
Introduction to Clustering

Mark Johnson

Department of Computing
Macquarie University

1/57

Outline

Supervised versus unsupervised learning

Applications of clustering in text processing

Evaluating clustering algorithms

Background for the k-means algorithm

The k-means clustering algorithm

Document clustering with k-means clustering

Numerical features in machine learning

Summary

2/57

Data for supervised and unsupervised learning

• In both supervised and unsupervised learning, goal is to map novel items
to labels

I example 1: map names to their gender
I example 2: map documents to their topic
I example 3: maps words to their parts of speech

• The difference is the kind of training data used
I in supervised learning the training data contains the labels to be learnt

– example 1: input to supervised learner is
[(’Adam’,’male’), (’Eve’,’female’), ...]

I in unsupervised learning the training data does not contain the labels to
be learnt

– example 1: input to unsupervised learner is
[’Adam’, ’Eve’, ...]

3/57

Why is unsupervised learning important?

• Supervised learning requires labelled training data

• Manually labelling the training examples is often expensive and slow

⇒ often labelled training data sets are very small

• Unsupervised learning uses unlabelled training data, which is often
cheap and plentiful

• There are semi-supervised learning techniques which can take as input a
labelled data set and an unlabelled data set

I usually the labelled data set is much smaller than the unlabelled data set
I these typically build on unsupervised learning techniques

4/57

The role of labels in unsupervised classification

• Training data for unsupervised classification does not contain labels
I Name-gender example: input is [’Adam’, ’Eve’, ’Ida’, ...]

⇒ No way to learn the names of the labels (e.g., ’male’,’female’)
I but in e.g., document clustering, we can identify key words in documents

in each cluster

⇒ Use arbitrary identifiers as labels (e.g., integers)
I In name-gender example: output is [0, 1, 1, ...]

⇒ Since the unsupervised labels are arbitrary, all that matters is whether
two data items have the same label or different labels

5/57

Unsupervised classification as clustering

• In unsupervised learning, the learner associates unlabelled items with
labels from an arbitrary label set

I In name-gender example:
input is [’Adam’, ’Eve’, ’Ida’, ’Bill’, ...]

and output is [0, 1, 1, 0, ...]

• Since the labels are arbitrary, all they do is cluster items into groups

• To convert a labelling into a clustering, put all items with the same
label into the same cluster

I items with label 0 form cluster ’Adam’, ’Bill’, . . .
I items with label 1 form cluster ’Eve’, ’Ida’, . . .

⇒ Unsupervised classification is equivalent to clustering

6/57

Truth in advertising about machine learning

• In supervised learning the labels in the training data tell the learner
what to look for

• In unsupervised learning the learner tries to group items that look
similiar
⇒ the features and distance function are more important than in supervised

learning

• Unsupervised learning often returns surprising results
I you might cluster names in the hope of automatically learning gender
I but the clusterer might group them by ethnicity instead!

• Supervised learning works faily reliably if you have good data
I usually most modern supervised classification algorithms have similiar

performance
I too many features doesn’t hurt (so long as there are some informative

features)

• Unsupervised learning is much more uncertain
I different algorithms can produce very different results
I choice of features is extremely important

7/57

Outline

Supervised versus unsupervised learning

Applications of clustering in text processing

Evaluating clustering algorithms

Background for the k-means algorithm

The k-means clustering algorithm

Document clustering with k-means clustering

Numerical features in machine learning

Summary

8/57

Clustering news stories by topic

9/57

Document clustering and keyword identification

• Document clustering identifies thematically-similiar documents in a
document collection

I news stories about the same topic in a collection of news stories
I tweets on related topics from a twitter feed
I scientific articles on related topics

• We can use key-word identification methods to identify the most
characteristic words in each cluster

I treat each cluster as a giant “meta-document”
(i.e., append all of the documents in a document cluster together)

