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What Is rational inference?

A theory of rational inference is a theory about the

conditions under which it is rational for a person’s beliefs to
change.

Dayton (1975) “Towards a theory of rational inference”

e Inference is the process of drawing conclusions (i.e., forming
beliefs) from available information, such as observations

e \What is rational?



LLogic as rational inference

e Deductive logic describes inferences of the form A A= BF B
e |t involves statements which are either true or false claims
about the world
» but we don't know which; our knowledge is incomplete
e Godel's Completeness Theorem shows that the rules of
first-order logic satisfy:
» Soundness: if the premises are true, the conclusions are
always true
» Completeness: if a statement must be true given the
premises, then the rules can derive it
e Godel's Incompleteness Theorem shows that no inference
system for a sufficiently complicated domain, such as
arithmetic, can be both sound and complete
» deeply related to the undecidability of the Turing machine
halting problem



What Is Bayesian inference?

e Bayesian inference associates statements with probabilities:
» Objectivist interpretation: P(A) = 0.7 means “A is true in
70% of the relevant situations”
» Subjectivist interpretation: P(A) is the strength of agent's
belief that A is true

e Bayes rule is used to update these probabilities based on
evidence:

P(Belief | Evidence) oc P(Evidence | Belief) P(Belief)
NS ~— -~ ~ e —
Posterior Likelihood Prior

e But where do the original prior probabilities come from?

» in practice, influence of prior often become neglible after
just a few observations



When is Bayesian inference rational?

e Axiomatic justification: if strength of belief is represented by a
real number, then probability theory and Bayes rule is the only
reasonable way of manipulating these numbers

e Decision-theoretic justification: if the world is really probabilistic
in the way that Bayesian theory assumes, then Bayesian
inference leads to optimal decisions

e Dutch book justification: if you're willing to make bets with
odds based on the strength of your beliefs, and your beliefs
aren’t consistent with probability theory, then a Dutch book
sequence of bets can be made that guarantee you lose money



Comparing logical and Bayesian inference

e | ogical inference ignores frequency information
= Bayesian inference extracts more information from data
» Bayesian inference is probabilistic, while logical inference is
possiblistic

e In logical inference, an inference is either correct or incorrect,
while Bayesian inference is successful if the estimated probability
is close to the true probability

~ we're happy if P(A) = 0.7 when P(A) = 0.70001

= Bayesian inference can succeed on problems that logical
inference cannot solve because:
» Bayesian inference gets more information from data, and
has a weaker criterion for success
= Bayesian inference can learn languages that logical
inference cannot (e.g., PCFGs)

~
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The logical problem of language acquisition

e Poverty of the stimulus: A human language has an infinite
number of sentences, but we learn it from a finite number
amount of experience

e No negative evidence: Parents don't correct children’s
grammatical errors (and when they do, the children don't pay
any attention)

= Subset problem: How can children ever learn that a sentence is
not in their language?
| gave some money to the museum.
| gave the museum some money.
| donated some money to the museum.
*| donated the museum some money.



Bayesian solutions to the subset problem

e Problem: how to learn that */ donated the museum some
money is ungrammatical without negative evidence?

e Possible approach (Amy Perfors and others): use Bayesian
inference for two hypotheses
» Hypothesis 1: donates does not appear in the Dative-shift
construction
» Hypothesis 2: donates does appear in the Dative-shift
construction with frequency distributed according to some
prior

e Note: this still requires innate knowledge!

» where do the hypotheses and priors come from?
» in Dative shift, the generalisations seem to be over
semantic classes of verbs, rather than individual verbs
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Occam’s Razor

e In Aspects, Chomsky (1965) hypothesises that learners use an
evaluation metric that prefers a simpler grammar to a more
complex one when both are consistent with the linguistic data

e In Bayesian inference, the prior plays exactly the same role:

P(Grammar | Data) o P(Data | Grammar) P(Grammar)

/ /

~"

Pos?erior Likeﬁ?]ood Prior
e Information-theoretic connection: If the grammar is written in
an optimal code based on the prior, then the Bayes-optimal

analysis will be the shortest description of the data (Minimum
Description Length learning)
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What information is available to the child?

e Language acquisition with logical inference from positive
examples alone only works when the possible languages are very
restricted

= Strong innate constraints on possible human languages
e But maybe the context also supplies useful information?
e Wexler and Culicover (1980) showed that transformational
grammars are learnable when:

» the learner knows the sentence’'s semantics (its deep
structure) as well as its surface form, and

» the surface form does not differ “too much” from the
semantics

e Steedman has developed Bayesian models that do this when the
semantic form is uncertain
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13/39



