A survey of parsing and its applications

Mark Johnson

Macquarie University Sydney, Australia

August 2015

Outline

Introduction

Parsing for detecting and correcting speech errors

Parsing for information extraction

The Life Stories relation extraction project

Conclusions and future research directions

What's driving NLP and CL research?

- Tools for managing the "information explosion"
 - extracting information from and managing large text document collections
 - NLP is often free "icing on the cake" to sell more ads;
 e.g., speech recognition, machine translation, document clustering (news), etc.
- Mobile and portable computing
 - keyword search / document retrieval don't work well on very small devices
 - we want to be able to talk to our computers (speech recognition)
 and have them say something intelligent back (question-answering, generation)
- The intelligence agencies
- The old Artificial Intelligence (AI) dream
 - ► language is the most direct window into the mind

Different kinds of linguistic regularities

- Phonology studies the distributional patterns of sounds
 - ► E.g., cats vs dogs
- Morphology studies the structure of words
 - ► E.g., re+vital+ise
- Syntax studies how words combine to form phrases and sentences
 - ► E.g., I saw the man with the telescope
- Semantics studies how language conveys meaning
 - ► E.g., I sprayed the paint onto the wall/I sprayed the wall with paint
- Pragmatics studies how language is used to do things
 - ► E.g., Can you pass the salt?

Phrase structure and dependency parses

- A phrase structure parse represents phrases as nodes in a tree
- A dependency parse represents dependencies between words
- Phrase structure and dependency parses are *approximately inter-translatable*:
 - dependency structures assume all phrases have a unique head
 - \Rightarrow phrase structure can describe a wider range of syntactic constructions than dependency representations
- Phrase structure parsing was studied in depth before dependency parsing
- Phrase structure parsing is typically slower (tens of sentences/sec) than dependency parsing (thousands of sentences/sec)

Syntactic parses of real sentences

- State-of-the-art parsers have accuracies of over 90%
- ⇒ Most parses contain at least one error

Advantages of probabilistic parsing

- In the GofAl approach to syntactic parsing:
 - ▶ a hand-written grammar defines the grammatical (i.e., well-formed) parses
 - given a sentence, the parser returns the set of grammatical parses for that sentence
 - ⇒ unable to distinguish more likely from less likely parses
 - ⇒ hard to ensure *robustness* (i.e., that every sentence gets a parse)
- In a probabilistic parser:
 - ▶ the grammar *generates all possible parse trees* for all possible strings (roughly)
 - use probabilities to identify plausible syntactic parses
- Probabilistic syntactic models usually encode:
 - the probabilities of syntactic constructions
 - ► the probabilities of lexical dependencies e.g., how likely is *pizza* as direct object of *eat*?

- Probabilistic context-free grammars (PCFGs) define probability distributions over trees
- Each *nonterminal node* expands by
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is product of probabilities of rules used to construct it

Probability θ_r	Rule r
1	S o NP VP
0.7	$NP \to \mathit{Sam}$
0.3	NP o Sandy
1	$VP \to V \; NP$
0.8	V o likes
0.2	V o hates

- Probabilistic context-free grammars (PCFGs) define probability distributions over trees
- Each *nonterminal node* expands by
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is product of probabilities of rules used to construct it

Probability θ_r	Rule r
1	$S \to NP VP$
0.7	NP o Sam
0.3	NP o Sandy
1	$VP \to V \; NP$
0.8	V o likes
0.2	$V o \mathit{hates}$

$$P(Tree) = 1 \times$$

- Probabilistic context-free grammars (PCFGs) define probability distributions over trees
- Each *nonterminal node* expands by
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is product of probabilities of rules used to construct it

Probability θ_r	Rule r
1	S o NP VP
0.7	$NP \to \mathit{Sam}$
0.3	$NP o \mathit{Sandy}$
1	$VP \to V \; NP$
0.8	V o likes
0.2	V o hates
D/T \	1 0 7

$$P(Tree) = 1 \times 0.7 \times$$

- Probabilistic context-free grammars (PCFGs) define probability distributions over trees
- Each *nonterminal node* expands by
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is product of probabilities of rules used to construct it