I run Tf.Idf or similiar term-weighting program on the meta-documents to
weight the words (and/or phrases) in the “meta-documents”

I identify the words and/or phrases with the highest scores in each
“meta-document”

I use these high-scoring words and/or phrases as a label for the
corresponding cluster

10/57

Clustering in search

11/57

Scatter-gather search

Education Iraq Arts Sports Oil Germany LegalDomestic

Scatter

12/57

Scatter-gather search

group of stories

Education Iraq Arts Sports Oil Germany LegalDomestic

Gather

12/57

Scatter-gather search

Occupation Politics Germany Afghanistan Markets Oil PakistanAfrica

group of stories

Education Iraq Arts Sports Oil Germany LegalDomestic

Scatter

12/57

Scatter-gather search

smaller group of stories

Occupation Politics Germany Afghanistan Markets Oil PakistanAfrica

group of stories

Education Iraq Arts Sports Oil Germany LegalDomestic

Gather

12/57

Scatter-gather search

S. AfricaW. Africa Security Iraq Iran Nigeria SomaliaTrinidad

smaller group of stories

Occupation Politics Germany Afghanistan Markets Oil PakistanAfrica

group of stories

Education Iraq Arts Sports Oil Germany LegalDomestic

Scatter

12/57

Outline

Supervised versus unsupervised learning

Applications of clustering in text processing

Evaluating clustering algorithms

Background for the k-means algorithm

The k-means clustering algorithm

Document clustering with k-means clustering

Numerical features in machine learning

Summary

13/57

Internal and external measures of clustering accuracy

• Internal measures: A clustering procedure should return a clustering
where:

I all data items in the same cluster are very similiar (i.e., “close” to each
other)

I if two data items come from different clusters, then the data items are
different (i.e., “distant” from each other)

• External measures: Sometimes for evaluation we can obtain labels for
(a subset of) the training data

I labels are not available to clustering program (i.e., clustering program is
unsupervised)

I it’s usually not reasonable to expect the clustering program to recover the
labels

I but the labels define a clustering of the data items

– data items with the same label are assigned to the same cluster

I so all we can really do is compare the way that clustering program groups
data items with the way the labels cluster data items

14/57

Confusion matrices

• Confusion matrices depict the
relationship between two clusterings.

• Each cell shows the number of items in
the cross product of the clusterings.

• They can sometimes help us understand
just what a clustering has found.

c1 c2 c3 c4

science 0 4 10 4
romance 10 0 1 0
politics 0 10 5 12
news 1 12 5 10

15/57

Purity

• The purity of a clustering is the fraction
of data items assigned to the majority
label of each cluster.

• If n is the number of data items and
C = (C1, . . . ,Cm) and
C ′ = (C ′1, . . . ,C

′
m′) are two clusterings

(partitions of the data items), then:

purity(C,C ′) =
1

n

m∑
k=1

max
j=1:m′

|Ck ∩ C ′j |

• In this example, purity = 44/84 u 0.52

c1 c2 c3 c4

science 0 4 10 4
romance 10 0 1 0
politics 0 10 5 12
news 1 12 5 10

16/57

The problem with purity

• Purity is the fraction of data items assigned to the majority label of
each cluster

• If the clusters only contain a single data item, whatever label it happens
to have will be the majority label of that cluster

⇒ In one-item clusters, the data item in that cluster will have the majority
label

⇒ To produce a clustering algorithm that has perfect purity just assign
each data item to its own cluster

I the number of clusters is the number of data items

• Purity is a useful measure if the number of clusters is fixed and much
smaller than the number of data items

17/57

The Rand Index

• Developed by William Rand in 1971 to avoid problems with purity

• Central idea: given two data items x , x ′ ∈ D, a clustering C either
places them into the same cluster or places them into different clusters

• Given two clusterings C and C ′, the Rand Index R is the number of
pairs x , x ′ ∈ D that are classified the same way by C and C ′ divided by
the total number of pairs x , x ′ ∈ D