Broad-coverage evaluation of computational
models

e In computational linguistics we've discovered that many models
that work well on small artificial data sets don't scale up well
= Computational linguistics now discounts research that doesn't
use “real data”
e (But all modelling involves idealisations, and it's not clear that
working with small data is the worst of our modelling
assumptions)
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Parametric and non-parametric inference

e A parametric model is one defined by values of a pre-defined
finite set of parameters
» Chomskyian parameter-setting is parametric inference
» learning a parametric model is “just optimisation” of the
parameter values

e A non-parametric model is one that can't be characterised by a
finite number of parameters

» learning a non-parametric model involves learning what the
appropriate units of generalisation are



Lexicon learning and unsupervised word
segmentation

Input: phoneme sequences with sentence boundaries (Brent)

Task: identify word boundaries, and hence words

jau,w,a,n t,t,u,s,i,0.,9.b,u0.k
ju want tu si & buk
“you want to see the book”

Ignoring phonology and morphology, this involves learning the
pronunciations of the lexicon of the language

No obvious bound on number of possible lexical entries
= learning the lexicon is a non-parametric learning problem
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Adaptor grammars: a framework for
non-parametric Bayesian inference

e |dea: use a grammar to generate potential parameters for a
non-parametric model
e In an adaptor grammar, each subtree that the grammar
generates is a parameter of the model
e The prior specifies:
» the grammar rules which define the possible generalisations
the model can learn
» a distribution over the rule probabilities

e The inference procedure learns:

» which generalisations (subtrees) best describe the data
» the probability of these generalisations



Adaptor grammars for word segmentation

Words
Words — Word Word Words
Words — Word Words |
Word — Phons Phons Word
N

Phons — Phon

Phon Phons Phons
Phons — Phon Phons | | PN

0 Phon Phon Phons

e 2 b Phon Phons
e The grammar generates an infinite

number of Word subtrees U Phon

e A parse of a sentence segments |
the phonemes into words k

18/39



Adaptor grammar learnt from Brent corpus

e Prior grammar

1 Words — Word Words 1 Words — Word
1 Word — Phon

1 Phons — Phon Phons 1 Phons — Phon
1 Phon— D 1 Phon— G

1 Phon— A 1 Phon— E

e Grammar sampled from posterior after learning on Brent corpus

16625
1575
4962

134
180
460
446
374
372

Words — Word Words 9791 Words — Word

Word — Phons

Phons — Phon Phons 1575 Phons — Phon

Phon — D 41 Phon — G

Phon — A 152 Phon — E

Word — (Phons (Phon y) (Phons (Phon v)))

Word — (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))
Word — (Phons (Phon D) (Phons (Phon 6)))

Word — (Phons (Phon &) (Phons (Phon n) (

—~ /N

Phons (Phon d)
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Undersegmentation errors with Unigram model

Words — Word™ Word — Phon™

e Unigram word segmentation model assumes each word is
generated independently

e But there are strong inter-word dependencies (collocations)

e Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)

Words
Word Word Word

t ei k 8 ad a g iau't
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Word segmentation improves when modelling

syllable structure and context

e \Word segmentation accuracy depends on the kinds of
generalisations learnt.

Generalization Accuracy
words as units (unigram) 56%
+ associations between words (collocations) 76%
+ syllable structure 84%
+ Iinteraction between
segmentation and syllable structure 87%

e Synergies in learning words and syllable structure
» joint inference permits the learner to explain away
potentially misleading generalizations
e \We've also modelled word segmentation in Mandarin (and
showed tone is a useful cue) and in Sesotho
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F-score of collocation + syllable word segmentation model
a book get have is

it put that the this

| | | | | | | | L ! | | |
1000 10000 10 100 1000 10000 100 1000 10000 10 100 1000 10000

Number of sentences
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Grounded learning and learning word meanings
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Mapping words to referents

e Input to learner:

» word sequence: s that the pig?

» objects in nonlinguistic context: dog, pig
e | earning objectives:

» identify utterance topic: pig

» identify word-topic mapping: pig ~» pig
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Frank et al (2009) “topic models” as PCFGs

e Prefix sentences with
possible topic marker, e.g.,
pig|dog

e PCFG rules choose a topic
from topic marker and
propagate it through
sentence

e Each word is either

generated from sentence
topic or null topic @

Sentence

Topic ig

W Worldpig
Topic; Wolrdg pig

T

Topic,i, Wordg the
AL

Top|| cpigWolrd@ that

pig/dog is

e Grammar can require at most one topical word per sentence
e Bayesian inference for PCFG rules and trees corresponds to
Bayesian inference for word and sentence topics using topic

model (Johnson 2010)



