Modelling function words improves unsupervised word segmentation

Mark Johnson^{1,2}, Anne Christophe^{3,4}, Katherine Demuth^{2,6} Emmanuel Dupoux^{3,5}

 $^{\rm 1}$ Department of Computing, Macquarie University, Sydney, Australia

² Santa Fe Institute, Santa Fe, New Mexico, USA

³ Ecole Normale Supérieure, Paris, France

⁴ Centre National de la Recherche Scientifique, Paris, France

⁵ Ecole des Hautes Etudes en Sciences Sociales, Paris, France

⁶ Department of Linguistics, Macquarie University, Sydney, Australia

June 2014

Function vs. content words

- Examples of function words: the, a, is, are, can, will, in, on . . .
- Function words:
 - 1. belong to *closed classes*
 - 2. have high token frequency count
 - 3. are morphologically and phonologically simple
 - 4. appear in phrase-peripheral position
 - 5. are associated with specific syntactic categories
 - 6. are *semantically more complex* than the corresponding content words
 - 7. have a *lower rate of innovation* than content words
- Our model captures properties 3 and 4

Function words and their role in language acquisition

Hierarchical non-parametric models of word learning

Adaptor grammars with and without "function words'

Experiments on a word segmentation task

Left or right attachment of function words

Do function words have a special role in language acquisition?

- Some psychologists believe that children pay special attention to function words in early language acquisition (Shi et al 2006, Halle et al 2008)
 - ▶ function words typically have high frequency and are phonologically simple ⇒ easy to learn
 - ▶ function words typically appear in phrase-peripheral positions
 ⇒ provide "anchors" for word and phrase segmentation
 - function words can identify syntactic category and syntactic structure (Christophe et al 2008, Demuth et al 2009)
- Can we use computational models to investigate whether function words are treated specially in language acquisition?

Using computational models to study the role of function words

- A "controlled experiment" using computational models
 - construct two computational models that differ only in how they treat function words
 - the model that treats function words specially performs word segmentation 4% more accurately than the model which does not
 - ⇒ treating function words specially can improve language learning
 - ▶ also sets a new state-of-the-art in word segmentation (92.4% token f-score on Bernstein-Ratner corpus)
- Can we identify basic syntactic properties of function words?
 - do they attach to the left or the right periphery?
 - Bayesian model selection correctly identifies left-periphery attachment as overwhelmingly more likely

Function words and their role in language acquisition

Hierarchical non-parametric models of word learning

Adaptor grammars with and without "function words'

Experiments on a word segmentation task

Left or right attachment of function words

Word segmentation as simplified word learning

- Input: a corpus of *unsegmented utterances*, constructed by:
 - use pronouncing dictionary to map each word of orthographic child-directed speech transcript to its pronunciation
 - append pronunciation of each word to obtain utterance pronunciation
- Example input:

- Evaluation: how accurately the model recovers the original word boundaries
- ⇒ Identifies the pronunciations of the words of a language

Useful information for word segmentation

- Vocabulary of the language
 - ▶ no obvious upper bound ⇒ *non-parametric* learning
- Exhaustive parsing (no unparsed speech)
- Phonotactics (e.g., syllable structure constraints)
- Distributional cues (e.g., collocations)
- Prosodic cues (e.g., stress) (see Börschinger et al, this conference)
- Semantic constraints (e.g., word-topic mappings)
- Social cues (e.g., care-giver's eye-gaze)
- This work: function words

Weaknesses of PCFGs for word segmentation

- Trees can represent the hierarchical structures required
- But PCFG rules don't capture the appropriate generalisations
 - \blacktriangleright e.g., probability of rule Word \rightarrow Sylll SyllF encodes how likely 2-syllable words are
 - but the PCFG doesn't learn that kuki is a word!

Adaptor grammars memoise entire subtrees

- Adaptor Grammars learn the probability of adapted nonterminals expanding to entire subtrees (as well as probability of CFG rules)
 - ▶ e.g. probability of $\underline{\mathsf{Word}} \Rightarrow^+ k v k i$ and $\underline{\mathsf{Word}} \to \mathsf{Sylll} \, \mathsf{SyllF}$
 - defined as a hierarchy of Pitman-Yor Processes
 - adapted non-terminals are underlined and highlighted

Function words and their role in language acquisition

Hierarchical non-parametric models of word learning

Adaptor grammars with and without "function words"

Experiments on a word segmentation task

Left or right attachment of function words

Adaptor grammar with function words on left

- Johnson and Goldwater (2009) grammar plus function words
- 3 levels of collocations
 - collocations often correspond to syntactic phrases
- Each collocational level has its own set of "function words"
- "Function words" are:
 - ▶ always *monosyllabic*, and
 - appear on left periphery of collocations

Sample parse generated by function word grammar

- 3 levels of collocations (as in Johnson and Goldwater 2009)
- Each collocational level has its own set of "function words"
- "Function words" are:
 - ► always *monosyllabic*, and
 - appear on left periphery of collocations

Function words and their role in language acquisition

Hierarchical non-parametric models of word learning

Adaptor grammars with and without "function words"