I if a is the number of pairs x , x ′ ∈ D that are in the same cluster in C and
in the same cluster in C ′, and

I if b is the number of pairs x , x ′ ∈ D that are in different clusters in C
and in different clusters in C ′, and

I n′ = n(n − 1)/2 is the number of pairs x , x ′ ∈ D, then:

R =
a + b

n′

18/57

Outline

Supervised versus unsupervised learning

Applications of clustering in text processing

Evaluating clustering algorithms

Background for the k-means algorithm

The k-means clustering algorithm

Document clustering with k-means clustering

Numerical features in machine learning

Summary

19/57

Review: the k-nearest neighbour algorithm

The k-nearest neighbour algorithm for supervised
classification:

To classify a data item x :

• set N to the k-nearest neighbours of x in
D

I the k-nearest neighbours of x are the k
training items in D with the smallest
d(x , x ′) values

• count how often each label y ′ appears in N

• return the most frequent label y in the
k-nearest neighbours N of x as the
predicted label for x

item space X

colour indicates label Y

20/57

Review: the k-nearest neighbour algorithm

The k-nearest neighbour algorithm for supervised
classification:

To classify a data item x :

• set N to the k-nearest neighbours of x in
D

I the k-nearest neighbours of x are the k
training items in D with the smallest
d(x , x ′) values

• count how often each label y ′ appears in N

• return the most frequent label y in the
k-nearest neighbours N of x as the
predicted label for x

item space X

colour indicates label Y

20/57

Review: the k-nearest neighbour algorithm

The k-nearest neighbour algorithm for supervised
classification:

To classify a data item x :

• set N to the k-nearest neighbours of x in
D

I the k-nearest neighbours of x are the k
training items in D with the smallest
d(x , x ′) values

• count how often each label y ′ appears in N

• return the most frequent label y in the
k-nearest neighbours N of x as the
predicted label for x

item space X

colour indicates label Y

20/57

Review: the k-nearest neighbour algorithm

The k-nearest neighbour algorithm for supervised
classification:

To classify a data item x :

• set N to the k-nearest neighbours of x in
D

I the k-nearest neighbours of x are the k
training items in D with the smallest
d(x , x ′) values

• count how often each label y ′ appears in N

• return the most frequent label y in the
k-nearest neighbours N of x as the
predicted label for x

item space X

colour indicates label Y

20/57

Review: the k-nearest neighbour algorithm

The k-nearest neighbour algorithm for supervised
classification:

To classify a data item x :

• set N to the k-nearest neighbours of x in
D

I the k-nearest neighbours of x are the k
training items in D with the smallest
d(x , x ′) values

• count how often each label y ′ appears in N

• return the most frequent label y in the
k-nearest neighbours N of x as the
predicted label for x

item space X

colour indicates label Y

20/57

The k-nearest neighbour algorithm

• Let D be a labelled training data set:

D = ((x1, y1), . . . , (xn, yn))

where each item xi ∈ X has label yi ∈ Y
• and let d be distance function, where d(x , x ′) is the distance between

two items x , x ′ ∈ X
• Given a novel item x ′ to label, the 1-nearest neighbour label ŷ(x ′) is:

ŷ(x) = argmin
y∈Y

min
x∈Dy

d(x , x ′)

where for each y ∈ Y, Dy is the multiset of the training data items
labelled y , i.e.,

Dy = {x : (x , y) ∈ D}

21/57

The difference between min and argmin
• The min of a set of values is the smallest value in a set

I If S = {’Alpha’, ’Beta’, ’Gamma’}
I and len(s) returns the length of string s
I then

min
s∈S

len(s) = 4

• The argmin of a function is the value that minimises that function

argmin
s∈S

len(s) = ’Beta’

• argmin can also be be used to find the location of the smallest value in
a sequence

