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Data for supervised and unsupervised learning

• In both supervised and unsupervised learning, goal is to map novel items
to labels

I example 1: map names to their gender
I example 2: map documents to their topic
I example 3: maps words to their parts of speech

• The difference is the kind of training data used
I in supervised learning the training data contains the labels to be learnt

– example 1: input to supervised learner is
[(’Adam’,’male’), (’Eve’,’female’), ...]

I in unsupervised learning the training data does not contain the labels to
be learnt

– example 1: input to unsupervised learner is
[’Adam’, ’Eve’, ...]
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Why is unsupervised learning important?

• Supervised learning requires labelled training data

• Manually labelling the training examples is often expensive and slow

⇒ often labelled training data sets are very small

• Unsupervised learning uses unlabelled training data, which is often
cheap and plentiful

• There are semi-supervised learning techniques which can take as input a
labelled data set and an unlabelled data set

I usually the labelled data set is much smaller than the unlabelled data set
I these typically build on unsupervised learning techniques
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The role of labels in unsupervised classification

• Training data for unsupervised classification does not contain labels
I Name-gender example: input is [’Adam’, ’Eve’, ’Ida’, ...]

⇒ No way to learn the names of the labels (e.g., ’male’,’female’)
I but in e.g., document clustering, we can identify key words in documents

in each cluster

⇒ Use arbitrary identifiers as labels (e.g., integers)
I In name-gender example: output is [0, 1, 1, ...]

⇒ Since the unsupervised labels are arbitrary, all that matters is whether
two data items have the same label or different labels
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Unsupervised classification as clustering

• In unsupervised learning, the learner associates unlabelled items with
labels from an arbitrary label set

I In name-gender example:
input is [’Adam’, ’Eve’, ’Ida’, ’Bill’, ...]

and output is [0, 1, 1, 0, ...]

• Since the labels are arbitrary, all they do is cluster items into groups

• To convert a labelling into a clustering, put all items with the same
label into the same cluster

I items with label 0 form cluster ’Adam’, ’Bill’, . . .
I items with label 1 form cluster ’Eve’, ’Ida’, . . .

⇒ Unsupervised classification is equivalent to clustering
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Truth in advertising about machine learning

• In supervised learning the labels in the training data tell the learner
what to look for

• In unsupervised learning the learner tries to group items that look
similiar
⇒ the features and distance function are more important than in supervised

learning

• Unsupervised learning often returns surprising results
I you might cluster names in the hope of automatically learning gender
I but the clusterer might group them by ethnicity instead!

• Supervised learning works faily reliably if you have good data
I usually most modern supervised classification algorithms have similiar

performance
I too many features doesn’t hurt (so long as there are some informative

features)

• Unsupervised learning is much more uncertain
I different algorithms can produce very different results
I choice of features is extremely important
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Clustering news stories by topic
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Document clustering and keyword identification

• Document clustering identifies thematically-similiar documents in a
document collection

I news stories about the same topic in a collection of news stories
I tweets on related topics from a twitter feed
I scientific articles on related topics

• We can use key-word identification methods to identify the most
characteristic words in each cluster

I treat each cluster as a giant “meta-document”
(i.e., append all of the documents in a document cluster together)

I run Tf.Idf or similiar term-weighting program on the meta-documents to
weight the words (and/or phrases) in the “meta-documents”

I identify the words and/or phrases with the highest scores in each
“meta-document”

I use these high-scoring words and/or phrases as a label for the
corresponding cluster
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Clustering in search
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Scatter-gather search

Education Iraq Arts Sports Oil Germany LegalDomestic

Scatter
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Scatter-gather search

group of stories

Education Iraq Arts Sports Oil Germany LegalDomestic

Gather
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Scatter-gather search
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Scatter-gather search

smaller group of stories

Occupation Politics Germany Afghanistan Markets Oil PakistanAfrica

group of stories

Education Iraq Arts Sports Oil Germany LegalDomestic

Gather
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Scatter-gather search

