Introduction to Machine Learning

Mark Johnson

Department of Computing Macquarie University

Suggested readings

- Chapter 6 of the NLTK book, especially the sections headed:
 - Supervised classification
 - Gender Identification
 - Choosing The Right Features
 - Document Classification

Outline

Introduction to machine learning

Supervised classification using K-nearest neighbour classifiers

A broader view of machine learning

Fundamental limitations on machine learning

Conclusion

Data mining

- **Data mining** is the process of *automatically extracting information* from large data sets
- These data sets are usually so large that manually examining them is impractical
- The data sets can be *structured* (e.g., a database) or *unstructured* (e.g., free-form text in documents)
 - ► **Text data mining** uses *natural language processing* to extract information from *large text collections*
 - Quantitative data mining extracts information from numerical data
 - It's also possible to integrate quantitative and qualitative information sources

Business applications of data mining

- Data mining permits businesses to *exploit the information present in the large data sets* they collect in the course of their business
- Typical business applications:
 - ▶ in *medical patient management*, data mining identifies patients likely to benefit from a new drug or therapy
 - ▶ in customer relationship management, data mining identifies customers likely to be receptive to a new advertising campaign
 - in financial management, data mining can help predict the credit-worthiness of new customers
 - in load capacity management, data mining predicts the fraction of customers with airline reservations that will actually turn up for the flight
 - in market basket and affinity analysis, data mining identifies pairs of products likely (or unlikely) to be bought together, which can help design advertising campaigns

Challenges in data mining

- Diverse range of data mining tasks:
 - software packages exist for standard tasks, e.g., affinity analysis
 - but specialised data mining applications require highly-skilled experts to design and construct them
- Data mining is often *computationally intensive* and involve advanced algorithms and data structures
- Data mining may involve huge data sets too large to store on a single computer
 - often requires large clusters or cloud computing services

Machine learning

- Machine learning is a branch of Artificial Intelligence that studies methods for automatically learning from data
- It focuses on generalisation and prediction
 - typical goal is to predict the properties of yet unseen cases
 - ⇒ split training set/test set methodology, which lets us estimate accuracy on novel test data
- Data mining can use machine learning, but it doesn't have to:
 - E.g., "who is the phone system's biggest user?" doesn't necessarily involve machine learning
 - E.g., "which customers are likely to increase their phone usage next year?" does involve machine learning

Statistical modelling

- **Probability theory** is the branch of mathematics concerned with random phenomena and systems whose structure and/or state is only partially known
 - ⇒ probability theory is a mathematical foundation of machine learning
- **Statistics** is the science of the *collection*, *organisation* and *interpretation* of data
 - ► A **statistic** is a function of data sets (usually numerically-valued) intended to *summarise the data* (e.g., the *average* or *mean* of a set of numbers)
- A **statistical model** is a mathematical statement of the *relationship* between variables that have a random component
 - many machine learning algorithms are based on statistical models
 - statistical models also play a central role in natural language processing

Statistics vs machine learning

- Statistics and machine learning often use the same statistical models
 - ⇒ very strong cross-fertilisation between fields
- Machine learning often involves data sets that are orders of magnitude larger than those in standard statistics problems
 - Machine learning is concerned with algorithmic and data structure issues that statistics doesn't deal with
- Statistics tends to focus on hypothesis testing, while machine learning focuses on prediction
 - ▶ **Hypothesis testing:** *Does coffee cause cancer?*
 - ▶ **Prediction:** Which patients are likely to die of cancer?

Outline

Introduction to machine learning

Supervised classification using K-nearest neighbour classifiers

A broader view of machine learning

Fundamental limitations on machine learning

Conclusion

Supervised classification problems

- In a classification problem you have to classify or assign a label y to each data item x
 - ▶ in *movie review classification task*, the data items are movie reviews, and the labels are *pos* or *neg*
 - in Reuters news classification task, the data items are news reports from Reuters, and the labels come from a set of 20 labels, such as takeover, mining, agriculture, etc.
 - in name gender task, data items are first names and the labels are female or male
- In order to do this, you're given *labeled training data*, i.e., a collection $D = ((x_1, y_1), \dots, (x_n, y_n))$ of data items x_i and corresponding *label* y_i
 - ▶ each data item x_i in training data has a *label* $y_i \Rightarrow$ *supervised* learning problem
 - ▶ in *movie review classification task*, training data consists of 1,000 movie reviews, each of which is rated *pos* or *neg*
 - ▶ in *Reuters news classification task*, training data consists of 10,000 news articles, each of which is labeled *takeover*, *mining*, *agriculture*, etc.
 - ▶ in *name gender task*, training data consists of 7,000 names and their genders *female* or *male*