I If T = (’Alpha’, ’Beta’, ’Gamma’) then:

argmin
i∈1:3

len(Ti) = 2

• There are corresponding max and argmax functions as well

22/57

Python code for min and argmin
• Python has min and max functions:

>>> xs = (’Alpha’,’Beta’,’Gamma’)

>>> min(xs)

’Alpha’

I with no arguments, min returns the smallest element in a sequence with
respect to Python’s default ordering

• Use comprehensions to compute more complex expressions

>>> xs = (’Alpha’,’Beta’,’Gamma’)

>>> min(len(x) for x in xs)

4

computes mins∈S len(s) where S = {’Alpha’, ’Beta’, ’Gamma’}
• Use the key argument to specify a function to compute argmin

>>> xs = (’Alpha’,’Beta’,’Gamma’)

>>> min(xs, key=len)

’Beta’

computes argmins∈S len(s) where S = {’Alpha’, ’Beta’, ’Gamma’}
23/57

More fun with min and max

• To find the location or index of the smallest item in a sequence, use
enumerate

>>> xs = (’Gamma’,’Beta’,’Alpha’)

>>> min(enumerate(xs), key=lambda ix: len(ix[1]))[0]

1

computes argmini∈0:n−1 len(Xi)
where X = (’Gamma’, ’Beta’, ’Alpha’)

24/57

Understanding argmin with enumerate

• enumerate generates pairs consisting of an index and an object

>>> xs = (’Alpha’,’Beta’,’Gamma’)

>>> enumerate(xs)

<enumerate object at 0x7f536dd9d5f0>

>>> list(enumerate(xs))

[(0, ’Alpha’), (1, ’Beta’), (2, ’Gamma’)]

• lambda ix: len(ix[1]) maps a pair to the length of its second element

>>> (lambda ix: len(ix[1]))((1,’Beta’))

4

• min(enumerate(xs), key=lambda ix: ix[1]) returns the pair whose
second element minimises the len function

>>> min(enumerate(xs), key=lambda ix: len(ix[1]))

(1, ’Beta’)

25/57

Informal description of the k-means classification algorithm

• Note: this is not a serious classification algorithm.
It is just a stepping stone to the k-means clustering algorithm.

• The k-means classification algorithm:
I At training time (i.e., when you have the training data D, but before you

see any test data)

– Given training data D, let Dy be subset of training data items with label y
– For each label y , let cy be the mean or centre of Dy

I To classify a new test item x ′:

– for each cluster mean cy , compute dy = distance from cy to x ′

– return the y that minimises dy
(i.e., the y such that x ′ is closest to cy)

• This classifier might not be too bad if the Dy are well clustered

26/57

Graphical depiction of k-means classification algorithm

At training time:

• compute cluster means cy

At test time:
To classify a new data item x ′:

• compute the distances d(cy , x
′) from each

cluster mean cy to x ′

• return the label y of the closest cluster
mean cy to x ′

item space X

colour indicates label Y

27/57

Graphical depiction of k-means classification algorithm

At training time:

• compute cluster means cy

At test time:
To classify a new data item x ′:

• compute the distances d(cy , x
′) from each

cluster mean cy to x ′

• return the label y of the closest cluster
mean cy to x ′

item space X

colour indicates label Y

27/57

Graphical depiction of k-means classification algorithm

At training time:

• compute cluster means cy

At test time:
To classify a new data item x ′:

• compute the distances d(cy , x
′) from each

cluster mean cy to x ′

• return the label y of the closest cluster
mean cy to x ′

item space X

colour indicates label Y

27/57

Graphical depiction of k-means classification algorithm

At training time:

• compute cluster means cy

At test time:
To classify a new data item x ′:

• compute the distances d(cy , x
′) from each

cluster mean cy to x ′

• return the label y of the closest cluster
mean cy to x ′

item space X

colour indicates label Y

27/57

Graphical depiction of k-means classification algorithm

At training time:

