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What’s driving NLP and CL research?

• Tools for managing the “information explosion”
É extracting information from and managing large text document collections
É NLP is often free “icing on the cake” to sell more ads;
e.g., speech recognition, machine translation, document clustering (news), etc.

• Mobile and portable computing
É keyword search / document retrieval don’t work well on very small devices
É we want to be able to talk to our computers (speech recognition)
and have them say something intelligent back (question-answering, generation)

• The intelligence agencies
• The old Artificial Intelligence (AI) dream

É language is the most direct window into the mind
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Different kinds of linguistic regularities

• Phonology studies the distributional patterns of sounds
É E.g., cats vs dogs

• Morphology studies the structure of words
É E.g., re+vital+ise

• Syntax studies how words combine to form phrases and sentences
É E.g., I saw the man with the telescope

• Semantics studies how language conveys meaning
É E.g., I sprayed the paint onto the wall/I sprayed the wall with paint

• Pragmatics studies how language is used to do things
É E.g., Can you pass the salt?
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Phrase structure and dependency parses

S

NP

D

the

N

cat

VP

V

chased

NP

D

a

N

dog the cat chased a dog

sbj
dobj

det det

• A phrase structure parse represents phrases as nodes in a tree

• A dependency parse represents dependencies between words
• Phrase structure and dependency parses are approximately inter-translatable:

É dependency structures assume all phrases have a unique head
⇒ phrase structure can describe a wider range of syntactic constructions than

dependency representations

• Phrase structure parsing was studied in depth before dependency parsing

• Phrase structure parsing is typically slower (tens of sentences/sec) than
dependency parsing (thousands of sentences/sec)
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Syntactic parses of real sentences
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• State-of-the-art parsers have accuracies of over 90%
⇒ Most parses contain at least one error
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Advantages of probabilistic parsing

• In the GofAI approach to syntactic parsing:
É a hand-written grammar defines the grammatical (i.e., well-formed) parses
É given a sentence, the parser returns the set of grammatical parses for that
sentence

⇒ unable to distinguish more likely from less likely parses
⇒ hard to ensure robustness (i.e., that every sentence gets a parse)

• In a probabilistic parser:
É the grammar generates all possible parse trees for all possible strings (roughly)
É use probabilities to identify plausible syntactic parses

• Probabilistic syntactic models usually encode:
É the probabilities of syntactic constructions
É the probabilities of lexical dependencies
e.g., how likely is pizza as direct object of eat?
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Probabilistic Context-Free Grammars

• Probabilistic context-free grammars (PCFGs) define probability distributions
over trees

• Each nonterminal node expands by
É choosing a rule expanding that nonterminal, and
É recursively expanding any nonterminal children it contains

• Probability of tree is product of probabilities of rules used to construct it

Probability θr Rule r
1 S→ NP VP
0.7 NP→ Sam
0.3 NP→ Sandy
1 VP→ V NP
0.8 V→ likes
0.2 V→ hates

S

NP VP

Sam V NP

likes Sandy

P(Tree) =

1× 0.7× 1× 0.8× 0.3
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Two uses for probabilistic syntactic parsing

• A probabilistic syntactic parser returns a list of syntactic parses together with
their probabilities for each sentence

⇒ Use most probable parse to help understand the sentence
É question answering
É information extraction

⇒ Use the sum of parse probabilities to estimate the probability of a sentence
(syntactic language model)
É speech recognition
É machine translation
É speech error detection and correction
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A typology of speech disfluencies

• Filled pauses:

I think it’s uh refreshing to see the uh support . . .

• Parentheticals

But you know I was reading the other day . . .

• Repairs:

I want a flight to Boston uh I mean to Denver on Friday

• Restarts:

Why didn’t he why didn’t she stay at home?

Bear, Dowding and Schriberg (1992), Heeman and Allen (1997, 1999), Nakatani and Hirschberg

(1994), Stolcke and Schriberg (1996)
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Why treat restarts and repairs specially?

