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Computational questions about language
acquisition
• What sources of information are available to a language-learning
child?

• How do these information sources interact?
I are any essential? (e.g., convey information not available from
other sources)

I are there redundancies? (i.e., the same information can be
obtained from two or more sources)

I are there dependencies? (e.g., you have to learn the stress
patterns of the language before they can be used to learn words)

I are there synergies? (e.g., learning the stress patterns of the
language helps identify word boundaries, and accurately learning
word boundaries helps learn the stress patterns)

• These are computational questions that can be addressed with
computational models
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Talk overview
• This talk compares four computational models of word
segmentation that are identical except that:

I two can learn phonotactic constraints on possible words, and
I two can learn stress patterns of possible words

• Questions this work addresses:
I does stress information help word segmentation? (yes)
I is stress useful for word segmentation even if function words are
unstressed? (yes)

I are there synergies jointly learning stress and phonotactics (yes,
but decreases with more data)

I is stress redundant with phonotactics? (not initially, but
eventually both supply similiar information)

I can the English preference for word-initial stress be learnt from
data? (yes, it can be learnt)

I can the “one primary stress per word” constraint be learnt from
data, or does it have to be innate? (yes, it can be learnt)
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Word segmentation and language acquisition
• Speech is not cleanly segmented into words

I children have to learn how to segment utterances into words
• Elman (1996) and Brent (1999) studied a simplified word
segmentation problem where the data is prepared by:

I looking up each word in a child-directed speech transcript in a
pronouncing dictionary

I concatenating the most frequent pronunciations to get an
utterance pronunciation

j M u N w M A M n M t N t M u N s M i N D M @ N b M U M k
ju wAnt tu si D@ bUk

“you want to see the book”

• Model’s goal: determine location of word boundaries
⇒ identifies the pronunciations of words in the transcript

(a first step in learning the lexical entries)

5/30



Stress in English and other languages

• Stress is the “accentuation of syllables within words”
I phonetic correlates vary within and across languages

• Stress placement in English must be learned:
I 2-syllable words with initial stress: GIant, PICture, HEAting
I 2-syllable words with final stress: toDAY, aHEAD, aLLOW

• In other languages stress depends on syntax (e.g., French)
• English has a strong preference for initial-syllable stress (Cutler
1987)

I roughly 50% of tokens and 85% of types are initial stress
I but: roughly 50% of tokens and 5% of types are unstressed

• Psycholinguistic work shows English-speaking children use stress
in word segmentation
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Adding stress to word-segmentation data

• We annotate stress on the vowel nucleii of stressed syllables

j M u N w M A* M n M t N t M u N s M i* N D M @ N b M U* M k

I Johnson and Demuth (2010) annotated tone in Chinese in same
way

• We marked-up three corpora with dictionary stress
I we treat function words as unstressed
I results for Alex portion of the Providence corpus
results on other corpora are very similiar
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Computational models that exploit stress

• Yang (2004), Lignos and Yang (2010), Lignos (2011)
I non-statistical models
I hard-coded Unique Stress Constraint (at most one stressed
syllable per word)

I pre-syllabified input
I high segmentation accuracy

• Doyle and Levy (2013)
I extension of Goldwater’s Bigram model
I pre-syllabified input
I small (but significant) improvement by adding stress
(stress has a much larger effect in our model)
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Useful cues for word segmentation

• Vocabulary of the language
I no obvious upper bound ⇒ non-parametric learning

• Exhaustive parsing (no unparsed speech)
• Phonotactics (e.g., syllable structure constraints)
• Distributional cues (e.g., collocations)
• Semantic constraints (e.g., word-topic mappings)
• Social cues (e.g., care-giver’s eye-gaze)
• Morpho-syntax, e.g., function words
(see Johnson et al 2014)

• Prosodic cues, specifically: stress (this paper)
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Weaknesses of PCFGs for word segmentation

Word

SylS

Ons

d

RhymeS

NucS

O*

SylU

Ons

g

RhymeU

NucU

i

• PCFG rules can capture stress patterns within words
I P(Word→ SylS SylU) is probability of 2-syllable words with
stressed-unstressed stress pattern

• But this PCFG can’t learn that /dO*gi/ is a word
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Adaptor grammars memoise entire subtrees
Word

SylS

Ons

d

RhymeS

NucS

O*

SylU

Ons

g

RhymeU

NucU

i
• Adaptor grammars learn probability of adapted nonterminals
expanding to entire subtrees (as well as rule probabilities)

I adapted nonterminals depicted as underlined and highlighted
I e.g. probability of Word⇒+dO*gi and Word→ SylS SylU
I each adapted nonterminal is associated with a Pitman-Yor
Process (PYP)

– PCFG rules specify base distributions
⇒ defines a hierarchy of PYPs
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Baseline model 1: no stress or phonotactics

Sentence → Colloc3+

Colloc3 → Colloc2+

Colloc2 → Colloc+

Colloc → Word+

Word → Syll1:4

Syll → (Onset)Rhyme
Onset → Consonant+

Rhyme → Nucleus (Coda)
Nucleus → Vowel+

Coda → Consonant+

• Same as syllable collocation grammar of Johnson (2008):
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Sample parses of “no stress or phonotactics”
grammar