• compute cluster means cy

At test time:
To classify a new data item x ′:

• compute the distances d(cy , x
′) from each

cluster mean cy to x ′

• return the label y of the closest cluster
mean cy to x ′

item space X

colour indicates label Y

27/57

The k-means classification algorithm

• Let D be a labelled training data set:

D = ((x1, y1), . . . , (xn, yn))

where each item xi ∈ X has label yi ∈ Y and X is a real-valued vector
space (i.e., the features have numeric values), and let d be a distance
function as before

• For each y ∈ Y, let Dy = {x : (x , y) ∈ D}
• For each y ∈ Y, let cy be the mean or centre of Dy

cy =
1

|Dy |
∑
x∈Dy

x

• Given a novel item x ′ ∈ X to label, the k-means classification algorithm
returns:

ŷ(x ′) = argmin
y∈Y

d(cy , x
′)

28/57

Review of set size and summation notation

• |S | is number of elements in the set S
I If S = {1, 3, 5, 7} then |S | = 4

• If S = {v1, . . . , vn} is a set (or a sequence) of elements vi that can be
added then: ∑

v∈S
v = v1 + . . . + vn

I If S = {1, 3, 5, 7} then
∑

v∈S v = 16

I If S = {(1, 2), (5, 4), (2, 2)} then
∑

v∈S v = (8, 8)

29/57

Set size and summation in Python

• len returns the size of a set

• sum returns the sum of the values of its arguments

>>> S = set([1,5,10,20])

>>> S

set([1, 10, 20, 5])

>>> len(S)

4

>>> sum(S)

36

30/57

Summing vectors in Python

• Python doesn’t directly support vector arithmetic
I but specialised libraries like numpy do

• But it’s easy to sum sequences of vectors

>>> vectors = [(1,5), (2,7), (4,9)]

>>> [sum(vector) for vector in zip(*vectors)]

[7, 21]

>>> zip(*vectors)

[(1, 2, 4), (5, 7, 9)]

31/57

Using Python’s Counter class to count

>>> import collections

>>> cntr = collections.Counter([’a’,’b’,’r’,’a’])

>>> cntr

Counter({’a’: 2, ’r’: 1, ’b’: 1})

>>> cntr[’b’]

1

>>> cntr[’0’] += 1

>>> cntr

Counter({’a’: 2, ’0’: 1, ’r’: 1, ’b’: 1})

>>> cntr.update([’E’,’E’,’N’,’I’,’E’])

>>> cntr

Counter({’E’: 3, ’a’: 2, ’b’: 1, ’I’: 1, ’N’: 1, ’0’: 1, ’r’: 1})

>>> cntr.most_common(2)

[(’E’, 3), (’a’, 2)]

32/57

Outline

Supervised versus unsupervised learning

Applications of clustering in text processing

Evaluating clustering algorithms

Background for the k-means algorithm

The k-means clustering algorithm

Document clustering with k-means clustering

Numerical features in machine learning

Summary

33/57

Informal description of k-means clustering

The k-means clustering algorithm is an iterative algorithm that reassigns
data items to clusters at each iteration

initialise the k cluster centres c1, . . . , ck somehow

repeat until done:

clear the clusters C1, . . . ,Ck

for each training data item x :

find the closest cluster center cj to x
add x to cluster Cj

for each cluster Cj :

set cj to the mean or centre of cluster Cj

34/57

Informal description of k-means clustering

The k-means clustering algorithm is an iterative algorithm that reassigns
data items to clusters at each iteration

initialise the k cluster centres c1, . . . , ck somehow

repeat until done:

clear the clusters C1, . . . ,Ck

for each training data item x :

find the closest cluster center cj to x
add x to cluster Cj

for each cluster Cj :

set cj to the mean or centre of cluster Cj

34/57

Graphical depiction of k-means clustering algorithm

• Unlabelled training data

• Initialise cluster centers somehow

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• No data items moved clusters, so we’re done