• Filled pauses are easy to recognise and remove from speech transcripts

• Modern NLP tools (e.g., parsers) handle parentheticals properly

• But restarts and repairs are often misanalysed by NLP tools

⇒ Detect and remove disfluencies before further processing

I want a flight to Boston uh I mean to Denver on Friday
Why didn’t he why didn’t she stay at home?
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The structure of restarts and repairs

. . . and you get,
︸ ︷︷ ︸

Reparandum

uh,
︸︷︷︸

Interregnum

you can get
︸ ︷︷ ︸

Repair

a system . . .

• The Reparandum is often not a syntactic phrase

• The Interregnum is usually lexically and prosodically marked, but can be empty
• The Reparandum is often a “rough copy” of the Repair

É Repairs are typically short
É Repairs are not always copies
É It’s possible e.g. for there to be anaphoric dependencies into the reparandum

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”
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Machine-learning approaches to disfluency detection

. . .
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_
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• Train a classifier to predict whether each word is Edited or NotEdited
É this approach classifies each word independently, but the classification should
really be made over groups of words

• A very large number of features can be usefully deployed in such a system

Charniak and Johnson (2001), Zhang, Weng and Feng (2006)
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The “true” model of repairs (?)

. . . and you get,
︸ ︷︷ ︸

Reparandum

uh,
︸︷︷︸

Interregnum

you can get
︸ ︷︷ ︸

Repair

a system . . .

• Speaker generates intended “conceptual representation”
• Speaker incrementally generates syntax and phonology,

É recognizes that what is said doesn’t mean what was intended,
É “backs up”, i.e., partially deconstructs syntax and phonology, and
É starts incrementally generating syntax and phonology again

• (but without a good model of “conceptual representation”, this may be hard to
formalize . . . )
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Approximating the “true model”

Boston uh I meanI want a flight to Denver on Fridayto

• Use Repair string as approximation to intended meaning
• Reparandum string is “rough copy” of Repair string

É involves crossing (rather than nested) dependencies

• String with reparandum and interregnum excised is usually well-formed
É after correcting the error, what’s left should have high probability
⇒ use model of normal language to interpret ill-formed input

• A parsing model can check that the proposed repaired string is grammatically
well-formed
É speech errors tend to occur at the beginnings of clauses and major phrases
⇒ use parsing model to check that speech errors occur in syntactically plausible

locations
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The Noisy Channel Model

Source signal x
. . . and you can get a system . . .

Noisy signal u
. . . and you get, you can get a system . . .

Noisy channel model P(U|X )

Source model P(X )
(parsing language model)

• Noisy channel models combines two different submodels

• Channel model needs to generate crossing dependencies
⇒ TAG transducer

Johnson and Charniak (2004)
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Reranking the Noisy Channel model

• Log probs from source model and channel
model are reranker features

• MaxEnt reranker can use additional features
as well

⇒ Best of both noisy channel and
machine-learning approaches

• Johnson et al used a parser-based language
model

MaxEnt reranker

Parsing-based language model

Noisy channel model with bigram LM

Input string

25 highest scoring hypotheses

Probabilities for hypotheses

Most likely hypothesis
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Evaluation of model’s performance

f-score error rate
NCM + bigram LM 0.75 0.45
NCM + parser LM 0.81 0.35
MaxEnt rescorer using NCM + parser LM 0.87 0.25
MaxEnt rescorer alone 0.78 0.38

• Evaluated on unseen portion of Switchboard corpus

• f-score is a geometric average of Edited words precision and recall (bigger is
better)

• error rate is the number of Edited word errors made divided by number of true
edited words (smaller is better)
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RT04F competition

• RT04F evaluated meta-data extraction
É disfluency detection/correction was
just one of the tasks they evaluated

• Test material was unsegmented speech
recognizer output or transcripts

• ICSI, SRI and UW supplied us with ASR
output, SU boundaries and acoustic IP
probabilities

• Added rescorer features that
incorporated these

• Won all of the RT04F disfluency
detection competitions we entered

Deterministic SU segmentation algorithm

Noisy channel model
(channel model with bigram LM)