S. AfricaW. Africa Security Iraq Iran Nigeria SomaliaTrinidad
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Internal and external measures of clustering accuracy

• Internal measures: A clustering procedure should return a clustering
where:

I all data items in the same cluster are very similiar (i.e., “close” to each
other)

I if two data items come from different clusters, then the data items are
different (i.e., “distant” from each other)

• External measures: Sometimes for evaluation we can obtain labels for
(a subset of) the training data

I labels are not available to clustering program (i.e., clustering program is
unsupervised)

I it’s usually not reasonable to expect the clustering program to recover the
labels

I but the labels define a clustering of the data items

– data items with the same label are assigned to the same cluster

I so all we can really do is compare the way that clustering program groups
data items with the way the labels cluster data items
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Confusion matrices

• Confusion matrices depict the
relationship between two clusterings.

• Each cell shows the number of items in
the cross product of the clusterings.

• They can sometimes help us understand
just what a clustering has found.

c1 c2 c3 c4

science 0 4 10 4
romance 10 0 1 0
politics 0 10 5 12
news 1 12 5 10
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Purity

• The purity of a clustering is the fraction
of data items assigned to the majority
label of each cluster.

• If n is the number of data items and
C = (C1, . . . ,Cm) and
C ′ = (C ′1, . . . ,C

′
m′) are two clusterings

(partitions of the data items), then:

purity(C,C ′) =
1

n

m∑
k=1

max
j=1:m′

|Ck ∩ C ′j |

• In this example, purity = 44/84 u 0.52

c1 c2 c3 c4

science 0 4 10 4
romance 10 0 1 0
politics 0 10 5 12
news 1 12 5 10
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The problem with purity

• Purity is the fraction of data items assigned to the majority label of
each cluster

• If the clusters only contain a single data item, whatever label it happens
to have will be the majority label of that cluster

⇒ In one-item clusters, the data item in that cluster will have the majority
label

⇒ To produce a clustering algorithm that has perfect purity just assign
each data item to its own cluster

I the number of clusters is the number of data items

• Purity is a useful measure if the number of clusters is fixed and much
smaller than the number of data items
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The Rand Index

• Developed by William Rand in 1971 to avoid problems with purity

• Central idea: given two data items x , x ′ ∈ D, a clustering C either
places them into the same cluster or places them into different clusters

• Given two clusterings C and C ′, the Rand Index R is the number of
pairs x , x ′ ∈ D that are classified the same way by C and C ′ divided by
the total number of pairs x , x ′ ∈ D

I if a is the number of pairs x , x ′ ∈ D that are in the same cluster in C and
in the same cluster in C ′, and

I if b is the number of pairs x , x ′ ∈ D that are in different clusters in C
and in different clusters in C ′, and

I n′ = n(n − 1)/2 is the number of pairs x , x ′ ∈ D, then:

R =
a + b

n′
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Review: the k-nearest neighbour algorithm

The k-nearest neighbour algorithm for supervised
classification:

To classify a data item x :

• set N to the k-nearest neighbours of x in
D

I the k-nearest neighbours of x are the k
training items in D with the smallest
d(x , x ′) values

• count how often each label y ′ appears in N

• return the most frequent label y in the
k-nearest neighbours N of x as the
predicted label for x

item space X

colour indicates label Y
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The k-nearest neighbour algorithm

• Let D be a labelled training data set:

D = ((x1, y1), . . . , (xn, yn))

where each item xi ∈ X has label yi ∈ Y
• and let d be distance function, where d(x , x ′) is the distance between

two items x , x ′ ∈ X
• Given a novel item x ′ to label, the 1-nearest neighbour label ŷ(x ′) is:

ŷ(x) = argmin
y∈Y

min
x∈Dy

d(x , x ′)

where for each y ∈ Y, Dy is the multiset of the training data items
labelled y , i.e.,