Word

Syl

Ons

s t r

Rhyme

Nuc

E
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Word
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O
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i

• Model learns a syllabification even though input is not syllabified
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Baseline model 2: phonotactic but no stress
generalisations
• Same as above, except that model distinguishes initial onsets

OnsI and final codas CodaF
⇒ model learns word initial and word final clusters
I same as Johnson and Goldwater (2009)

Word

Syl

Ons

s t r

Rhyme

Nuc
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Models that learn stress patterns
• Distinguishes stressed from unstressed syllables

I input distinguishes stressed and unstressed vowels
• Can learn any possible stress pattern (up to 4 syllables)
• Stress pattern probabilities are learned jointly with segmentation
• Can be combined with models that learn phonotactic
generalisations

Word

StressedUnstressed
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Ons

d

RhymeS
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Word
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d

RhymeS
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g

RhymeUF

NucU

i
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Computational set-up
• All models use the same Adaptor Grammar software with the
same hyperparameter settings

I only the adaptor grammars vary

⇒ Any observed differences are due to differences in the models as
encoded in the grammars (not implementation differences)

• Computational details (same as in Johnson and Goldwater
2009):

I AG software uses a MCMC Metropolis-within-Gibbs algorithm
I slice sampling for all Pitman-Yor hyperparameters with “vague
priors”

I 8 MCMC runs for each setting, each with 2,000 sweeps of
training data

I collect every 10th sweep of last 1,000 sweeps
I identify most frequent segmentation for each utterance from
these 800 samples
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Experiment 1: training and testing on entire
corpus
• Train and evaluate on entire corpus
• Also evaluate on held-out set of 1000 utterances
• Evaluate segmentation quality with token f-score

phon stress train held-out

baselines
.81 .81

• .85 .84

stress models
• .86 .87

• • .88 .88

⇒ Stress by itself improves segmentation accuracy slightly more
than phonotactics (more so on held-out data)
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Experiment 2: varying amount of training data
• Goal: Compare impact of stress on inputs of different size

I perform inference over prefixes of corpus
I evaluate on held-out data
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Stress without phonotactics
• Except on 100 utterances, stress provides a consistent
improvement of 6-8%

⇒ In absence of phonotactics, stress is a powerful cue across all
data sizes
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Interaction of stress and phonotactics
• On small data, stress and phonotactics interact synergistically
• Stress and phonotactics become more redundant as data grows

I On full data, only 4% improvement (c.f., 7% without
phonotactics)
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Identifying the stress patterns of a language

• Goal: learn the stress generalisations of a language
I extract inferred posterior probabilities of Word expansions

– e.g., P(Word→ StressedUnstressed) is probability of a word
consisting of a Stressed followed by an Unstressed syllable

I compare to empirical token / type fraction of each pattern

• This is a very simplified model of English stress
I ignores interactions of stress with syllable weight, syntax, etc.
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Model learns probability of initial stress
• Model’s probability of initial stress reflects type rather than
token frequency

I these PCFG rules define the base distribution of the Word PYP
type frequency token frequency colloc3-nophon-stress colloc3-phon-stress
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Model learns probability of unstressed words
• Typically high token frequency function words
• Estimated probability tracks type frequency

type frequency token frequency colloc3-nophon-stress colloc3-phon-stress
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Model does not accurately learn second syllable
stress
• Model does not identify low frequency stress-second pattern
• Consistent with observation that infants’ struggle with this
pattern

type frequency token frequency colloc3-nophon-stress colloc3-phon-stress

0.02

0.03

0.04

0.05

0.06

0.07

100 200 500 1000 2000 5000 10000
number of input utterances

P
(S
tr
es
s
on

se
co
n
d
)

26/30



Unique stress constraint can be learnt
• Probability of words with multiple stressed syllables approaches 0
⇒ Model learns that there is at most one stressed syllable per word
⇒ The Unique Stress Constraint (Yang 2004) can be acquired and

does not need to be built in (?)

0.05

0.10

100 200 500 1000 2000 5000 10000
number of input utterances

P
(V

io
la
te
s
U
S
C
)

colloc3-nophon-stress colloc3-phon-stress

27/30



Outline

Stress and word segmentation

Computational models of word segmentation

Experiments

Conclusions and future work

28/30



Conclusions

• We performed a “controlled computational experiment”
comparing models that can learn phonotactic and/or stress
generalisations

• We showed that:
I stress is a very useful cue, even if function words are unstressed
I stress is more useful than phonotactics with little data, but the
gap diminishes with more data

I initially there are synergies jointly learning stress and
phonotactics, but eventually they provide redundant information

I the English preference for word-initial stress can be learnt
I the “one primary stress per word” constraint can be learnt
(i.e., does not have to be innate)
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Future work

• Cross-linguistic exploration of stress and other cues in languages
besides English

• Use more realistic information rather than dictionary stress
• Providence corpus provides audio and video to derive ‘less
idealized’ corpora

I acoustic correlates of stress differ cross-linguistically
I can we learn what (if anything?) corresponds to stress?
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