
The Noisy Channel Model and Markov Models

Mark Johnson

September 3, 2014

1/24

The big ideas

• The story so far:
I machine learning classifiers learn a function that maps a data item X to a

label Y
I handle large item spaces X by decomposing each data item X into a

collection of features F
I but the label spaces Y have to be small to avoid sparse data problems

• Where we’re going from here:
I many important problems involve large label spaces Y

– Part-Of-Speech (POS) tagging, where Y is a vector of POS tags
– Syntactic parsing, where Y is a syntactic parse tree

I basic approach: decompose Y into parts or features G
I if each feature Gj is independent, just learn a separate classifier for each

Gj
I but often there are important dependencies between the Gj

– in POS tagging, adjectives typically precede nouns

⇒ more sophisticated models are required to capture these dependencies

2/24

Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary

3/24

Machine learning in computational linguistics

• Many problems involve predicting a complex label Y from data X
I in automatic speech recognition, X is acoustic waveform, Y is transcript
I in machine translation, X is source language text, Y is target language

translation
I in spelling correction, X is a source text with spelling mistakes, and Y is

a target text without spelling mistakes
I in automatic summarisation, X is a document, Y is a summary of that

document

• Suppose we can estimate P(Y | X) somehow. Then we should compute:

ŷ(x) = argmax
y∈Y

P(Y=y | X=x)

• Problems we have to solve:
I |Y| is astronomical ⇒ computing argmax may be intractable
I |Y| is astronomical ⇒ how can we estimate P(Y | X)?

4/24

The noisy channel model

• The noisy channel model uses Bayes rule to
invert P(Y | X)

P(Y | X) =
P(X | Y) P(Y)

P(X)

• We can ignore P(X) if our goal is to compute

ŷ(x) = argmax
y∈Y

P(X=x | Y=y) P(Y=y)

because P(X=x) is a constant

Language model Y

Observation X

• P(X | Y) is called the channel model or the distortion model

• P(Y) is called the source model or the language model
I can often be learnt from cheap, readily available data

5/24

The noisy channel model in spelling correction, speech
recognition and machine translation

ŷ(x) = argmax
y∈Y

P(X=x | Y=y)︸ ︷︷ ︸
channel model

P(Y=y)︸ ︷︷ ︸
source model

• The channel models are task-specific
I for spelling correction, P(X | Y) maps words to their likely mis-spellings
I for speech recognition, P(X | Y) maps words or phonemes to acoustic

waveforms
I for machine translation, P(X | Y) maps words or phrases to their

translations

• The source model P(Y), which is also called a language model, is the
same

I P(Y) is the probability of a sentence Y
I can be learned from readily available text corpora

6/24

Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary

7/24

Language models

• A language model calculates the probability of a sequence of words or
phonemes

• In many NLP applications the source model P(Y) in a noisy channel
model is a language model

ŷ(x) = argmax
y∈Y

P(X=x | Y=y)︸ ︷︷ ︸
channel model

P(Y=y)︸ ︷︷ ︸
source model

• In such applications, Y is a sequence of words or phonemes

• The language model is used to calculate the probability of possible
sequences Y of words or phonemes

• The job of the language model is to distinguish likely sequences of
words or phonemes from unlikely ones

• It can be learnt from cheaply-available text collections

8/24

The bigram assumption for language models

• A language model estimates the probability P(Y) of a sentence
Y = (Y1, . . . ,Yn), where Yi is the ith word in the sentence

• Recall the relationship between joint and conditional probabilities:

P(U,V) = P(V) P(U | V)

• We can use this to rewrite P(Y) = P(Y1, . . . ,Yn):

P(Y1, . . . ,Yn) = P(Y1) P(Y2, . . . ,Yn | Y1)

= P(Y1)P(Y2 | Y1)P(Y3 | Y1,Y2)

. . . P(Yn | Y1, . . . ,Yn−1)

• Now make the bigram assumption: P(Yj | Y1, . . . ,Yj−1) u P(Yj | Yj−1),
i.e., word Yj only depends on Yj−1

• Then P(Y) simplifies to:

P(Y1, . . . ,Yn) = P(Y1)P(Y2 | Y1) . . . P(Yn | Yn−1)

9/24

Homogeneity assumption in language models

• Using bigram assumption we simplified

P(Y1, . . . ,Yn) = P(Y1)P(Y2 | Y1) . . . P(Yn | Yn−1)

= P(Y1)
n∏

i=2

P(Yi | Yi−1)

• Homogeneity assumption: conditional probabilities don’t change with i ,
i.e., there is a matrix s such that

P(Yi = y | Yi−1 = y ′) = sy ,y ′

• Then the bigram model probability P(Y =y) of a sentence
y = (y1, . . . , yn) is:

P(Y =y) = P(Y1 = y1) sy2,y1 sy3,y2 . . . syn,yn−1

= P(Y1 = y1)
n∏

i=2

syi ,yi−1

10/24

Using end-markers to handle initial and final conditions

• We simplify the model by assuming the string y is padded with
end-markers $

y = ($, y1, y2, . . . , yn, $)

I.e., Y0=$ and Yn+1 = $

• Then the bigram language model probability P(Y =y) is:

P(Y =y) = sy1,$ sy2,y1 . . . syn,yn−1 s$,yn

=
n+1∏
i=1

syi ,yi−1

11/24

Bigram language model example

s =

yi\yi−1 $ bow wow woof

$ 0 0 0.1 0.2
bow 0.5 0 0.7 0.4
wow 0 1.0 0 0
woof 0.5 0 0.2 0.4

$

bow

wow

woof

0.5

0.5

1.0

0.7

0.20.2

0.4

0.4

0.4

P($,bow,wow,woof,woof,$)

= sbow,$ swow,bow swoof,wow swoof,woof s$,woof

= 0.5 · 1.0 · 0.2 · 0.4 · 0.2
= 0.008

12/24

Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary

13/24

Estimating bigram models from text

• We can estimate the bigram model s from a text corpus

• Collect a vector of unigram counts m and a matrix of bigram counts n

my = number of times y is followed by anything in corpus

ny ′,y = number of times y ′ follows y in corpus

I make sure you count the beginning and end of sentence markers!

• Maximum likelihood estimates:

ŝy ′,y =
ny ′,y
my

• Add-1 smoothed estimates (a good idea!):

ˆ̂sy ′,y =
ny ′,y + 1

my + |V|

where V is the vocabulary (set of words) of the corpus

14/24

Estimating a bigram model example

corpus =

 $ bow wow woof woof $
$ woof bow wow bow wow woof $
$ bow wow $


V = {$, bow,wow,woof}

m =
$ bow wow woof

3 4 4 4

n =

yi\yi−1 $ bow wow woof

$ 0 0 1 2
bow 2 0 1 1
wow 0 4 0 0
woof 1 0 2 1

ˆ̂s =

yi\yi−1 $ bow wow woof

$ 1/7 1/8 2/8 3/8
bow 3/7 1/8 2/8 2/8
wow 1/7 5/8 1/8 1/8
woof 2/7 1/8 3/8 2/8

15/24

Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary

16/24

Markov Models

• A first-order Markov chain is a sequence of random variables
Y1,Y2,Y3, . . ., where:

P(Yi | Y1, . . . ,Yi−1) = P(Yi | Yi−1)

I.e., Yi is independent of Y1, . . . ,Yi−2 given Yi , or
the value Yi at time i only depends on the value Yi−1 at time i − 1

• The bigram language model is a first-order Markov chain
I Informally, the order of a Markov chain indicates “how far back in the

past” the next state can depend on

17/24

Higher-order Markov chains and n-gram language models

• An n-gram language model uses adjacent n-word sequences to predict
the probability of a sequence

I E.g., the trigrams in y = (the, rain, in, spain) are
($, $, the), ($, the, rain), (the, rain, in), (rain, in, spain), (in, spain, $),
(spain, $, $)

• In an mth order Markov chain, Yi depends only on Yi−m, . . . ,Yi−1
• So an m + 1-gram language model is an mth order Markov chain

I E.g., a bigram language model is a first-order Markov chain
I E.g., a trigram language model is a second-order Markov chain

18/24

Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary

19/24

n-gram language models

• Goal: estimate P(y), where y = (y1, . . . , ym) is a sequence of words

• n-gram models decompose P(y) into product of conditional distributions

P(y) = P(y1)P(y2 | y1)P(y3 | y1, y2) . . .P(ym | y1, . . . , ym−1)

E.g., P(wreck a nice beach) = P(wreck)P(a | wreck)P(nice | wreck a)

P(beach | wreck a nice)

• n-gram assumption: no dependencies span more than n words, i.e.,

P(yi | y1, . . . , yi−1) ≈ P(yi | yi−n, . . . , yi−1)

E.g., A bigram model is an n-gram model where n = 2:

P(wreck a nice beach) ≈ P(wreck)P(a | wreck)P(nice | a)

P(beach | nice)

20/24

n-gram language models as Markov models and Bayes nets

• An n-gram language model is a Markov model that factorises the
distribution over sentences into a product of conditional distributions:

P(y) =
m∏
i=1

P(yi | yi−n, . . . , yi−1)

I pad y with end markers, i.e., y = ($, y1, y2, . . . , ym, $)

• Bigram language model as Bayes net:

$ Y1 Y2 Y3 Y4 $

• Trigram language model as Bayes net:

$ $ Y1 Y2 Y3 Y4 $

21/24

The conditional word models in n-gram models

• An n-gram model factorises P(y) into a product of conditional models,
each of the form:

P(yn | y1, . . . , yn−1)

• The performance of an n-gram model depends greatly on exactly how
these conditional models are defined

I huge amount of work on this

• Random forest and deep learning methods for estimating these
conditional distributions currently produce state-of-the-art language
models

22/24

Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary

23/24

Summary

• In many NLP applications, the label space Y is astronomically large

⇒ decompose it into components (e.g., elements, features, etc.)

• The noisy channel model uses Bayes rule to “invert” a sequence
labelling problem

I enables us to use language models trained on large text collections

• n-gram language models are Markov models that predict the next word
based on the preceding n − 1 words

24/24

	The noisy channel model
	Bigram language models
	Learning bigram models from text
	Markov Chains and higher-order n-grams
	n-gram language models as Bayes nets
	Summary