Labeled data for name gender classification

- Goal: to predict the gender of a first name
- Python code to access the lists of first names

```
>>> import nltk
>>> from nltk.corpus import names
```

The files that contain the female and male names

```
>>> names.fileids()
['female.txt', 'male.txt']
```

The first few female and male names

```
>>> names.words('female.txt')[:10]
['Abagael', 'Abagail', 'Abbe', 'Abbey', 'Abbi', 'Abbie', 'Abby',
>>> names.words('male.txt')[:10]
['Aamir', 'Aaron', 'Abbey', 'Abbie', 'Abbot', 'Abbott', 'Abby',
```


K-nearest neighbour classifiers

- K-nearest neighbour classifiers are a simple but sometimes very effective kind of *supervised classifier* algorithm
- They don't need much maths to understand
- We'll use them to learn about general properties of machine-learning classifiers

K-nearest neighbour classifiers

- A k-nearest neighbour classifier requires:
 - ▶ labeled training data $D = ((x_1, y_1), ..., (x_n, y_n))$
 - ▶ a distance function d(x, x') that returns the "distance" between any pair of data items x and x'
 - ▶ the number *k* of *nearest neighbours* to use in classification

To classify a data item x:

colour indicates label ${\cal Y}$

To classify a data item x:

- set N to the k-nearest neighbours of x in D
 - ▶ the k-nearest neighbours of x are the k training items in D with the smallest d(x,x') values

colour indicates label ${\mathcal Y}$

To classify a data item x:

- set N to the k-nearest neighbours of x in D
 - ▶ the k-nearest neighbours of x are the k training items in D with the smallest d(x,x') values
- count how often each label y' appears in N

colour indicates label ${\mathcal Y}$

To classify a data item x:

- set N to the k-nearest neighbours of x in D
 - ▶ the k-nearest neighbours of x are the k training items in D with the smallest d(x,x') values
- count how often each label y' appears in N
- return the most frequent label y in the k-nearest neighbours N of x as the predicted label for x

•

item space ${\mathcal X}$

colour indicates label ${\mathcal Y}$

Evaluating classifier accuracy

- Any classifier can be viewed as a function f that maps a data item x to a label $\hat{y} = f(x)$
 - we use the hat in \hat{y} to indicate that this is an estimate of y
- Evaluate classifier's performance using *labeled test data* $T = ((x_1, y_1), \dots, (x_n, y_n))$
 - run classifier on each x_i to compute *predicted label* $\hat{y_i} = f(x_i)$
 - ▶ compare the predicted labels $\hat{y_i}$ with the gold labels y_i from the test data by counting the number m of correctly predicted labels

$$m = \sum_{i=1}^{n} \llbracket y_i = \widehat{y}_i \rrbracket$$

where [Condition] is 1 if Condition is true, and 0 if Condition is false

- return the *accuracy* of the classifier a = m/n
- The accuracy is the fraction of the predicted labels that are correct

The *precision* and *recall* of a classifier give a more detailed picture of a classifier's mistakes

Testing on training data over-estimates accuracy!

- What's the accuracy of a 1-nearest neighbour classifier *on the training data?*
 - ▶ assuming every data item is closer to itself than any other data item ...
 - ⇒ perfect accuracy on training data
- But in general you won't get perfect accuracy on data items that aren't in the training data
- Evaluating a classifier on its training data over-estimates its accuracy.
- Since we want to use our classifier to label new data items . . .
- ⇒ It's essential to test on data items that aren't in the training data

Training, development and test data

- Test data should differ from training data in order to accurately predict classifier's accuracy on novel data items
- Often classifiers have adjustable parameters that should be tuned to optimise classifier's accuracy
 - with k-nearest neighbour classifiers, select k that optimises classifier accuracy
- These parameters should be tuned on labeled data different from the training and the test sets
- \Rightarrow Tune on a *development data set* disjoint from the training and test data
 - For supervised classification, divide your labelled training data into separate training, development and test portions