Generative parser language model

MaxEnt rescorer

Deterministic FW and IP rule application

Input words and IP probs from SRI, ICSI and UW

Input words segmented into SUs

25 best edit hypotheses

Parses and string probabilities for each edit hypothesis

Best edit hypothesis

EW, FW and IP labels for input words
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Further results on disfluency detection/correction

• Zwarts, Johnson and Dale (2010) developed an incremental version of this
algorithm for detecting and correcting speech repairs

• Zwarts and Johnson (2011) evaluate the effect of language model choice on
disfluency detection and correction
É parsing-based language models do better than n-gram models, all else equal
É best performance comes from combining all the language models in a single
model

• Honnibal and Johnson (2014) present a joint model of dependency parsing and
disfluency detection/correction
É we augment the shift-reduce actions of a transition-based dependency parser
with a special detach action that “disconnects” a word or partial phrase from
the parse tree

É this model is inherently incremental
É because the parse tree is constructed at the same time, it’s easy to exploit
syntactic structure for detecting speech disfluencies

É lead to work on non-monotonic transition-based parsing algorithms which use
specialised “repair transitions” to correct earlier parsing errors
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Named entity recognition and linking

• Named entity recognition finds all “mentions” referring to an entity in a
document

Example: Tony Abbott
︸ ︷︷ ︸

person

bought 300
︸︷︷︸

number

shares in Acme Corp
︸ ︷︷ ︸

corporation

in 2006
︸︷︷︸

date

• Noun phrase coreference tracks mentions to entities within or across
documents

Example: Tony Abbott met the president of Indonesia yesterday. Mr. Abbott
told him that he . . .

• Entity linking maps entities to database entries
Example: Tony Abbott
︸ ︷︷ ︸

/m/xw2135

bought 300
︸︷︷︸

number

shares in Acme Corp
︸ ︷︷ ︸

/m/yzw9w

in 2006
︸︷︷︸

date
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Relation extraction

• Relation extraction mines texts to find relationships between named entities,
i.e., “who did what to whom (when)?”

The new Governor General, Peter Cosgrove, visited Buckingham Palace
yesterday.

Has-role
Person Role

Peter Cosgrove Governor General of Australia

Offical-visit
Visitor Organisation

Peter Cosgrove Queen of England

• The syntactic parse provides useful features for relation extraction

• Bio-medical research literature and financial documents are major application
areas

• Ignores lots of potentially relevant information, e.g., yesterday
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Syntactic parsing for
relation extraction

The Governor General, Peter Cosgrove, visited Buckingham Palace

sbj
dobj

det
nn

appos
nn nn

• The syntactic path in a dependency parse is a useful feature in relation
extraction

X
appos−→ Y ⇒ has-role(Y ,X )

X
sbj←− visited

dobj−→Y ⇒ official-visit(X ,Y )
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Google’s Knowledge Graph

• Goal: move beyond keyword search
document retrieval to directly
answer user queries
⇒ easier for mobile device users

• Google’s Knowledge Graph:
É built on top of FreeBase
É entries are synthesised from
Wikipedia, news stories, etc.

É manually curated (?)
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FreeBase: an open knowledge base

• An entity-relationship database on
top of a graph triple store

• Data mined from Wikipedia,
ChefMoz, NNDB, FMD,
MusicBrainz, etc.

• 44 million topics (entities),
2 billion facts,
250GB uncompressed dump

• Created by Metaweb, which was
acquired by Google
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Distant supervision
for relation extraction

• Ideal labelled data for relation extraction: large text corpus annotated with
entities and relations
É expensive to produce, especially for a lot of relations!