Dy = {x : (x , y) ∈ D}
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The difference between min and argmin
• The min of a set of values is the smallest value in a set

I If S = {’Alpha’, ’Beta’, ’Gamma’}
I and len(s) returns the length of string s
I then

min
s∈S

len(s) = 4

• The argmin of a function is the value that minimises that function

argmin
s∈S

len(s) = ’Beta’

• argmin can also be be used to find the location of the smallest value in
a sequence

I If T = (’Alpha’, ’Beta’, ’Gamma’) then:

argmin
i∈1:3

len(Ti ) = 2

• There are corresponding max and argmax functions as well
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Python code for min and argmin
• Python has min and max functions:

>>> xs = (’Alpha’,’Beta’,’Gamma’)

>>> min(xs)

’Alpha’

I with no arguments, min returns the smallest element in a sequence with
respect to Python’s default ordering

• Use comprehensions to compute more complex expressions

>>> xs = (’Alpha’,’Beta’,’Gamma’)

>>> min(len(x) for x in xs)

4

computes mins∈S len(s) where S = {’Alpha’, ’Beta’, ’Gamma’}
• Use the key argument to specify a function to compute argmin

>>> xs = (’Alpha’,’Beta’,’Gamma’)

>>> min(xs, key=len)

’Beta’

computes argmins∈S len(s) where S = {’Alpha’, ’Beta’, ’Gamma’}
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More fun with min and max

• To find the location or index of the smallest item in a sequence, use
enumerate

>>> xs = (’Gamma’,’Beta’,’Alpha’)

>>> min(enumerate(xs), key=lambda ix: len(ix[1]))[0]

1

computes argmini∈0:n−1 len(Xi )
where X = (’Gamma’, ’Beta’, ’Alpha’)
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Understanding argmin with enumerate

• enumerate generates pairs consisting of an index and an object

>>> xs = (’Alpha’,’Beta’,’Gamma’)

>>> enumerate(xs)

<enumerate object at 0x7f536dd9d5f0>

>>> list(enumerate(xs))

[(0, ’Alpha’), (1, ’Beta’), (2, ’Gamma’)]

• lambda ix: len(ix[1]) maps a pair to the length of its second element

>>> (lambda ix: len(ix[1]))( (1,’Beta’) )

4

• min(enumerate(xs), key=lambda ix: ix[1]) returns the pair whose
second element minimises the len function

>>> min(enumerate(xs), key=lambda ix: len(ix[1]))

(1, ’Beta’)
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Informal description of the k-means classification algorithm

• Note: this is not a serious classification algorithm.
It is just a stepping stone to the k-means clustering algorithm.

• The k-means classification algorithm:
I At training time (i.e., when you have the training data D, but before you

see any test data)

– Given training data D, let Dy be subset of training data items with label y
– For each label y , let cy be the mean or centre of Dy

I To classify a new test item x ′:

– for each cluster mean cy , compute dy = distance from cy to x ′

– return the y that minimises dy
(i.e., the y such that x ′ is closest to cy )

• This classifier might not be too bad if the Dy are well clustered
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Graphical depiction of k-means classification algorithm

At training time:

• compute cluster means cy

At test time:
To classify a new data item x ′:

• compute the distances d(cy , x
′) from each

cluster mean cy to x ′

• return the label y of the closest cluster
mean cy to x ′

item space X

colour indicates label Y
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The k-means classification algorithm

• Let D be a labelled training data set:

D = ((x1, y1), . . . , (xn, yn))

where each item xi ∈ X has label yi ∈ Y and X is a real-valued vector
space (i.e., the features have numeric values), and let d be a distance
function as before

• For each y ∈ Y, let Dy = {x : (x , y) ∈ D}
• For each y ∈ Y, let cy be the mean or centre of Dy

cy =
1

|Dy |
∑
x∈Dy

x

• Given a novel item x ′ ∈ X to label, the k-means classification algorithm
returns:

ŷ(x ′) = argmin
y∈Y

d(cy , x
′)
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Review of set size and summation notation

• |S | is number of elements in the set S
I If S = {1, 3, 5, 7} then |S | = 4

• If S = {v1, . . . , vn} is a set (or a sequence) of elements vi that can be
added then: ∑

v∈S
v = v1 + . . . + vn

I If S = {1, 3, 5, 7} then
∑

v∈S v = 16

I If S = {(1, 2), (5, 4), (2, 2)} then
∑

v∈S v = (8, 8)
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Set size and summation in Python

• len returns the size of a set

• sum returns the sum of the values of its arguments

>>> S = set([1,5,10,20])

>>> S

set([1, 10, 20, 5])

>>> len(S)

4

>>> sum(S)

36
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Summing vectors in Python

• Python doesn’t directly support vector arithmetic
I but specialised libraries like numpy do

• But it’s easy to sum sequences of vectors

>>> vectors = [(1,5), (2,7), (4,9)]

>>> [sum(vector) for vector in zip(*vectors)]

[7, 21]

>>> zip(*vectors)

[(1, 2, 4), (5, 7, 9)]
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Using Python’s Counter class to count

>>> import collections

>>> cntr = collections.Counter([’a’,’b’,’r’,’a’])

>>> cntr

Counter({’a’: 2, ’r’: 1, ’b’: 1})

>>> cntr[’b’]

1

>>> cntr[’0’] += 1

>>> cntr

Counter({’a’: 2, ’0’: 1, ’r’: 1, ’b’: 1})

>>> cntr.update([’E’,’E’,’N’,’I’,’E’])

>>> cntr

Counter({’E’: 3, ’a’: 2, ’b’: 1, ’I’: 1, ’N’: 1, ’0’: 1, ’r’: 1})

>>> cntr.most_common(2)

[(’E’, 3), (’a’, 2)]
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Informal description of k-means clustering

The k-means clustering algorithm is an iterative algorithm that reassigns
data items to clusters at each iteration

initialise the k cluster centres c1, . . . , ck somehow

repeat until done:

clear the clusters C1, . . . ,Ck

for each training data item x :

find the closest cluster center cj to x
add x to cluster Cj

for each cluster Cj :

set cj to the mean or centre of cluster Cj
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Graphical depiction of k-means clustering algorithm

• Unlabelled training data

• Initialise cluster centers somehow

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• Move cluster centres to mean of data items in
cluster

• Move each data item into closest cluster

• No data items moved clusters, so we’re done

item space X

colours show clusters
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The k-means clustering algorithm

• Input to k-means clustering algorithm:
I Unlabelled training data D = (x1, . . . , xn), where each xi ∈ X
I a distance function d , where d(x , x ′) is the distance between x , x ′ ∈ X
I the number of clusters k

• K-means clustering algorithm:

Initialise cluster centres cj , for j = 1, . . . , k
while not converged:

Cj = ∅, for j = 1, . . . , k
for i = 1, . . . , n:
j ′ = argminj∈1,...,k d(cj , xi )
add xi to Cj′

for j = 1, . . . , k :
set cj = mean(Cj)
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Initialising the k-means algorithm

• How the initial cluster centres are chosen makes a big difference to the
clusters produced by the k-means algorithm

• There are many different initialisation strategies

• A simple and commonly-used strategy:
I pick k different items from the training data at random
I initialise cluster centre cj to the j randomly-chosen item

• Random initialisation ⇒ each run produces different clusters

• Simple initialisation strategies (like this) can result in isolated 1-item
clusters

• Unfortunately even complicated initialisation strategies have draw-backs
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Determining convergence of the k-means algorithm

• Tracing the the number of items moved from one cluster to another,
and the intra-cluster distance S

S =
∑

i=1,...,k

∑
x∈Ci

d(ci , x)

is a good way to monitor convergence.
I these usually drops quickly with the first few iterations
I and change very slowly after that

• Often after “enough” iterations no data items are reassigned from one
cluster to another