Preparing name gender data in Python

dev = data[500:1000]
train = data[1000:]

random.seed(348) # everyone's random shuffle will be the same
random.shuffle(data)

test = data[:500]

>>> import wk04a >>> len(wk04a.train) 6944 >>> wk04a.train[:10]

[('Guillemette', 'female'), ('Milzie', 'female'), ('Clementina', 'female'), ('Lyssa', 'female'), ('Helise', 'female'), ('Mattee', 'male') ('Jsobol', 'female') ('Mattee', 'male') ('Jsobol', 'female') ('Mattee', 'male') ('Jsobol', 'female') ('Mattee', 'male') ('

Using features to define the distance function

- The *k*-nearest neighbour algorithm works with any distance function . . .
- but how well it works depends on the distance function.
- It's often easy to define distance in terms of *features*
 - ▶ a *feature* is a *function* from data items x to values
 - here we'll work with string-valued features
- Examples for name gender classification:
 - the suffix1 feature is the last letter of the name
 - the suffix2 feature is the last two letters of the name
- Given a set of features and their values, let's define the distance between two names to be the number of differing feature-value pairs for the names
- There are many other reasonable ways to define distance
 - ▶ E.g., perhaps some features should be *weighted* more than others

Example: distance function for name gender classifier

 The features function returns the set of feature-values for a word def features(word): return set([('suffix1', word[-1:]), ('suffix2', word[-2:])])

This produces output such as:

```
>>> features('Christiana')
set([('suffix2', 'na'), ('suffix1', 'a')])
>>> features('Marissa')
set([('suffix2', 'sa'), ('suffix1', 'a')])
```

- The suffix1 feature has the same value for both names but the suffix2 features have different values
 - $\Rightarrow d('Christiana', 'Marissa') = 2$

Processing the data into features

 labeledfeatures maps (name, label) pairs to (feature-value set, label) pairs

```
def labeledfeatures(data):
    return [(features(word), label) for (word, label) in data]
```

• Use this to prepare feature-value versions of train, dev and test

```
testfeatlabels = labeledfeatures(test)
devfeatlabels = labeledfeatures(dev)
trainfeatlabels = labeledfeatures(train)

>>> train[:2]
[('Guillemette', 'female'), ('Milzie', 'female')]
>>> trainfeatlabels[:2]
[(set([('suffix1', 'e'), ('suffix2', 'te')]), 'female'),
    (set([('suffix1', 'e'), ('suffix2', 'ie'))]), 'female')]
```


Calculating the distance between names in Python

- Because features produces *sets* of feature-values, we can easily compute their *symmetric difference*
 - ▶ the *symmetric difference* between two sets are the elements that appear in one *but not in both*

```
>>> features('Marissa') ^ features('Christiana')
set([('suffix2', 'na'), ('suffix2', 'sa')])
>>> len(features('Marissa') ^ features('Christiana'))
2
```

We can use this to compute the distance between two feature-value sets
 def distance(s1, s2):
 return len(s1 ^ s2)

 We can use distance as a "distance measure" for a k-nearest neighbour classifier

```
>>> distance(features('Christiana'), features('Marissa'))
2
>>> distance(features('Christiana'), features('Martin'))
```


Building a k-nearest neighbour classifier in Python

A classifier is a function that maps data items x to labels y

This code constructs and returns a function which classifies data items.

We can run this classifier as follows:

```
>>> import kNN
>>> classifier = kNN.make_classifier(trainfeatlabels, distance,
>>> classifier(features('Neo'))
'male'
>>> classifier(features('Adelie'))
'female'
```


Finding the most frequent value in a sequence

 We count how often each value occurs, and select the one with the highest count

```
import collections

def most_frequent(xs):
    return collections.Counter(xs).most_common(1)[0][0]
```

The collections library has a Counter class that makes this easy

```
>>> import collections
>>> cntr = collections.Counter(['a','b','r','a'])
>>> cntr
Counter({'a': 2, 'r': 1, 'b': 1})
>>> cntr.most_common(1)
[('a', 2)]
>>> cntr.most_common(1)[0]
('a', 2)
>>> cntr.most_common(1)[0]
('a', 2)
>>> cntr.most_common(1)[0][0]
'a'
```