• Distant supervision assumption: if two or more entities that appear in the
same sentence also appear in the same database relation, then probably the
sentence expresses the relation
É assumes pairs of entities only interact in one way
É temporal information can resolve some ambiguities

• With the distant supervision assumption, we obtain relation extraction training
data by:
É taking a large text corpus (e.g., 10 years of news articles)
É running a named entity linker on the corpus
É looking up the entity tuples that appear in the same sentence in the large
knowledge base (e.g., FreeBase)

⇒ Enables us to learn parsing-based extraction patterns for each FreeBase
relation
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Opinion mining and
sentiment analysis

• Used to analyse e.g., social media (Web 2.0)
• Typical goals: given a corpus of messages:

É classify each message along a subjective–objective scale
É identify the message polarity (e.g., on dislike–like scale)

• Training opinion mining and sentiment analysis models:
É in some domains, supervised learning with simple keyword-based features works
well

É but in other domains it’s necessary to model syntactic structure as well
– E.g., I doubt she had a very good experience . . .

• Opinion mining can be combined with:
É topic modelling to cluster messages with similar opinions
É multi-document summarisation to summarise results
É named entity linking and relation extraction to associate sentiment with specific
entities (e.g., I like Windows much more than Linux).

34 / 50



Outline

Introduction

Parsing for detecting and correcting speech errors

Parsing for information extraction

The Life Stories relation extraction project

Conclusions and future research directions

35 / 50



Which Jim Jones?

• News text: Jim Jones’ recent musical releases . . .
• 8 Wikipedia pages for Jim Jones:

É 2 politicians
É 1 basketball player
É 1 hockey player
É 1 guitarist (deceased)
É 1 rapper
É 1 cult leader (deceased)

• How do we know it’s the rapper?
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Life Stories

• A person’s life story is the sequence of events that occur to them
• Generalisations about life stories:

É everyone dies less than 110 years after they were born
É if someone goes to school,
it’s usually when they are 5–20 years old

É if someone goes to college,
it’s often immediately after school

É a singer is more likely than a carpenter
to have a musical release

É an academic is more likely than an accountant
to write a book

É a lawyer is more likely than an actor
to become a politician
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The structure of life stories

• Everybody’s life story is different
⇒ finite set of “life templates” won’t suffice

• But there are generalisations:
É few artists have exactly 10 CDs like Jim Jones
É but releasing a CD is a frequent event for artists like Jim Jones, with
predictable subevents:

– release parties
– promotions and reviews
– shows and tours

• Can we learn typical life stories?

• Given a partial life story, can we “fill in” the rest?
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Life Stories and Topic Models

LDA topic models Life story models

words events (e.g., running for election, releasing
a CD)

documents life stories (the sequence of events in an
individual’s life)

topics careers (sequences of events associated
with e.g., being a politician or musician)

• Topics are hidden when training a topic model,
while FreeBase has abundant information about events
É identifying the relevant information may be hard
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What are Life Stories?

• FreeBase as a repository of Life Stories
É FreeBase contains more than 100 properties
for ≈ 250,000 people

É Coverage is uneven: Sarah Palin’s political career is covered,
her political commentator roles on Fox News are not

• What appears in a Life Story?
É time-stamped properties,
e.g., Bill Clinton’s presidency 1993–2001

É indirectly time-stamped properties,
e.g., Bill Clinton’s 1996 presidential campaign

É some properties without timestamps,
e.g., gender, nationality, notable type

• Possible formalisations of Life Stories
É temporally-bounded sets of events (i.e., a time-line)
É events occuring in fixed windows (e.g., each year’s events)
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Applications of Life Stories

• Disambiguating named entities and relations in automatic knowledge
extraction
É bias syntactic parsing and semantic interpretation toward plausible relationships
É help disambiguate named entities

• Error and anomaly detection:
É highly improbable clusters of events (e.g., someone simultaneously being an
astronaut and a sportsperson) may indicate errors in the knowledge base

• Fraud detection:
É highly improbable sequences of events might not have actually happened

• Discovering unusual individuals:
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Important events

• Events differ in importance
É Bill Clinton made 97 political appointments,
appeared on 24 TV shows, and
was elected US President twice

• FreeBase internal measures of importance
É causes are highly predictive, temporally-preceding event types

• External measures of importance or impact
É use relation extraction to align FreeBase properties to the individual’s Wikipedia
text, or a large news corpus

É estimate importance by amount of text (sentences, column inches, etc.) linked
to event
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Event structure

