Improving Topic Models with Latent Feature Word Representations Mark Johnson Joint work with Dat Quoc Nguyen, Richard Billingsley and Lan Du Dept of Computing Macquarie University Sydney Australia July 2015 #### Outline #### Introduction Latent-feature topic models Experimental evaluation Conclusions and future work ## High-level overview - Topic models take a corpus of documents as input, and jointly cluster: - words by the documents that they occur in, and - documents by the words that they contain - If the corpus is small and/or the documents are short, these clusters will be noisy - Latent feature representations of words learnt from large external corpora (e.g., word2vec, Glove) capture various aspects of word meanings - Here we use latent feature representations learnt on a large external corpus to improve the topic-word distributions in a topic model - we combine the Dirichlet-Multinomial models of Latent Dirichlet Allocation (LDA) with the distributed representations used in neural networks - the improvement is greatest on small corpora with short documents, e.g., Twitter data #### Related work - Phan et al. (2011) assumed that the small corpus is a sample of topics from a larger corpus like Wikipedia, and use the topics discovered in the larger corpus to help shape the topic representations in the small corpus - if the larger corpus has many irrelevant topics, this will "use up" the topic space of the model - Petterson et al. (2010) proposed an extension of LDA that uses external information about word similarity, such as thesauri and dictionaries, to smooth the topic-to-word distribution - Sahami and Heilman (2006) employed web search results to improve the information in short texts - Neural network topic models of a single corpus have also been proposed (Salakhutdinov and Hinton, 2009; Srivastava et al., 2013; Cao et al., 2015). # Latent Dirichlet Allocation (LDA) $$egin{aligned} m{ heta}_d &\sim \mathsf{Dir}(m{lpha}) & z_{d_i} &\sim \mathsf{Cat}(m{ heta}_d) \ m{\phi}_{z} &\sim \mathsf{Dir}(m{eta}) & w_{d_i} &\sim \mathsf{Cat}(m{\phi}_{z_{d_i}}) \end{aligned}$$ - Latent Dirichlet Allocation (LDA) is an admixture model, i.e., each document d is associated with a distribution over topics θ_d - Inference is typically performed with a *Gibbs sampler* over the $z_{d,i}$, integrating out θ and ϕ (Griffiths et al., 2004) $$P(z_{d_i} = t \mid \boldsymbol{Z}_{\neg d_i}) \propto (N_{d_{\neg i}}^t + \alpha) \frac{N_{\neg d_i}^{t, w_{d_i}} + \beta}{N_{\neg d_i}^t + V\beta}$$ # The Dirichlet Multinomial Mixture (DMM) model - The Dirichlet Multinomial Mixture (DMM) model is a *mixture model*, i.e., each document d is associated with a single topic z_d (Nigam et al., 2000) - Inference can also be performed using a collapsed Gibbs sampler in which θ and ϕ_z are integrated out (Yin and Wang, 2014) $$P(z_d = t \mid \mathbf{Z}_{\neg d}) \propto (M_{\neg d}^t + \alpha) \frac{\Gamma(N_{\neg d}^t + V\beta)}{\Gamma(N_{\neg d}^t + N_d + V\beta)}$$ $$\prod_{w \in W} \frac{\Gamma(N_{\neg d}^{t,w} + N_d^w + \beta)}{\Gamma(N_{\neg d}^{t,w} + \beta)}$$ ## Latent feature word representations - Traditional count-based methods (Deerwester et al., 1990; Lund and Burgess, 1996; Bullinaria and Levy, 2007) for learning real-valued latent feature (LF) vectors rely on co-occurrence counts - Recent approaches based on deep neural networks learn vectors by predicting words given their window-based context (Collobert and Weston, 2008; Mikolov et al., 2013; Pennington et al., 2014; Liu et al., 2015) - We downloaded the pre-trained vectors for word2vec and Glove for this paper ## Outline ntroduction Latent-feature