Probability θ_r	Rule r
1	$S \to NP \; VP$
0.7	NP o Sam
0.3	$NP o \mathit{Sandy}$
1	$VP \to V \; NP$
0.8	V o likes
0.2	V o hates

$$P(Tree) = 1 \times 0.7 \times 1 \times$$

- Probabilistic context-free grammars (PCFGs) define probability distributions over trees
- Each *nonterminal node* expands by
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is product of probabilities of rules used to construct it

Probability θ_r	Rule r
1	S o NP VP
0.7	NP o Sam
0.3	NP o Sandy
1	$VP \to V \; NP$
0.8	V o likes
0.2	$V \rightarrow \mathit{hates}$

$$P(Tree) = 1 \times 0.7 \times 1 \times 0.8 \times$$

- Probabilistic context-free grammars (PCFGs) define probability distributions over trees
- Each *nonterminal node* expands by

Durch - hillim . A

- choosing a rule expanding that nonterminal, and
- recursively expanding any nonterminal children it contains
- Probability of tree is product of probabilities of rules used to construct it

Ruie r
S o NP VP
NP o Sam
NP o Sandy
$VP \to V \; NP$
$V \rightarrow \textit{likes}$
V o hates

$$P(\text{Tree}) = 1 \times 0.7 \times 1 \times 0.8 \times 0.3$$

Two uses for probabilistic syntactic parsing

- A probabilistic *syntactic parser* returns a list of syntactic parses together with their probabilities for each sentence
- ⇒ Use most probable parse to help understand the sentence
 - question answering
 - ► information extraction
- ⇒ Use the sum of parse probabilities to estimate the probability of a sentence (syntactic language model)
 - speech recognition
 - machine translation
 - speech error detection and correction

Outline

Introduction

Parsing for detecting and correcting speech errors

Parsing for information extraction

The Life Stories relation extraction project

Conclusions and future research directions

A typology of speech disfluencies

• Filled pauses:

I think it's uh refreshing to see the uh support ...

Parentheticals

But you know I was reading the other day . . .

• Repairs:

I want a flight to Boston uh I mean to Denver on Friday

• Restarts:

Why didn't he why didn't she stay at home?

Bear, Dowding and Schriberg (1992), Heeman and Allen (1997, 1999), Nakatani and Hirschberg (1994), Stolcke and Schriberg (1996)

Why treat restarts and repairs specially?

- Filled pauses are easy to recognise and remove from speech transcripts
- Modern NLP tools (e.g., parsers) handle parentheticals properly
- But restarts and repairs are often misanalysed by NLP tools
- ⇒ Detect and remove disfluencies before further processing

I want a flight to Boston uh I mean to Denver on Friday Why didn't he why didn't she stay at home?

The structure of restarts and repairs

```
...and you get, uh, you can get a system ...

Reparandum Interregnum Repair
```

- The Reparandum is often not a syntactic phrase
- The Interregnum is usually lexically and prosodically marked, but can be empty
- The Reparandum is often a "rough copy" of the Repair
 - Repairs are typically short
 - Repairs are not always copies
 - ▶ It's possible e.g. for there to be anaphoric dependencies into the reparandum

Machine-learning approaches to disfluency detection

- Train a classifier to predict whether each word is Edited or NotEdited
 - this approach classifies each word independently, but the classification should really be made over groups of words
- A very large number of features can be usefully deployed in such a system

The "true" model of repairs (?)

```
...and you get, uh, you can get a system ...

Reparandum Interregnum Repair
```

- Speaker generates intended "conceptual representation"
- Speaker incrementally generates syntax and phonology,
 - recognizes that what is said doesn't mean what was intended,
 - "backs up", i.e., partially deconstructs syntax and phonology, and
 - starts incrementally generating syntax and phonology again
- (but without a good model of "conceptual representation", this may be hard to formalize . . .)

Approximating the "true model"

I want a flight to Boston uh I mean to Denver on Friday

- Use Repair string as approximation to intended meaning
- Reparandum string is "rough copy" of Repair string
 - ► involves *crossing* (rather than *nested*) dependencies
- String with reparandum and interregnum excised is usually well-formed
 - after correcting the error, what's left should have high probability
 - ⇒ use model of normal language to interpret ill-formed input
- A parsing model can check that the proposed repaired string is grammatically well-formed
 - ▶ speech errors tend to occur at the beginnings of clauses and major phrases
 - ⇒ use parsing model to check that speech errors occur in syntactically plausible locations

The Noisy Channel Model

- Noisy channel models combines two different submodels
- Channel model needs to generate crossing dependencies
 ⇒ TAG transducer