⇒ further iterations will not change cluster assignments
⇒ the algorithm has converged

• Unfortunately the k-means algorithm only converges to a local
optimum, which in general is not the global optimum
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Clustering as an optimisation problem

• The intra-cluster distance S (distance from data items to their cluster
centres) measures how well the cluster centres describe the data

S =
∑

i=1,...,k

∑
x∈Ci

d(ci , x)

• The clusters Ci are determined by the cluster centers ci and the data
D = (x1, . . . , xn)

• Goal of clustering: find cluster centres c = (c1, . . . , ck) that minimise
the intra-cluster distance

ĉ = argmin
c

S

= argmin
c

∑
i=1,...,k

∑
x∈Ci

d(ci , x)

• The k-means algorithm is a way of finding cluster centres c that
approximately minimise the the intra-cluster distance S
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Global and local optima in optimisation problems

• Machine learning algorithms like
k-means involve solving an
optimisation problem

I these are usually multi-dimensional
I the graph here only shows 1

dimension

• There can be several local minima

• But only one global minimum

• Iterative optimisation algorithms often
are attracted into the closest basin of
attraction

z

f (z)
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K-means clustering in Python

class kmeans_clusters:

def __init__(self, data, k, max_iterations, meanf, distf):

self.data = data

self.meanf = meanf

self.distf = distf

self.k = k

self.initial_assignment_of_data_to_clusters()

for iteration in xrange(max_iterations):

self.compute_cluster_centres()

nchanged = self.assign_data_to_closest_clusters()

if nchanged == 0:

break
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Initialising k-means clustering in Python

In class kmeans_clusters:

def initial_assignment_of_data_to_clusters(self):

self.cluster_centres = random.sample(self.data, self.k)

self.cids = [self.closest_cluster(item)

for item in self.data]

def closest_cluster(self, item):

distances = [self.distf(centre, item)

for centre in self.cluster_centres]

closest = min(xrange(self.k), key=lambda j:distances[j])

return closest

• self.cluster_centres is a list of the k cluster centers

• self.cids is a list of the “cluster ids” (integers that index into
self.cluser_centres

• You’ll also need an import random statement at the start of your code
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Computing cluster centres in Python

In class kmeans_clusters:

def compute_cluster_centres(self):

self.cluster_centres =

[self.meanf([item

for item,cid in zip(self.data,self.cids)

if cid == id])

for id in xrange(self.k)]

• This uses the user-supplied function meanf to compute the mean or the
centre of a set of data items
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Updating the clusters in Python

In class kmeans_clusters:

def assign_data_to_closest_clusters(self):

old_cids = self.cids

self.cids = []

nchanged = 0

for i in xrange(len(self.data)):

cid = self.closest_cluster(self.data[i])

self.cids.append(cid)

if cid != old_cids[i]:

nchanged += 1

return nchanged
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Document clustering

• Input: a collection of documents
I we’ll use all 500 documents in nltk.corpus.brown
I these are classified into news, popular fiction, etc.
I the k-means clusterer won’t see these classes
I . . . but we’ll use them to evaluate its output

• We need to provide:
I a distance function and
I a mean function that computes the centre of a document cluster

• We’ll use a bag of words representation for each document
I each document is represented by a dictionary mapping words to their

frequency counts
I for computational efficiency we’ll only use a subset of the vocabulary
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Finding the keywords

import random, re

import nltk, nltk.corpus

word_rex = re.compile(r"^[A-Za-z]+$")

def compute_keywords(corpus, nwords):

cntr = collections.Counter(w.lower()

for w in corpus.words()

if word_rex.match(w))

return set(word for word,count in cntr.most_common(nwords))

• The clusters that the algorithm finds depend on which features it uses

• compute_keywords(corpus, 1000) returns a set containing the the
1,000th most frequent words