AGs for joint segmentation and referent-mapping

e Combine topic-model PCFG with word segmentation AGs

e Input consists of unsegmented phonemic forms prefixed with
possible topics:
pigldogrzdetdoprg

e E.g., combination of Frank “topic model” Sentence

and unigram segmentation model :

nd unigram segmentation m }D'EJSK
Topicy; Word .

e Easy to define other /p\p,g\ TR

combinations of topic ygpig\ Wordg p 1 g

/N
models and Topic ig Wordy 0 o
segmentation models P T
TopicpigWordQ d e t
| /\

pig/dog 1 2
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Experimental set-up

e Input consists of unsegmented phonemic forms prefixed with
possible topics:
pigldogrzdetdoprg

» Child-directed speech corpus collected by Fernald et al
(1993)
» Objects in visual context annotated by Frank et al (2009)

e We performed Bayesian inference for the posterior Adaptor
Grammar using a Markov Chain Monte Carlo algorithm
(Johnson et al 2009)



Accuracy of topical and non-topical by frequency under topic-collocation (Tcolloc1) model
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Results on grounded learning and word
segmentation

e Word to object mapping is learnt more accurately when words
are segmented more accurately

» improving segmentation accuracy improves topic detection
and acquisition of topical words

e Word segmentation accuracy improves when exploiting
non-linguistic context information
» incorporating word-topic mapping improves segmentation
accuracy (at least with collocation grammars)

= There are synergies a learner can exploit when learning word
segmentation and word-object mappings



Modelling the role of social cues in word learning

e Everyone agrees social interactions are important for children’s
early language acquisition

» e.g. children who engage in more joint attention with
caregivers (e.g., looking at toys together) learn words
faster (Carpenter 1998)

e (Can computational models exploit social cues?

» we show this by building models that can exploit social
cues, and show they learns better on data with social cues
than on data with social cues removed

e Many different social cues could be relevant: can our models
learn the importance of different social cues?

» our models estimate probability of each cue occuring with
“topical objects” and probability of each cue occuring with
“non-topical objects”

» they do this in an unsupervised way, i.e., they are not told
which objects are topical .
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Exploiting social cues for learning word referents

e Frank et al (2012) corpus of 4,763 utterances with the
following information:

» the orthographic words uttered by the care-giver,

» a set of available topics (i.e., objects in the non-linguistic
objects),

» the values of the social cues, and

» a set of intended topics, which the care-giver refers to.

e Social cues annotated in corpus:

Social cue Value

child.eyes objects child is looking at
child.hands  objects child is touching
mom.eyes  objects care-giver is looking at
mom.hands objects care-giver is touching
mom.point  objects care-giver is pointing to



Example utterance and its encoding as a string

Input to learner:

.dog

.pig child.eyes mom.eyes mom.hands
wheres the piggie

Intended topic: .pig

Word-topic associations:  piggie ~» .pig
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Example parse tree for social cues

Sentence

T.None

otToplca‘I.chlld.eyes
otToplcaI‘.chlld.hands
NotTopicaI‘.mom.eyes
NotTopica\.‘mom.hands

NotTopical.mom.point

.dog #

child.eyes

Topic.pig

.pig

Topical.child.eyes
Topical.dcild.hands
Topical.npom.eyes

Topical.mom.hands

mom.hands #

Topical.rr‘lom.point

Words.pig
Word.None Words.pig
—
Topic.None Word.None V\/orqs.plg
Word.pig
## wheres the piggie
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Results for learning words and social cues

e |n the four different models we tried, social cues improved the
accuracy of:
» recovering the utterance topic
» identifying the word(s) referring to the topic, and
» learning a lexicon (word ~» topic mapping)

e kideyes was the most important social cue for each of these
tasks in all of the models

e Social cues don't seem to improve word segmentation
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Conclusions and future work
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Summary of Bayesian models of word
segmentation

e Close to 90% accuracy in word segmentation with models
combining:
» distributional information (including collocations)
» syllable structure
e Synergies are available when learning words and syllable
structure jointly
e Grounded learning of word ~» topic mapping
» improves word segmentation
» another synergy in learning
e Social cues improve grounded learning
» but not word segmentation (so far)



General conclusions and future work

Bayesian learners don’t have to be tabula rasa learners
» the model structure and the prior can incorporate rich a
priori knowledge

Non-parametric models can learn a finite set of relevant
generalisations out of an infinite set of potential generalisations

There is useful information in distributional statistics that a
Bayesian learner can take advantage of

The models make predictions about order of acquisition that
could be tested against real children’s behaviour
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