Reranking the Noisy Channel model

- Log probs from source model and channel model are reranker features
- MaxEnt reranker can use additional features as well
- ⇒ Best of both noisy channel and machine-learning approaches
 - Johnson et al used a parser-based language model

Evaluation of model's performance

	f-score	error rate
NCM + bigram LM	0.75	0.45
NCM + parser LM	0.81	0.35
MaxEnt rescorer using NCM + parser LM	0.87	0.25
MaxEnt rescorer alone	0.78	0.38

- Evaluated on unseen portion of Switchboard corpus
- f-score is a geometric average of Edited words precision and recall (bigger is better)
- *error rate* is the number of Edited word errors made divided by number of true edited words (smaller is better)

RT04F competition

- RT04F evaluated meta-data extraction
 - disfluency detection/correction was just one of the tasks they evaluated
- Test material was unsegmented speech recognizer output or transcripts
- ICSI, SRI and UW supplied us with ASR output, SU boundaries and acoustic IP probabilities
- Added rescorer features that incorporated these
- Won all of the RT04F disfluency detection competitions we entered

Further results on disfluency detection/correction

- Zwarts, Johnson and Dale (2010) developed an *incremental version of this algorithm* for detecting and correcting speech repairs
- Zwarts and Johnson (2011) evaluate the effect of language model choice on disfluency detection and correction
 - parsing-based language models do better than n-gram models, all else equal
 - best performance comes from combining all the language models in a single model
- Honnibal and Johnson (2014) present a joint model of dependency parsing and disfluency detection/correction
 - we augment the shift-reduce actions of a transition-based dependency parser with a special detach action that "disconnects" a word or partial phrase from the parse tree
 - this model is inherently incremental
 - because the parse tree is constructed at the same time, it's easy to exploit syntactic structure for detecting speech disfluencies
 - lead to work on non-monotonic transition-based parsing algorithms which use specialised "repair transitions" to correct earlier parsing errors

Outline

Introduction

Parsing for detecting and correcting speech errors

Parsing for information extraction

The Life Stories relation extraction project

Conclusions and future research directions

Named entity recognition and linking

 Named entity recognition finds all "mentions" referring to an entity in a document

Example: Tony Abbott bought 300 shares in Acme Corp in 2006

 Noun phrase coreference tracks mentions to entities within or across documents

Example: Tony Abbott met the president of Indonesia yesterday. Mr. Abbott told him that he ...

• Entity linking maps entities to database entries

Example: Tony Abbott bought 300 shares in Acme Corp in 2006

Relation extraction

• Relation extraction mines texts to find relationships between named entities, i.e., "who did what to whom (when)?"

The new Governor General, Peter Cosgrove, visited Buckingham Palace yesterday.

Has-role

Person	Role
Peter Cosgrove	Governor General of Australia

Offical-visit

Visitor	Organisation
Peter Cosgrove	Queen of England

- The syntactic parse provides useful features for relation extraction
- Bio-medical research literature and financial documents are major application areas
- Ignores lots of potentially relevant information, e.g., yesterday

Syntactic parsing for relation extraction

 The syntactic path in a dependency parse is a useful feature in relation extraction

$$X \xrightarrow{\text{appos}} Y \Rightarrow \text{has-role}(Y, X)$$

 $X \xleftarrow{\text{sbj}} \text{visited} \xrightarrow{\text{dobj}} Y \Rightarrow \text{official-visit}(X, Y)$

Google's Knowledge Graph

- Goal: move beyond keyword search document retrieval to *directly* answer user queries
- ⇒ easier for mobile device users
- Google's Knowledge Graph:
 - built on top of FreeBase
 - entries are synthesised from Wikipedia, news stories, etc.
 - manually curated (?)