topic models Experimental evaluation Conclusions and future work ## Latent-feature topic-to-word distributions - We assume that each word w is associated with a word vector $\boldsymbol{\omega}_w$ - We learn a *topic vector* au_t for each topic t - We use these to define a distribution CatE(w) over words: $$CatE(w \mid \boldsymbol{\tau}_t \boldsymbol{\omega}^{\mathsf{T}}) \propto exp(\boldsymbol{\tau}_t \cdot \boldsymbol{\omega}_w)$$ - $ightharpoonup au_t oldsymbol{\omega}^{ op}$ is a vector of unnormalised scores, one per word - In our topic models, we mix the CatE distribution with a multinomial distribution over words, so we can capture ideosyncratic properties of the corpus (e.g., words not seen in the external corpus) - we use a Boolean indicator variable that records whether a word is generated from CatE or the multinomial distribution #### The Latent Feature LDA model $$egin{aligned} oldsymbol{ heta}_d &\sim \mathsf{Dir}(oldsymbol{lpha}) & z_{d_i} &\sim \mathsf{Cat}(oldsymbol{ heta}_d) \ oldsymbol{\phi}_{Z} &\sim \mathsf{Dir}(oldsymbol{eta}) & s_{d_i} &\sim \mathsf{Ber}(oldsymbol{\lambda}) \ w_{d_i} &\sim (1-s_{d_i})\mathsf{Cat}(oldsymbol{\phi}_{Z_{d_i}}) + s_{d_i}\mathsf{CatE}(oldsymbol{ au}_{Z_{d_i}}oldsymbol{\omega}^{ op}) \end{aligned}$$ - s_{d_i} is the Boolean indicator variable indicating whether word d_i is generated from CatE - $oldsymbol{\lambda}$ is a user-specified hyper-parameter determining how often words are generated from the CatE distribution - ightharpoonup if we estimated λ from data, we expect it would never generate through CatE #### The Latent Feature DMM model - s_{d_i} is the Boolean indicator variable indicating whether word d_i is generated from CatE - ullet λ is a user-specified hyper-parameter determining how often words are generated from the CatE distribution #### Inference for the LF-LDA model • We integrate out θ and ϕ as in the Griffiths et al. (2004) sampler, and interleave MAP estimation for τ with Gibbs sweeps for the other variables #### • Algorithm outline: initialise the word-topic variables z_{d_i} using the LDA sampler repeat: ``` for each topic t: au_t = \arg\max_{ au_t} \mathsf{P}(au_t \mid extbf{z}, extbf{s}) for each document d and each word location i: sample z_{d_i} from \mathsf{P}(z_{d_i} \mid extbf{z}_{\neg d_i}, extbf{s}_{\neg d_i}, extbf{ au}) sample s_{d_i} from \mathsf{P}(s_{d_i} \mid extbf{z}, extbf{s}_{\neg d_i}, extbf{ au}) ``` # Inference for the LF-DMM model (1) - We integrate out θ and ϕ as in the Yin and Wang (2014) sampler, and interleave MAP estimation for τ with Gibbs sweeps - Algorithm outline: initialise the word-topic variables z_{di} using the DMM sampler repeat: • Note: $P(z_d \mid z_{\neg d}, s_{\neg d_i}, \tau)$ is computationally expensive to compute exactly, as it requires summing over all possible values for s_d # Inference for the LF-DMM model (2) - The computational problems stem from the fact that all the words in a document have the same topic - lacktriangleright have to jointly sample document topic z_t and indicator variables s_d - ► the sampling probability is a product of *ascending factorials* - We approximate these probabilities by assuming that the topic-word counts are "frozen", i.e., they don't increase within a document - ▶ the DMM is mainly used on *short documents* (e.g., Twitter), where the "one topic per document" assumption is accurate - ⇒ "freezing" the counts should have less impact - ► could correct this with a *Metropolis-Hastings accept-reject step* $$P(z_{d}, s_{d} \mid \boldsymbol{z}_{\neg d}, \boldsymbol{s}_{\neg d}, \boldsymbol{\tau}) \propto \lambda^{K_{d}} (1 - \lambda)^{N_{d}} (M_{\neg d}^{t} + \alpha) \frac{\Gamma(N_{\neg d}^{t} + V\beta)}{\Gamma(N_{\neg d}^{t} + N_{d} + V\beta)} \left(\prod_{w \in W} \frac{\Gamma(N_{\neg d}^{t, w} + N_{d}^{w} + \beta)}{\Gamma(N_{\neg d}^{t, w} + \beta)} \right) \left(\prod_{w \in W} \text{CatE}(w \mid \boldsymbol{\tau}_{t} \boldsymbol{\omega}^{\top})^{K_{d}^{w}} \right)$$ # Estimating the topic vectors au_t - Both the LF-LDA and LF-DMM associate each topic t with a topic vector τ_t , which must be learnt from the training corpus - After each Gibbs sweep: - the topic variables z identify which topic each word is generated from - lacktriangleright the indicator variables $m{s}$ identify which words are generated from the latent feature distributions CatE - \Rightarrow we can use a supervised estimation procedure to find au - We use LBFGS to optimise the L2-regularised log-loss (MAP estimation) $$L_{t} = -\sum_{w \in W} K^{t,w} \left(\boldsymbol{\tau}_{t} \cdot \boldsymbol{\omega}_{w} - \log(\sum_{w' \in W} \exp(\boldsymbol{\tau}_{t} \cdot \boldsymbol{\omega}_{w'})) \right) + \mu \parallel \boldsymbol{\tau}_{t} \parallel_{2}^{2}$$ ## Outline ntroduction Latent-feature topic models Experimental evaluation Conclusions and future work #### Goals of evaluation - A topic model learns document-topic and topic-word distributions: - topic coherence evaluates the topic-word distributions - document clustering and document classification evaluate the document-topic distribution - the latent feature component only directly changes the topic-word distributions, so these are challenging evaluations - Do the word2vec and Glove word vectors behave differently in topic modelling? - We expect that the latent feature component will have *the greatest impact on small corpora*, so our evaluation focuses on them: | Dataset | | # labels | # docs | words/doc | # types | |----------|-----------------|----------|--------|-----------|---------| | N20 | 20 newsgroups | 20 | 18,820 | 103.3 | 19,572 | | N20short | \leq 20 words | 20 | 1,794 | 13.6 | 6,377 | | N20small | 400 docs | 20 | 400 | 88.0 | 8,157 | | TMN | TagMyNews | 7 | 32,597 | 18.3 | 13,428 | | TMNtitle | TMN titles | 7 | 32,503 | 4.9 | 6,347 | | Twitter | | 4 | 2,520 | 5.0 | 1,390 | # Word2vec-DMM on TagMyNews titles corpus (1) | | | | | Topic 1 | | | | | |--------------|-----------|-----------|------------|------------|------------|------------|------------|------------| | Initdmm | lter=1 | lter=2 | Iter=5 | lter=10 | Iter=20 | Iter=50 | Iter=100 | Iter=500 | | japan | nuclear | u.s. | u.s. | u.s. | u.s. | u.s. | u.s. | plant | u.s. | u.s. | | crisis | russia | crisis | plant | plant | plant | u.s. | plant | plant | | plant | radiation | china | crisis | radiation | quake | quake | quake | quake | | <u>china</u> | nuke | russia | radiation | crisis | radiation | radiation | radiation | radiation | | libya | iran | plant | china | china | crisis | earthquake | earthquake | earthquake | | radiation | crisis | radiation | russia | nuke | nuke | tsunami | tsunami | tsunami | | <u>u.n.</u> | china | nuke | nuke | russia | china | nuke | nuke | nuke | | <u>vote</u> | libya | libya | power | power | tsunami | crisis | crisis | crisis | | korea | plant | iran | u.n. | u.n. | earthquake | disaster | disaster | disaster | | europe | u.n. | u.n. | iran | iran | disaster | plants | oil | power | | government | mideast | power | reactor | earthquake | power | power | plants | oil | | election | pakistan | pakistan | earthquake | reactor | reactor | oil | power | japanese | | deal | talks | talks | libya | quake | japanese | japanese | tepco | plants | - Table shows the 15 most probable topical