item space X

colours show clusters

35/57

Graphical depiction of k-means clustering algorithm

• Unlabelled training data

• Initialise cluster centers somehow

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• No data items moved clusters, so we’re done

item space X

colours show clusters

35/57

Graphical depiction of k-means clustering algorithm

• Unlabelled training data

• Initialise cluster centers somehow

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• No data items moved clusters, so we’re done

item space X

colours show clusters

35/57

Graphical depiction of k-means clustering algorithm

• Unlabelled training data

• Initialise cluster centers somehow

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• No data items moved clusters, so we’re done

item space X

colours show clusters

35/57

Graphical depiction of k-means clustering algorithm

• Unlabelled training data

• Initialise cluster centers somehow

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• No data items moved clusters, so we’re done

item space X

colours show clusters

35/57

Graphical depiction of k-means clustering algorithm

• Unlabelled training data

• Initialise cluster centers somehow

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• No data items moved clusters, so we’re done

item space X

colours show clusters

35/57

Graphical depiction of k-means clustering algorithm

• Unlabelled training data

• Initialise cluster centers somehow

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• No data items moved clusters, so we’re done

item space X

colours show clusters

35/57

Graphical depiction of k-means clustering algorithm

• Unlabelled training data

• Initialise cluster centers somehow

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• No data items moved clusters, so we’re done item space X

colours show clusters

35/57

The k-means clustering algorithm

• Input to k-means clustering algorithm:
I Unlabelled training data D = (x1, . . . , xn), where each xi ∈ X
I a distance function d , where d(x , x ′) is the distance between x , x ′ ∈ X
I the number of clusters k

• K-means clustering algorithm:

Initialise cluster centres cj , for j = 1, . . . , k
while not converged:

Cj = ∅, for j = 1, . . . , k
for i = 1, . . . , n:
j ′ = argminj∈1,...,k d(cj , xi)
add xi to Cj′

for j = 1, . . . , k :
set cj = mean(Cj)

36/57

Initialising the k-means algorithm

• How the initial cluster centres are chosen makes a big difference to the
clusters produced by the k-means algorithm

• There are many different initialisation strategies

• A simple and commonly-used strategy:
I pick k different items from the training data at random
I initialise cluster centre cj to the j randomly-chosen item

• Random initialisation ⇒ each run produces different clusters

• Simple initialisation strategies (like this) can result in isolated 1-item
clusters

• Unfortunately even complicated initialisation strategies have draw-backs

37/57

Determining convergence of the k-means algorithm

• Tracing the the number of items moved from one cluster to another,
and the intra-cluster distance S

S =
∑

i=1,...,k

∑
x∈Ci

d(ci , x)

is a good way to monitor convergence.
I these usually drops quickly with the first few iterations
I and change very slowly after that

• Often after “enough” iterations no data items are reassigned from one
cluster to another

⇒ further iterations will not change cluster assignments
⇒ the algorithm has converged

• Unfortunately the k-means algorithm only converges to a local
optimum, which in general is not the global optimum

38/57

Clustering as an optimisation problem

• The intra-cluster distance S (distance from data items to their cluster
centres) measures how well the cluster centres describe the data

S =
∑

i=1,...,k

∑
x∈Ci

d(ci , x)

• The clusters Ci are determined by the cluster centers ci and the data
D = (x1, . . . , xn)

• Goal of clustering: find cluster centres c = (c1, . . . , ck) that minimise
the intra-cluster distance

ĉ = argmin
c

S

= argmin
c

∑
i=1,...,k

∑
x∈Ci

d(ci , x)

• The k-means algorithm is a way of finding cluster centres c that
approximately minimise the the intra-cluster distance S

39/57

Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)

40/57

Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)

local min.

local min.

40/57

Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)

global min.