Experiments on a word segmentation task

Left or right attachment of function words

Experimental set-up

- The models we compare:
 - 1. "Function words" on left periphery (just described)
 - 2. "Function words" on right periphery (mirror image)
 - 3. "Function words" on left and right (union of these)
 - 4. No function words (as in Johnson and Goldwater 2009)
 - 5. All words are monosyllabic
- Trained on varying-length prefixes of the Bernstein and Ratner (1987) corpus
- Tested on the whole Bernstein and Ratner (1987) corpus

Computational set-up

- All models use the same Adaptor Grammar software with the same hyperparameter settings
 - only the adaptor grammars vary
- ⇒ Any observed differences are due to differences in the models as encoded in the grammars (not implementation differences)
 - Computational details (same as in Johnson and Goldwater 2009):
 - ► AG software uses a MCMC Metropolis-within-Gibbs algorithm
 - slice sampling for all Pitman-Yor hyperparameters with "vague priors"
 - ▶ 8 MCMC runs for each setting, each with 2,000 sweeps of training data
 - collect every 10th sweep of last 1,000 sweeps
 - identify most frequent segmentation for each utterance from these 800 samples

Learning curves for "function word" models

Learning curve results discussion

- Word-token f-score and Lexicon (i.e., word-type) are very similiar
- Monosyllabic word model does very well on small data
- After several hundred sentences:
 - right "function word" model does worse than no "function word" model
 - ▶ left "function word" model initially does better than left+right "function word" model
 - eventually both left and left+right "function word" models do better than no "function word" model
- All models except the monosyllabic word model are improving at 100,000 sentences
 - would probably improve more if given more data
- ⇒ Modelling "function words" improves word segmentation

Analyses generated by left "function words" model

5 most-frequent words in each category over 8 MCMC runs:

Word: book, doggy, house, want, I

FuncWord1: a, the, your, little, in FuncWord2: to, in, you, what, put FuncWord3: you, a, what, no, can

- Even though model is designed for word segmentation, it seems to make reasonable content/function word distinction
- Could this be useful for syntactic bootstrapping?

Word segmentation results

Model	Token	Boundary	Boundary
	f-score	precision	recall
Baseline	0.872	0.918	0.956
+ left FWs	0.924	0.935	0.990
+ left $+$ right FWs	0.912	0.957	0.953

- Mean token f-scores and boundary precision and recall results averaged over 8 trials
 - each trial consisted of 8 MCMC runs, trained and tested on full Bernstein and Ratner (1987) corpus
 - standard deviations of all values < 0.006
 - means of all token f-scores differ p < 2e-4 (Wilcox sign test)
- New state-of-the-art for token f-score in word segmentation
 - actual score is scientifically uninteresting

Function words and their role in language acquisition

Hierarchical non-parametric models of word learning

Adaptor grammars with and without "function words'

Experiments on a word segmentation task

Left or right attachment of function words

Do "function words" attach left or right?

- The left "function words" model has much higher segmentation accuracy than the right "function words" model
 - English function words are almost always on the left periphery
 - can an unsupervised learner determine this somehow?
- Bayesian model selection uses Bayes factors K to identify the more likely model given training data D:

$$\mathcal{K} = \frac{\mathrm{P}(D \mid G_1)}{\mathrm{P}(D \mid G_2)}, \text{ where:}$$
 $\mathrm{P}(D \mid G) = \int_{\Delta} \mathrm{P}(D, \theta \mid G) \, d\theta$

where Δ is the cross-product of all possible:

- parses for the utterances in D,
- Chinese Restaurant Process configurations in the sampler, and
- values for the hyper-parameters
- This integral is intractable (no surprise)

Estimating the marginal likelihood of the data

Bayesian model selection involves computing the marginal likelihood

$$P(D \mid G) = \int_{\Delta} P(D, \boldsymbol{\theta} \mid G) d\boldsymbol{\theta}$$

• Given a sequence of samples $\theta_1, \dots, \theta_n$ from $P(\theta \mid D, G)$, the *Harmonic Mean Estimator* approximates the marginal likelihood as:

$$P(D \mid G) \approx \left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{P(D,\theta_i \mid G)}\right)^{-1}$$

- ▶ the MCMC procedure generates samples from $P(\theta \mid D, G)$
- ▶ $P(D, \theta_i \mid G)$ is (relatively) easy to calculate
- Warning: the Harmonic Mean estimator is "the worst MCMC method ever" (Radford Neal)

Bayes factor in favour of left attachment

- After 1,000 sentences there is *overwhelming evidence* in favour of left-peripheral "function words"
 - but remember warning about Harmonic Mean estimator

Function words and their role in language acquisition

Hierarchical non-parametric models of word learning

Adaptor grammars with and without "function words'

Experiments on a word segmentation task

Left or right attachment of function words

Conclusions

- A state-of-the-art word segmentation algorithm is significantly improved when it learns generalisations about function words
- ⇒ This suggests that function words provide useful information for language acquisition in addition to the distributional and phonotactic information the model already exploits
 - The left-peripheral "function word" model achieves highest word segmentation accuracy
 - Bayes factors can be used to determine that "function words" are left-peripheral
 - instability of Harmonic Mean estimator
 - ⇒ results may be unreliable

Future work

- Find a better method for calculating Bayes factors
- Can we use these function word results to "bootstrap" an unsupervised syntactic learner?
 - a joint model with "unsupervised parsing"?
- Are there other ideas from psycholinguists that we should try to incorporate into our models?