Evaluating classifier accuracy in Python

- Recall: the accuracy of a classifier is the fraction of data items that it labels correctly
 - evaluate classifier on heldout data if you want to estimate its accuracy on novel data

We use this to evaluate a classifier's accuracy as follows:

```
>>> accuracy(classifier, devfeatlabels)
0.788
```


Movie review data in Python

• Python code to access the reviews

```
>>> import nltk
>>> from nltk.corpus import movie_reviews
```

The labels or categories that we want to predict

```
>>> movie_reviews.categories()
['neg', 'pos']
```

The reviews that have each label

```
>>> movie_reviews.fileids('neg')[:2]
['neg/cv000_29416.txt', 'neg/cv001_19502.txt']
>>> movie_reviews.fileids('pos')[:2]
['pos/cv000_29590.txt', 'pos/cv001_18431.txt']
```

The words in a review

```
>>> movie_reviews.words('neg/cv000_29416.txt')
['plot', ':', 'two', 'teen', 'couples', 'go', 'to',]
>>> list(movie_reviews.words('neg/cv000_29416.txt'))[:100]
['plot', ':', 'two', 'teen', 'couples', 'go', 'to', 'a', 'church
```

Example: a simple distance function for movie review classification

- Positive affect words: good, great, nice, liked, enjoyable, happy, best, outstanding, brilliant
- Negative affect words: bad,horrible,awful,hate, hated,terrible,sad,not,never
- Red dots are 'neg' reviews
- Blue dots are 'pos' reviews
- A nearest neighbour classifier using just these features does terribly!

Defining distance in terms of features

- A convenient way to define a distance function is to:
 - ▶ define a vector of *m* feature functions $g = (g_1, ..., g_m)$, where each g_j maps a data item $x \in \mathcal{X}$ to a feature value
 - ▶ use the vector of feature functions to map each *x* to a *vector of feature* values

$$g(x) = (g_1(x), \ldots, g_m(x))$$

- define the distance function in terms of these feature value vectors
- ▶ If the features take numerical values, d(x, x') can be the sum of the squared differences of the features

$$d(x,x') = ||g(x) - g(x')||^{2}$$
$$= \sum_{j=1}^{m} (g_{j}(x) - g_{j}(x'))^{2}$$

Example: words as features in movie review classification

• Find the m=200 most frequent words ${m w}=(w_1,\ldots,w_m)$ in the training data

```
>>> features = most_frequent_words(ml1.train, 200)
>>> features[:10]
['the', 'a', 'and', 'of', 'to', 'is', 'in', 's', 'it', 'that']
>>> features[100:110]
['how', 'people', 'then', 'over', 'me', 'my', 'never', 'bad', 'b
```

- Define $g_j(x) =$ number of times word w_j appears in review x, so g(x) is a vector of length 200
- The most frequent words are not the most information (c.f., Tf.ldf)
 ⇒ might be better to select features somehow

Outline

Introduction to machine learning

Supervised classification using K-nearest neighbour classifiers

A broader view of machine learning

Fundamental limitations on machine learning

Conclusion

k-nearest neighbour algorithms and other classification algorithms

- Kernel-based classifiers use a similarity function between training items and test items in much the way that k-NN does
 - Kernel estimators use a weighted window to place more weight on close items
- Most standard classifiers assume the data is defined in terms of features
- Classifiers such as *logistic regression* and *support vector machines* learn the *relative importance of each feature*
 - lacktriangledown prior feature selection is less important \Rightarrow "shotgun" feature design
 - probability theory is useful for understanding these algorithms
- k-NN is still used today because it can provide very good results with a good distance function
 - specialised data structures and algorithms for finding (approximate) nearest neighbours
- k-NN stores entire training data, which might be expensive
 - linear classifiers only store a weight for each feature, which may require less memory

Discrete versus continuous labels in machine learning

 Machine learning typically involves learning to associate an item x with its label v

If \mathcal{X} is the set of possible items and \mathcal{Y} is the set of possible labels, then we *learn a function* $f: \mathcal{X} \mapsto \mathcal{Y}$, i.e., that maps each $x \in \mathcal{X}$ to a $y = f(x) \in \mathcal{Y}$