40/57

Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)

40/57

Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)

40/57

Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)

40/57

Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)

40/57

Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)

40/57

Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)

40/57

K-means clustering in Python

class kmeans_clusters:

def __init__(self, data, k, max_iterations, meanf, distf):

self.data = data

self.meanf = meanf

self.distf = distf

self.k = k

self.initial_assignment_of_data_to_clusters()

for iteration in xrange(max_iterations):

self.compute_cluster_centres()

nchanged = self.assign_data_to_closest_clusters()

if nchanged == 0:

break

41/57

Initialising k-means clustering in Python

In class kmeans_clusters:

def initial_assignment_of_data_to_clusters(self):

self.cluster_centres = random.sample(self.data, self.k)

self.cids = [self.closest_cluster(item)

for item in self.data]

def closest_cluster(self, item):

distances = [self.distf(centre, item)

for centre in self.cluster_centres]

closest = min(xrange(self.k), key=lambda j:distances[j])

return closest

• self.cluster_centres is a list of the k cluster centers

• self.cids is a list of the “cluster ids” (integers that index into
self.cluser_centres

• You’ll also need an import random statement at the start of your code

42/57

Computing cluster centres in Python

In class kmeans_clusters:

def compute_cluster_centres(self):

self.cluster_centres =

[self.meanf([item

for item,cid in zip(self.data,self.cids)

if cid == id])

for id in xrange(self.k)]

• This uses the user-supplied function meanf to compute the mean or the
centre of a set of data items

43/57

Updating the clusters in Python

In class kmeans_clusters:

def assign_data_to_closest_clusters(self):

old_cids = self.cids

self.cids = []

nchanged = 0

for i in xrange(len(self.data)):

cid = self.closest_cluster(self.data[i])

self.cids.append(cid)

if cid != old_cids[i]:

nchanged += 1

return nchanged

44/57

Outline

Supervised versus unsupervised learning

Applications of clustering in text processing

Evaluating clustering algorithms

Background for the k-means algorithm

The k-means clustering algorithm

Document clustering with k-means clustering

Numerical features in machine learning

Summary

45/57

Document clustering

• Input: a collection of documents
I we’ll use all 500 documents in nltk.corpus.brown
I these are classified into news, popular fiction, etc.
I the k-means clusterer won’t see these classes
I . . . but we’ll use them to evaluate its output

• We need to provide:
I a distance function and
I a mean function that computes the centre of a document cluster

• We’ll use a bag of words representation for each document
I each document is represented by a dictionary mapping words to their

frequency counts
I for computational efficiency we’ll only use a subset of the vocabulary

46/57

Finding the keywords

import random, re

import nltk, nltk.corpus

word_rex = re.compile(r"^[A-Za-z]+$")

def compute_keywords(corpus, nwords):

cntr = collections.Counter(w.lower()

for w in corpus.words()

if word_rex.match(w))

return set(word for word,count in cntr.most_common(nwords))

• The clusters that the algorithm finds depend on which features it uses

• compute_keywords(corpus, 1000) returns a set containing the the
1,000th most frequent words

• We’ll use these words as features

47/57

Mapping fileids to word-frequencies

def fileid_featurevalues(corpus, fileid, keywords):

cntr = collections.Counter(w.lower()

for w in corpus.words(fileid)

if word_rex.match(w) and

w.lower() in keywords)

return cntr

• This returns a dictionary mapping words to their frequencies in
document specified by fileid

• This is a sparse representation of word frequencies
I words with zero frequency are not present in the dictionary

48/57

Distance between two word-frequency dictionaries

def sparse_sum_squared_differences(key_val1, key_val2):

keys = set(key_val1.iterkeys()) | set(key_val2.iterkeys())

return sum(pow(key_val1.get(key,0) - key_val2.get(key,0), 2)

for key in keys)