FreeBase: an open knowledge base

- An entity-relationship database on top of a graph triple store
- Data mined from Wikipedia, ChefMoz, NNDB, FMD, MusicBrainz, etc.
- 44 million topics (entities),
 2 billion facts,
 250GB uncompressed dump
- Created by Metaweb, which was acquired by Google

Distant supervision for relation extraction

- Ideal labelled data for relation extraction: large text corpus annotated with entities and relations
 - expensive to produce, especially for a lot of relations!
- Distant supervision assumption: if two or more entities that appear in the same sentence also appear in the same database relation, then probably the sentence expresses the relation
 - assumes pairs of entities only interact in one way
 - temporal information can resolve some ambiguities
- With the distant supervision assumption, we obtain relation extraction training data by:
 - taking a large text corpus (e.g., 10 years of news articles)
 - running a named entity linker on the corpus
 - looking up the entity tuples that appear in the same sentence in the large knowledge base (e.g., FreeBase)
- ⇒ Enables us to learn parsing-based extraction patterns for each FreeBase relation

Opinion mining and sentiment analysis

- Used to analyse e.g., social media (Web 2.0)
- Typical goals: given a corpus of messages:
 - classify each message along a subjective-objective scale
 - ▶ identify the message *polarity* (e.g., on dislike–like scale)
- Training opinion mining and sentiment analysis models:
 - in some domains, supervised learning with simple keyword-based features works well
 - ▶ but in other domains it's necessary to model *syntactic structure* as well
 - E.g., I doubt she had a very good experience . . .
- Opinion mining can be combined with:
 - topic modelling to cluster messages with similar opinions
 - multi-document summarisation to summarise results
 - named entity linking and relation extraction to associate sentiment with specific entities (e.g., I like Windows much more than Linux).

Outline

Introduction

Parsing for detecting and correcting speech errors

Parsing for information extraction

The Life Stories relation extraction project

Conclusions and future research directions

Which Jim Jones?

- News text: Jim Jones' recent musical releases . . .
- 8 Wikipedia pages for Jim Jones:
 - 2 politicians
 - ▶ 1 basketball player
 - ▶ 1 hockey player
 - ▶ 1 guitarist (deceased)
 - ▶ 1 rapper
 - ▶ 1 cult leader (deceased)
- How do we know it's the rapper?

Life Stories

- A person's *life story* is the sequence of events that occur to them
- Generalisations about life stories:
 - everyone dies less than 110 years after they were born
 - if someone goes to school, it's usually when they are 5–20 years old
 - if someone goes to college, it's often immediately after school
 - a singer is more likely than a carpenter to have a musical release
 - an academic is more likely than an accountant to write a book
 - a lawyer is more likely than an actor to become a politician

The structure of life stories

- Everybody's life story is different
 - ⇒ finite set of "life templates" won't suffice
- But there are generalisations:
 - few artists have exactly 10 CDs like Jim Jones
 - but releasing a CD is a frequent event for artists like Jim Jones, with predictable subevents:
 - release parties
 - promotions and reviews
 - shows and tours
- Can we learn typical life stories?
- Given a partial life story, can we "fill in" the rest?

Life Stories and Topic Models

LDA topic models	Life story models
words	events (e.g., running for election, releasing a CD)
documents	<i>life stories</i> (the sequence of events in an individual's life)
topics	careers (sequences of events associated with e.g., being a politician or musician)

- Topics are hidden when training a topic model, while FreeBase has abundant information about events
 - ▶ identifying the *relevant information* may be hard

What are Life Stories?

- FreeBase as a repository of Life Stories
 - FreeBase contains more than 100 properties for ≈ 250,000 people
 - Coverage is uneven: Sarah Palin's political career is covered, her political commentator roles on Fox News are not
- What appears in a Life Story?
 - time-stamped properties,
 e.g., Bill Clinton's presidency 1993–2001
 - indirectly time-stamped properties,
 e.g., Bill Clinton's 1996 presidential campaign
 - some properties without timestamps,
 e.g., gender, nationality, notable type
- Possible formalisations of Life Stories
 - temporally-bounded sets of events (i.e., a time-line)
 - events occuring in fixed windows (e.g., each year's events)

Applications of Life Stories

- Disambiguating named entities and relations in automatic knowledge extraction
 - bias syntactic parsing and semantic interpretation toward plausible relationships
 - help disambiguate named entities
- Error and anomaly detection:
 - ▶ highly improbable clusters of events (e.g., someone simultaneously being an astronaut and a sportsperson) may indicate errors in the knowledge base
- Fraud detection:
 - highly improbable sequences of events might not have actually happened
- Discovering unusual individuals:

Important events

- Events differ in importance
 - Bill Clinton made 97 political appointments, appeared on 24 TV shows, and was elected US President twice
- FreeBase internal measures of importance
 - causes are highly predictive, temporally-preceding event types
- External measures of importance or impact
 - use relation extraction to align FreeBase properties to the individual's Wikipedia text, or a large news corpus
 - estimate importance by amount of text (sentences, column inches, etc.) linked to event