• We’ll use these words as features
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Mapping fileids to word-frequencies

def fileid_featurevalues(corpus, fileid, keywords):

cntr = collections.Counter(w.lower()

for w in corpus.words(fileid)

if word_rex.match(w) and

w.lower() in keywords)

return cntr

• This returns a dictionary mapping words to their frequencies in
document specified by fileid

• This is a sparse representation of word frequencies
I words with zero frequency are not present in the dictionary

48/57



Distance between two word-frequency dictionaries

def sparse_sum_squared_differences(key_val1, key_val2):

keys = set(key_val1.iterkeys()) | set(key_val2.iterkeys())

return sum(pow(key_val1.get(key,0) - key_val2.get(key,0), 2)

for key in keys)

• key_val1 and key_val2 are two dictionaries mapping words to their
frequencies

I they represent different documents

• keys is a set containing the union of their keys

• The result is the sum of the square of the differences in the frequencies
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Calculating the cluster means

def sparse_means(key_vals):

keys = set()

keys.update(*(key_val.iterkeys() for key_val in key_vals))

n = len(key_vals)+1e-100

key_meanval = {}

for key in keys:

key_meanval[key] = sum(key_val.get(key,0)

for key_val in key_vals)/n

return key_meanval

• key_vals is a list of word-frequency dictionaries

• keys is a set containing the union of the keys in key_vals

• n is the number of word-frequency dictionaries in key_vals

• key_meanval is a dictionary mapping each key to its mean value
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Numerical features in machine learning

• The k-means algorithms (and many other machine learning algorithms)
require features to have numerical values

• In many applications, features naturally take categorical values
I in name-gender application, the ’suffix1’ feature takes 1-letter values

and the ’suffix2’ feature takes 2-letter values
gender features(’Christiana’) = {’suffix1’:’a’,
’suffix2’:’na’}

• We’ll re-express these category-valued features as vectors of
Boolean-valued features

I Boolean-valued features are numeric if we treat False = 0 and True = 1

• A feature f can be viewed as a function from items X to feature values
V (for Boolean features, V = {0, 1})

I suffix1(’Cynthia’) = ’a’
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Re-expressing a categorical feature using Boolean features

• Suppose a categorical feature f ranges over values V = {v1, . . . , vm}
I Example: ’suffix1’ ranges over {’a’, . . . , ’z’}

• We re-express a categorical feature pair f with a vector
b = (b1, . . . , bm) of m Boolean-valued features

• If x ∈ X is a data item then:

f (x) = vj ⇔ bj(x) = 1

I Example: If ’suffix1’:’e’ is a feature-value pair for an item then:

b = ( 0, . . . , 0, 1, 0, . . . , 0 )
’a’ ’d’ ’e’ ’f’ ’z’

I This is called a one-hot encoding of the feature

• Question: how are the suffix2 features expressed as Boolean features?

53/57



Multiple categorical features as Boolean features

• Each categorical feature can be represented as a vector of Boolean
features

• To represent several categorical features, concatenate the vectors of
Boolean features that represent them

• Example:

b = (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
’suffix1’

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
’suffix2’

)
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Representations for sparse numerical features

• A set of features is sparse if most features have value 0
I when categorical features are converted to binary features, all but one

binary feature has value 0
⇒ the resulting binary feature vectors are sparse

• Representing very sparse feature vectors as as standard arrays wastes
space and time

• Idea: only store features whose value is non-zero

• Represent sparse feature vectors as a set of feature:value pairs for each
feature that has a non-zero value

• if a feature is not represented, its value is zero

• Example: gender features(’Christiana’) = {’suffix1=a’:1,
’suffix2=na’:1}
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Summary

• Supervised versus unsupervised learning
I unsupervised learning is generally far more challenging

• Unsupervised learning as clustering

• The k-means clustering algorithm

• Confusion matrices as ways of comparing two clusterings

• Evaluating clustering is difficult
I cluster purity and its problems
I the Rand index

• The difference between local and global optima, and the problems this
causes for unsupervised learning
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