words in Topic 1 found by 20-topic word2vec-DMM on the TMN titles corpus - Words found by DMM but not by word2vec-DMM are underlined - Words found by word2vec-DMM but not DMM are in bold # Word2Vec-DMM on TagMyNews titles corpus (2) | | Topic 4 | | | Topic 5 | | | Topic 19 |) | | Topic 14 | | |-------------|------------|------------|--------------|-----------|-----------|-----------------|----------|------------|-----------|-------------|-------------| | Initdmm | Iter=50 | Iter=500 | | egypt | libya | libya | critic | dies | star | nfl | nfl | nfl | nfl | law | law | | china | egypt | egypt | corner | star | sheen | idol | draft | sports | court | bill | texas | | <u>u.s.</u> | mideast | iran | office | broadway | idol | draft | lockout | draft | law | governor | bill | | mubarak | iran | mideast | <u>video</u> | american | broadway | <u>american</u> | players | players | bill | texas | governor | | bin | opposition | opposition | game | idol | show | show | coach | lockout | wisconsin | senate | senate | | libya | leader | protests | star | lady | american | film | nba | football | players | union | union | | laden | u.n. | leader | lady | gaga | gaga | season | player | league | judge | obama | obama | | france | protests | syria | gaga | show | tour | sheen | sheen | n.f.l. | governor | wisconsin | budget | | bahrain | syria | u.n. | show | news | cbs | n.f.l. | league | player | union | budget | wisconsin | | <u>air</u> | tunisia | tunisia | weekend | critic | hollywood | <u>back</u> | n.f.l. | baseball | house | state | immigration | | report | protesters | chief | sheen | film | mtv | top | coaches | court | texas | immigration | state | | rights | chief | protesters | box | hollywood | lady | star | football | coaches | lockout | arizona | vote | | court | asia | mubarak | park | fame | wins | <u>charlie</u> | judge | nflpa | budget | california | washington | | u.n. | russia | crackdown | takes | actor | charlie | players | nflpa | basketball | peru | vote | arizona | | war | arab | bahrain | man | movie | stars | men | court | game | senate | federal | california | - Table shows 15 most probable topical words in several topics found by 20-topic word2vec-DMM on the TMN titles corpus - Words found by DMM but not by w2v-DMM are underlined - Words found by w2v-DMM but not DMM are in bold ## Topic coherence evaluation - Lau et al. (2014) showed that *human scores on a word intrusion task* are highly correlated with the *normalised pointwise mutual information* (NPMI) against a large external corpus (we used English Wikipedia) - We found latent feature vectors produced a significant improvement of NPMI scores on all models and corpora - greatest improvement when $\lambda = 1$ (unsurprisingly) NPMI scores on the N20 short dataset with 20 topics, as the mixture weight λ varies from 0 to 1 ## Topic coherence on Twitter corpus | —————————————————————————————————————— | Method | $\lambda = 1.0$ | | | | | | |----------------------------------------|-----------|-------------------|---------------------|--------------------|---------------------|--|--| | Data | IVIELIIOG | T=4 | T=20 | T=40 | T=80 | | | | | lda | -8.5 ± 1.1 | -14.5 ± 0.4 | -15.1 ± 0.4 | -15.9 ± 0.2 | | | | Twitter | w2v-lda | -7.3 ± 1.0 | - 13.2 ± 0.6 | -14.0 ± 0.3 | -14.1 ± 0.3 | | | | | glove-lda | -6.2 ± 1.6 | -13.9 ± 0.6 | -14.2 ± 0.4 | -14.2 ± 0.2 | | | | | Improve. | 2.3 | 1.3 | 1.1 | 1.8 | | | | | dmm | -5.9 ± 1.1 | -10.4 ± 0.7 | -12.0 ± 0.3 | -13.3 ± 0.3 | | | | Twitter | w2v-dmm | -5.5 ± 0.7 | -10.5 ± 0.5 | -11.2 ± 0.5 | - 12.5 ± 0.1 | | | | | glove-dmm | -5.1 ± 1.2 | -9.9 ± 0.6 | -11.1 ± 0.3 | - 12.5 ± 0.4 | | | | | Improve. | 0.8 | 0.5 | 0.9 | 0.8 | | | The normalised pointwise mutual information score improves for both LDA and DMM on the Twitter corpus, across a wide range of number of topics # Document clustering evaluation - Cluster documents by assigning them to the highest probability topic - Evaluate clusterings by purity and normalised mutual information (NMI) (Manning et al., 2008) Evaluation of 20-topic LDA on the N20 short corpus, as mixture weight λ varies from 0 to 1 - In general, best results with $\lambda = 0.6$ - \Rightarrow Set $\lambda = 0.6$ in all further experiments ## Document clustering of Twitter data | Data | Method | Purity | | | | | NMI | | | | |---------|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--| | Data | ivietilou | T=4 | T=20 | T=40 | T=80 | T=4 | T=20 | T=40 | T=80 | | | | lda | 0.559 ± 0.020 | 0.614 ± 0.016 | 0.626 ± 0.011 | 0.631 ± 0.008 | 0.196 ± 0.018 | 0.174 ± 0.008 | 0.170 ± 0.007 | 0.160 ± 0.004 | | | Twitter | w2v-lda | 0.598 ± 0.023 | 0.635 ± 0.016 | 0.638 ± 0.009 | 0.637 ± 0.012 | 0.249 ± 0.021 | 0.191 ± 0.011 | 0.176 ± 0.003 | 0.167 ± 0.006 | | | | glove-lda | 0.597 ± 0.016 | 0.635 ± 0.014 | 0.637 ± 0.010 | 0.637 ± 0.007 | 0.242 ± 0.013 | 0.191 ± 0.007 | 0.177 ± 0.007 | 0.165 ± 0.005 | | | | | | 0.021 | | | | 0.017 | | 0.007 | | | | dmm | 0.552 ± 0.020 | 0.624 ± 0.010 | 0.647 ± 0.009 | 0.675 ± 0.009 | 0.194 ± 0.017 | 0.186 ± 0.006 | 0.184 ± 0.005 | 0.190 ± 0.003 | | | Twitter | w2v-dmm | 0.581 ± 0.019 | 0.641 ± 0.013 | 0.660 ± 0.010 | 0.687 ± 0.007 | 0.230 ± 0.015 | 0.195 ± 0.007 | 0.193 ± 0.004 | 0.199 ± 0.005 | | | | glove-dmm | 0.580 ± 0.013 | 0.644 ± 0.016 | 0.657 ± 0.008 | 0.684 ± 0.006 | 0.232 ± 0.010 | 0.201 ± 0.010 | 0.191 ± 0.006 | 0.195 ± 0.005 | | | | Improve. | 0.029 | 0.02 | 0.013 | 0.012 | 0.038 | 0.015 | 0.009 | 0.009 | | - On the short, small Twitter dataset our models obtain better clustering results than the baseline models with small *T*. - with T=4 we obtain 3.9% purity and 5.3% NMI improvements - For small $T \le 7$, on the large datasets of N20, TMN and TMNtitle, our models and baseline models obtain similar clustering results. - With larger T our models perform better than baselines on the short TMN and TMNtitle datasets - On the N20 dataset, the baseline LDA model obtains better clustering results than ours - No reliable difference between word2vec and Glove vectors ## Document classification of N20 and N20short corpora Train a SVM to predict document label based on topic(s) assigned to document | Data | Model | $\lambda = 0.6$ | | | | | | |----------|-----------|-------------------|-------------------|-------------------|-------------------|--|--| | | IVIOGEI | T=6 | T=20 | T=40 | T=80 | | | | | lda | 0.312 ± 0.013 | 0.635 ± 0.016 | 0.742 ± 0.014 | 0.763 ± 0.005 | | | | N20 | w2v-lda | 0.316 ± 0.013 | 0.641 ± 0.019 | 0.730 ± 0.017 | 0.768 ± 0.004 | | | | | glove-lda | 0.288 ± 0.013 | 0.650 ± 0.024 | 0.733 ± 0.011 | 0.762 ± 0.006 | | | | | Improve. | 0.004 | 0.015 | -0.009 | 0.005 | | | | | lda | 0.204 ± 0.020 | 0.392 ± 0.029 | 0.459 ± 0.030 | 0.477 ± 0.025 | | | | N20small | w2v-lda | 0.213 ± 0.018 | 0.442 ± 0.025 | 0.502 ± 0.031 | 0.509 ± 0.022 | | | | | glove-lda | 0.181 ± 0.011 | 0.420 ± 0.025 | 0.474 ± 0.029 | 0.498 ± 0.012 | | | | | Improve. | 0.009 | 0.05 | 0.043 | 0.032 | | | \bullet F_1 scores (mean and standard deviation) for N20 and N20small corpora # Document classification of TMN and TMN title corpora | D-+- | NAl -l | | $\lambda =$ | 0.6 | | |----------|-----------|-------------------|-------------------|-------------------|-------------------| | Data | Model | T=7 | T=20 | T=40 | T=80 | | | lda | 0.658 ± 0.026 | 0.754 ± 0.009 | 0.768 ± 0.004 | 0.778 ± 0.004 | | TMN | w2v-lda | 0.663 ± 0.021 | 0.758 ± 0.009 | 0.769 ± 0.005 | 0.780 ± 0.004 | | | glove-lda | 0.664 ± 0.025 | 0.760 ± 0.006 | 0.767 ± 0.003 | 0.779 ± 0.004 | | | Improve. | 0.006 | 0.006 | 0.001 | 0.002 | | | dmm | 0.605 ± 0.023 | 0.724 ± 0.016 | 0.738 ± 0.008 | 0.741 ± 0.005 | | TMN | w2v-dmm | 0.619 ± 0.033 | 0.744 ± 0.009 | 0.759 ± 0.005 | 0.777 ± 0.005 | | | glove-dmm | 0.624 ± 0.025 | 0.757 ± 0.009 | 0.761 ± 0.005 | 0.774 ± 0.010 | | | Improve. | 0.019 | 0.033 | 0.023 | 0.036 | | | lda | 0.564 ± 0.015 | 0.625 ± 0.011 | 0.626 ± 0.010 | 0.624 ± 0.006 | | TMNtitle | w2v-lda | 0.563 ± 0.029 | 0.644 ± 0.010 | 0.643 ± 0.007 | 0.640 ± 0.004 | | | glove-lda | 0.568 ± 0.028 | 0.644 ± 0.010 | 0.632 ± 0.008 | 0.642 ± 0.005 | | | Improve. | 0.004 | 0.019 | 0.017 | 0.018 | | | dmm | 0.570 ± 0.022 | 0.650 ± 0.011 | 0.654 ± 0.008 | 0.646 ± 0.008 | | TMNtitle | w2v-dmm | 0.562 ± 0.022 | 0.670 ± 0.012 | 0.677 ± 0.006 | 0.680 ± 0.003 | | | glove-dmm | 0.592 ± 0.017 | 0.674 ± 0.016 | 0.683 ± 0.006 | 0.679 ± 0.009 | | | Improve. | 0.022 | 0.024 | 0.029 | 0.034 | Document classification of Twitter corpus | Data | Method | $\lambda = 0.6$ | | | | | | |---------|-----------|-------------------|-------------------|-------------------|-------------------|--|--| | Data | IVIELIIOU | T=4 | T=20 | T=40 | T=80 | | | | | lda | 0.526 ± 0.021 | 0.636 ± 0.011 | 0.650 ± 0.014 | 0.653 ± 0.008 | | | | Twitter | w2v-lda | 0.578 ± 0.047 | 0.651 ± 0.015 | 0.661 ± 0.011 | 0.664 ± 0.010 | | | | | glove-Ida | 0.569 ± 0.037 | 0.656 ± 0.011 | 0.662 ± 0.008 | 0.662 ± 0.006 | | | | | Improve. | 0.052 | 0.02 | 0.012 | 0.011 | | | | | dmm | 0.505 ± 0.023 | 0.614 ± 0.012 | 0.634 ± 0.013 | 0.656 ± 0.011 | | | | Twitter | w2v-dmm | 0.541 ± 0.035 | 0.636 ± 0.015 | 0.648 ± 0.011 | 0.670 ± 0.010 | | | | | glove-dmm | 0.539 ± 0.024 | 0.638 ± 0.017 | 0.645 ± 0.012 | 0.666 ± 0.009 | | | | | Improve. | 0.036 | 0.024 | 0.014 | 0.014 | | | - For document classification the latent feature models generally perform better than the baseline models - ▶ On the small N20small and Twitter datasets, when the number of topics T is equal to number of ground truth labels (i.e. 20 and 4 correspondingly) our W2V-LDA model obtains $5^+\%$ higher F_1 score than the LDA model - ▶ Our W2V-DMM model achieves 3.6% and 3.4% higher F_1 score than the DMM model on the TMN and TMNtitle datasets with T = 80, respectively. ## Outline Introduction Latent-feature topic models Experimental evaluation Conclusions and future work #### Conclusions - Latent feature vectors induced from large external corpora can be used to improve topic modelling - latent features significantly improve topic coherence across a range of corpora with both the LDA and DMM models - document clustering and document classification also significantly improve, even though these depend directly only on the document-topic distribution - The improvements were greatest for small document collections and/or for short documents - with enough training data there is sufficient information in the corpus to accurately estimate topic-word distributions - the improvement in the topic-word distributions also improves the document-topic distribution - We did not detect any reliable difference between word2vec and Glove vectors #### Future directions - Retrain the word vectors to fit the training corpus - how do we avoid losing information from external corpus? - More sophisticated latent-feature models of topic-word distributions - More efficient training procedures (e.g., using SGD) - Extend this approach to a richer class of topic models