- A discrete label set is one where the label set \mathcal{Y} is a finite set
 - ▶ E.g., in a credit-rating application, y = f(x) might be the rating of client x, so the label set might be $\mathcal{Y} = \{\text{CreditWorthy}, \text{NotCreditWorthy}\}$

A **continuous** label set is one where the label set Y is a continuous set Υ (usually a set of real numbers)

- ▶ E.g., in a customer relationship management application where we are predicting the amount we expect to earn from various customers, y = f(x) might be the amount we expect to earn from customer x, so \mathcal{Y} is the set of real numbers
- We focus on discrete label sets here, as they have the most applications in information extraction and natural language processing

Supervised versus unsupervised training data

- Machine learning algorithms usually learn from training data.
- **Supervised training data** contains the labels *y* that we want to predict.
 - ► E.g., in *Part-of-Speech (PoS) tagging*, the training data may be a *corpus* containing words *labelled with their parts-of-speech*

Unsupervised training data does not contain the labels y that we want to predict.

▶ E.g., in *topic modelling* we are given a large collection of documents without any topic labels. Our goal is to group them by topic (i.e., \mathcal{Y} is a set of topics, and our goal is to learn a function f that maps each document x to its topic y = f(x).

There are intermediate possibilities between supervised and unsupervised training data. **Semi-supervised training data** partially identifies the labels y, or identifies the labels on some but not all of the training examples.

► E.g., in *PoS* tagging, we may be given a small corpus of PoS-tagged words, and a much larger corpus of words without PoS tags

Different types of machine learning algorithms

 The kinds of machine learning algorithms used depend on whether the labels are discrete or continuous, and whether the data is supervised or unsupervised

	Discrete labels	Continuous labels
Supervised data	classification	regression
Unsupervised data	clustering	dimensionality reduction

• We'll cover *classification* and *clustering* in this course

Outline

Introduction to machine learning

Supervised classification using K-nearest neighbour classifiers

A broader view of machine learning

Fundamental limitations on machine learning

Conclusion

- There are an infinite number of curves that fit the data
 - even more if we don't require the curves to exactly fit (e.g., if we assume there's noise in our data)
- In general, more data would help us identify the correct curve better

- There are an infinite number of curves that fit the data
 - even more if we don't require the curves to exactly fit (e.g., if we assume there's noise in our data)
- In general, more data would help us identify the correct curve better

- There are an infinite number of curves that fit the data
 - even more if we don't require the curves to exactly fit (e.g., if we assume there's noise in our data)
- In general, more data would help us identify the correct curve better

- There are an infinite number of curves that fit the data
 - even more if we don't require the curves to exactly fit (e.g., if we assume there's noise in our data)
- In general, more data would help us identify the correct curve better

- There are an *infinite number of curves* that fit the data
 - even more if we don't require the curves to exactly fit (e.g., if we assume there's noise in our data)
- In general, more data would help us identify the correct curve better

The "no free lunch theorem"

- The "no free lunch theorem" says there is no single best way to generalise that will be correct in all cases
 - \Rightarrow a machine learning algorithm that does well on some problems will do badly on others
 - ⇒ balancing the trade-off between the *fit to data* and *model complexity* is a central theme in machine learning
- Even so, in practice there are machine learning algorithms that do well on broad classes of problems
- But it's important to understand the problem you are trying to solve as well as possible

Over-fitting and the bias-variance dilemma

- Review the "no free lunch theorem"
 - many different functions are compatible with any finite data
 - need criteria to choose which one to use
- We'll see there are two conflicting criteria in choosing a generalisation
 - Low bias: the range of possible generalisations should be as broad as possible
 - ▶ Low variance: the error in the generalisation should be as low as possible
- There are techniques such as the use of dev-test sets and cross-validation that can sometimes help

Over-fitting the training data

- Over-fitting occurs when an algorithm learns a function that is fitting noise in the data
- Diagnostic of over-fitting: performance on training data is much higher than performance on dev or test data

Simpler and more complex functions

- Linear functions have two parameters (b and c) and define straight lines y = bx + c
- Quadratic functions have three parameters (a, b and c) and define parabolic curves $y = ax^2 + bx + c$
- Every linear function is also a quadratic function, so quadratic functions can describe a wider range of x → y relationships than linear functions can