Event structure

- Events have a complicated temporal and causal structure
 - ▶ Bill Clinton's winning the 1996 Presidental election
 - ⇒ Bill Clinton is US President 1997–2001
 - ⇒ Bill Clinton makes 97 political appointments
- At what granularity should we individuate events?
 Many useful tasks don't require detailed information
 - dead cult leaders don't release hit CDs
- Minor events can give information about important events
 - ▶ a late alimony payment ⇒ marriage and divorce
- Can hierarchical models generalise at multiple levels simultaneously?

Evaluating a Life Story model

- · Life Story models should be useful in
 - named entity linking
 - relation extraction

but accuracy on those tasks depends on other factors as well

- Evaluate the predictive ability of a Life Story model, e.g.:
 - train model on 2012 FreeBase
 - give model an individual's pre-2013 Life Story and several possible 2013 completions
 - evaluate how accurately model chooses correct completion

Example: Dick Cheney

The story until 2000

- born 1941, in Lincoln, Nebraska
- studied political science at the University of Nebraska
- ► White House chief of staff 1975–1977
- elected to US Congress 1979–1989
- minority whip in US Congress 1989
- ▶ US Secretary for Defense 1989–1993
- employed by Halliburton 1995–2000

2001 alternative #1

- litigant in Supreme Court legal case
- Vice President of the United States
- founded Energy Task Force

2001 alternative #2

- mayor of Wasilla, Alaska
- member of the Alaska Municipal League board

Life Story models

- The future is like the past, i.e., choose the completion which is as close as possible to the known events
- Binary classifier that predicts how likely the future events are given the past events
 - can learn simple contextual generalisations
 e.g., an academic is more likely to write a book than a sportsperson
- n-gram and Hidden Markov Models
 - linearize events into a sequence
 - project events onto a finite set of event types
- Hierarchical models of Life Stories
 - ► a Life Story is a (possibly overlapping) sequence of *careers*
 - each *career* is a sequence of *events*
 - each event has properties and a duration

Outline

Introduction

Parsing for detecting and correcting speech errors

Parsing for information extraction

The Life Stories relation extraction project

Conclusions and future research directions

Summary

- Because semantics is generally *compositional*, recovering syntactic structure is a *key step in understanding the meaning of a sentence*
- There are two popular kinds of syntactic representation: *phrase structures* and *dependency structures*
 - phrase structures can describe a wider range of syntactic constructions
 - dependency structures are faster and easier to produce
- Probabilistic parsing models compute possible parses for a sentence, together with their probabilities
 - ⇒ parsing models can be used as *syntactic language models* to distinguish plausible from implausible sentences
 - we've used them to consistently develop the best disfluency-detection systems for over a decade
 - ⇒ parsing models can be used to identify the most plausible syntactic analysis of a sentence
 - parsing plays a key role in information extraction systems
- The best syntactic parsers have around 92% accuracy ⇒ most parses contain an error
 - ⇒ there's still much more work to do on syntactic parsing

Other research strengths: Topic models

- *Topic models* (e.g., Latent Dirichlet Allocation) are a popular tool for managing large document collections
 - ► they cluster documents by the words they contain, and cluster words by the topics they appear in
 - ► they are *bag-of-words models*
- Du, Buntine and Johnson (2013) generalised LDA to segment documents into topically-coherent parts
- Du, Pate and Johnson (2015) showed how to *learn topical ordering* regularities in a document collection and use this to improve document segmentation and topic identification
- Nguyen, Billingsley, Du and Johnson (2015) used latent word vector representations learnt from a large external corpus to improve topic modelling performance on small, specialised document collections such as Twitter documents
- Zhao, Du, Börschinger, Pate, Ciaramita, Steedman and Johnson (2015) generalises LDA beyond bag-of-words to learn *topical collocations* (e.g., *White House, neural net*)

Future research: multi-word expressions and parsing

- Multi-word expressions appear in many technical technical texts
 - because of sparse data problems, they are often incorrectly parsed
 - often specialised sequence models (e.g., CRFs) are used to recognise them
- Our plan is to *add specialised transitions to a transition-based dependency* parser to detect and parse multi-word expressions

