PCFG with word segmentation AGs
- Input consists of unsegmented phonemic forms prefixed with possible topics:

pig dog 1zðætðəp1g

• E.g., combination of *Frank "topic model"* and *unigram segmentation model*

 Easy to define other combinations of topic models and segmentation models

Sentence

Experimental set-up

 Input consists of unsegmented phonemic forms prefixed with possible topics:

- Child-directed speech corpus collected by Fernald et al (1993)
- ▶ Objects in visual context annotated by Frank et al (2009)
- We performed Bayesian inference for the posterior Adaptor Grammar using a Markov Chain Monte Carlo algorithm (Johnson et al 2009)

Results on grounded learning and word segmentation

- Word to object mapping is learnt more accurately when words are segmented more accurately
 - improving segmentation accuracy improves topic detection and acquisition of topical words
- Word segmentation accuracy improves when exploiting non-linguistic context information
 - incorporating word-topic mapping improves segmentation accuracy (at least with collocation grammars)
- ⇒ There are synergies a learner can exploit when learning word segmentation and word-object mappings

Modelling the role of social cues in word learning

- Everyone agrees social interactions are important for children's early language acquisition
 - e.g. children who engage in more joint attention with caregivers (e.g., looking at toys together) learn words faster (Carpenter 1998)
- Can computational models exploit social cues?
 - we show this by building models that can exploit social cues, and show they learns better on data with social cues than on data with social cues removed
- Many different social cues could be relevant: can our models learn the importance of different social cues?
 - our models estimate probability of each cue occuring with "topical objects" and probability of each cue occuring with "non-topical objects"
 - they do this in an unsupervised way, i.e., they are not told which objects are topical

Exploiting social cues for learning word referents

- Frank et al (2012) corpus of 4,763 utterances with the following information:
 - the orthographic words uttered by the care-giver,
 - a set of available topics (i.e., objects in the non-linguistic objects),
 - the values of the social cues, and
 - ▶ a set of *intended topics*, which the care-giver refers to.
- Social cues annotated in corpus:

	•
Social cue	Value
child.eyes	objects child is looking at
child.hands	objects child is touching
mom.eyes	objects care-giver is looking at
mom.hands	objects care-giver is touching
mom.point	objects care-giver is pointing to

Example utterance and its encoding as a string

Input to learner:

.dog

.pig child.eyes mom.eyes mom.hands

wheres the piggie

Intended topic: .pig

Word-topic associations: piggie - .pig

Example parse tree for social cues

Results for learning words and social cues

- In the four different models we tried, *social cues* improved the accuracy of:
 - recovering the utterance topic
 - ▶ identifying the word(s) referring to the topic, and
 - ▶ learning a lexicon (word → topic mapping)
- kideyes was the most important social cue for each of these tasks in all of the models
- Social cues don't seem to improve word segmentation

Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work

Summary of Bayesian models of word segmentation

- Close to 90% accuracy in word segmentation with models combining:
 - distributional information (including collocations)
 - syllable structure
- Synergies are available when learning words and syllable structure jointly
- Grounded learning of word → topic mapping
 - improves word segmentation
 - another synergy in learning
- Social cues improve grounded learning
 - but not word segmentation (so far)

General conclusions and future work

- Bayesian learners don't have to be tabula rasa learners
 - the model structure and the prior can incorporate rich a priori knowledge
- Non-parametric models can learn a finite set of relevant generalisations out of an infinite set of potential generalisations
- There is useful information in distributional statistics that a Bayesian learner can take advantage of
- The models make predictions about order of acquisition that could be tested against real children's behaviour