• key_val1 and key_val2 are two dictionaries mapping words to their
frequencies

I they represent different documents

• keys is a set containing the union of their keys

• The result is the sum of the square of the differences in the frequencies

49/57

Calculating the cluster means

def sparse_means(key_vals):

keys = set()

keys.update(*(key_val.iterkeys() for key_val in key_vals))

n = len(key_vals)+1e-100

key_meanval = {}

for key in keys:

key_meanval[key] = sum(key_val.get(key,0)

for key_val in key_vals)/n

return key_meanval

• key_vals is a list of word-frequency dictionaries

• keys is a set containing the union of the keys in key_vals

• n is the number of word-frequency dictionaries in key_vals

• key_meanval is a dictionary mapping each key to its mean value

50/57

Outline

Supervised versus unsupervised learning

Applications of clustering in text processing

Evaluating clustering algorithms

Background for the k-means algorithm

The k-means clustering algorithm

Document clustering with k-means clustering

Numerical features in machine learning

Summary

51/57

Numerical features in machine learning

• The k-means algorithms (and many other machine learning algorithms)
require features to have numerical values

• In many applications, features naturally take categorical values
I in name-gender application, the ’suffix1’ feature takes 1-letter values

and the ’suffix2’ feature takes 2-letter values
gender features(’Christiana’) = {’suffix1’:’a’,
’suffix2’:’na’}

• We’ll re-express these category-valued features as vectors of
Boolean-valued features

I Boolean-valued features are numeric if we treat False = 0 and True = 1

• A feature f can be viewed as a function from items X to feature values
V (for Boolean features, V = {0, 1})

I suffix1(’Cynthia’) = ’a’

52/57

Re-expressing a categorical feature using Boolean features

• Suppose a categorical feature f ranges over values V = {v1, . . . , vm}
I Example: ’suffix1’ ranges over {’a’, . . . , ’z’}

• We re-express a categorical feature pair f with a vector
b = (b1, . . . , bm) of m Boolean-valued features

• If x ∈ X is a data item then:

f (x) = vj ⇔ bj(x) = 1

I Example: If ’suffix1’:’e’ is a feature-value pair for an item then:

b = (0, . . . , 0, 1, 0, . . . , 0)
’a’ ’d’ ’e’ ’f’ ’z’

I This is called a one-hot encoding of the feature

• Question: how are the suffix2 features expressed as Boolean features?

53/57

Multiple categorical features as Boolean features

• Each categorical feature can be represented as a vector of Boolean
features

• To represent several categorical features, concatenate the vectors of
Boolean features that represent them

• Example:

b = (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
’suffix1’

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
’suffix2’

)

54/57

Representations for sparse numerical features

• A set of features is sparse if most features have value 0
I when categorical features are converted to binary features, all but one

binary feature has value 0
⇒ the resulting binary feature vectors are sparse

• Representing very sparse feature vectors as as standard arrays wastes
space and time

• Idea: only store features whose value is non-zero

• Represent sparse feature vectors as a set of feature:value pairs for each
feature that has a non-zero value

• if a feature is not represented, its value is zero

• Example: gender features(’Christiana’) = {’suffix1=a’:1,
’suffix2=na’:1}

55/57

Outline

Supervised versus unsupervised learning

Applications of clustering in text processing

Evaluating clustering algorithms

Background for the k-means algorithm

The k-means clustering algorithm

Document clustering with k-means clustering

Numerical features in machine learning

Summary

56/57

Summary

• Supervised versus unsupervised learning
I unsupervised learning is generally far more challenging

• Unsupervised learning as clustering

• The k-means clustering algorithm

• Confusion matrices as ways of comparing two clusterings

• Evaluating clustering is difficult
I cluster purity and its problems
I the Rand index

• The difference between local and global optima, and the problems this
causes for unsupervised learning

57/57

	Supervised versus unsupervised learning
	Applications of clustering in text processing
	Evaluating clustering algorithms
	Background for the k-means algorithm
	The k-means clustering algorithm
	Document clustering with k-means clustering
	Numerical features in machine learning
	Summary