• Events have a complicated temporal and causal structure
É Bill Clinton’s winning the 1996 Presidental election
⇒ Bill Clinton is US President 1997–2001
⇒ Bill Clinton makes 97 political appointments

• At what granularity should we individuate events?
Many useful tasks don’t require detailed information
É dead cult leaders don’t release hit CDs

• Minor events can give information about important events
É a late alimony payment ⇒ marriage and divorce

• Can hierarchical models generalise at multiple levels simultaneously?
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Evaluating a Life Story model

• Life Story models should be useful in
É named entity linking
É relation extraction

but accuracy on those tasks depends on other factors as well
• Evaluate the predictive ability of a Life Story model, e.g.:

É train model on 2012 FreeBase
É give model an individual’s pre-2013 Life Story
and several possible 2013 completions

É evaluate how accurately model chooses correct completion
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Example: Dick Cheney

The story until 2000
É born 1941, in Lincoln, Nebraska
É studied political science at the University of Nebraska
É White House chief of staff 1975–1977
É elected to US Congress 1979–1989
É minority whip in US Congress 1989
É US Secretary for Defense 1989–1993
É employed by Halliburton 1995–2000

2001 alternative #1
É litigant in Supreme Court legal case
É Vice President of the United States
É founded Energy Task Force

2001 alternative #2
É mayor of Wasilla, Alaska
É member of the Alaska Municipal League board
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Life Story models

• The future is like the past, i.e., choose the completion which is as close as
possible to the known events

• Binary classifier that predicts how likely the future events are given the past
events
É can learn simple contextual generalisations
e.g., an academic is more likely to write a book than a sportsperson

• n-gram and Hidden Markov Models
É linearize events into a sequence
É project events onto a finite set of event types

• Hierarchical models of Life Stories
É a Life Story is a (possibly overlapping) sequence of careers
É each career is a sequence of events
É each event has properties and a duration
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Summary
• Because semantics is generally compositional, recovering syntactic structure is
a key step in understanding the meaning of a sentence

• There are two popular kinds of syntactic representation: phrase structures and
dependency structures
É phrase structures can describe a wider range of syntactic constructions
É dependency structures are faster and easier to produce

• Probabilistic parsing models compute possible parses for a sentence, together
with their probabilities
⇒ parsing models can be used as syntactic language models to distinguish

plausible from implausible sentences
É we’ve used them to consistently develop the best disfluency-detection
systems for over a decade

⇒ parsing models can be used to identify the most plausible syntactic
analysis of a sentence

É parsing plays a key role in information extraction systems
• The best syntactic parsers have around 92% accuracy ⇒ most parses contain
an error
⇒ there’s still much more work to do on syntactic parsing
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Other research strengths: Topic models
• Topic models (e.g., Latent Dirichlet Allocation) are a popular tool for
managing large document collections
É they cluster documents by the words they contain, and cluster words by
the topics they appear in

É they are bag-of-words models

• Du, Buntine and Johnson (2013) generalised LDA to segment documents into
topically-coherent parts

• Du, Pate and Johnson (2015) showed how to learn topical ordering
regularities in a document collection and use this to improve document
segmentation and topic identification

• Nguyen, Billingsley, Du and Johnson (2015) used latent word vector
representations learnt from a large external corpus to improve topic modelling
performance on small, specialised document collections such as Twitter
documents

• Zhao, Du, Börschinger, Pate, Ciaramita, Steedman and Johnson (2015)
generalises LDA beyond bag-of-words to learn topical collocations (e.g., White
House, neural net)
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Future research: multi-word expressions and parsing

• Multi-word expressions appear in many technical technical texts
É because of sparse data problems, they are often incorrectly parsed
É often specialised sequence models (e.g., CRFs) are used to recognise
them

• Our plan is to add specialised transitions to a transition-based dependency
parser to detect and parse multi-word expressions

Exoenzyme S is an extracellular product of Pseudomonas aeruginosa

Protein Location Organism

Pseudomonas aeruginosa,ExtracellularProduct( Exoenzyme S)

Syntactic parse:

Named entity
labels:

Relation
extraction:
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