Simpler and more complex functions

- Linear functions have two parameters (b and c) and define straight lines y = bx + c
- Quadratic functions have three parameters (a, b and c) and define parabolic curves $y = ax^2 + bx + c$
- Every linear function is also a quadratic function, so quadratic functions can describe a wider range of $x \mapsto y$ relationships than linear functions can

Bias-variance dilemma example

- Quadratic functions are more expressive than linear functions
 - ⇒ a quadratic function is likely to come closer to the true function than a linear function
- but quadratic functions have one more parameter than linear function
- with a fixed data set it's not possible to learn 3 parameters as accurately as you can learn two parameters
 - your estimates of the quadratic parameters will be noiser than your estimates of the linear parameters
 - ⇒ learning a quadratic function may produce worse performance

Bias and variance in machine learners

- The bias in a learning algorithm determines
 - the set of functions it fits to data
 - how it chooses a particular functions from that set
- A learner that fits linear functions has a higher bias than a learner that fits quadratic functions
- The **variance** in a learning algorithm is the degree to which noise in the training data affects the function it learns
 - a learner that learns complex functions with a large number of parameters usually has higher variance than a similiar learner that learns simple functions with a small number of parameters
- Ideally, we'd like a learner with low bias and low variance
- But in practice this isn't possible; lowering the bias raises the variance, and vice versa

Trading off bias and variance

- **Over-fitting:** Learners with low bias (and therefore high variance) can fit random fluctuations (noise) in the training data
- This often shows up as a big difference between the accuracies on training data and on testing data
- Many machine-learning algorithms have a parameter that trades off bias and variance
 - ▶ in the k-nearest neighbour algorithm, the number of neighbours k used to label controls the amount of generalisation
 - we can find the optimal value for such a parameter using a held-out dev set or cross-validation on the training data

The Bayes-optimal classifier

- If the data is inherently non-deterministic (noisy) no classifier will ever achieve perfect accuracy
 - if we know the (true) probability of each label for the test items, the Bayes-optimal classifier picks the most probable label
- If we have to learn the label probabilities from data, our accuracy will in general be worse than the Bayes-optimal classifier
- ullet Example: a biased coin, where probability of heads eq probability of tails
 - if we know the true probabilities of heads and tails, always bet on most probable outcome
 - but if we have to estimate these probabilities by observing a finite sample of throws, we may be unlucky and e.g., more heads may appear in our sample, even though tails is more probable (i.e., variance)

Bias and variance in k-nearest neighbour classifiers

- Two sources of error in classifiers
 - bias: restrictions on functions that model learns
 - ▶ variance: limited data ⇒ model noise
- Different algorithms implement different trade-offs between bias and variance
- In a k-nearest neighbour classifier:
 - smaller values of k decrease bias and increase variance
 - ▶ larger values of *k* decrease variance and increase bias

Outline

Introduction to machine learning

Supervised classification using K-nearest neighbour classifiers

A broader view of machine learning

Fundamental limitations on machine learning

Conclusion

Dimensions of machine learning

- Supervised versus unsupervised machine learning: are we given examples of the output we have to produce?
 - unsupervised machine learning is a kind of clustering
- Discrete versus continuous outputs:
 - classification: supervised learning with discrete outputs
 - regression: supervised learning with continuous outputs
 - clustering: unsupervised learning with discrete outputs
 - dimensionality reduction: unsupervised learning with continuous outputs

Fundamental limitations on machine learning

- "No Free Lunch" Theorem: many different hypotheses (functions) are compatible with any data set
- Bias-Variance dilemma: it's impossible to simultaneously minimise both bias and variance
 - ▶ the *bias* in a learner restricts the class of hypotheses it can form
 - ▶ the *variance* in a learner is the "noise" in its estimates
- This often manifests itself in over-learning
 - ⇒ important to separate *test data* from *training data*

K-nearest neighbour classifier

- K-nearest neighbour classifier: Label a test data item with the most frequent label of its k nearest neighbours in the training data
- The number of neighbours k controls the bias-variance trade-off
- The performance of a *k*-nearest neighbour classifier depends on how the *distance function* is defined
 - distance can be defined using features extracted from the data items

