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Hypothesis tests in R

• This material is based on Dalgard, P. 2008 Introductory statistics with R,
which you should download (for free) from the MQ library

• The goal of this presentation is to make you aware of the kinds of statistical
tests available

• If you use a statistical test in a publication be sure to read a reliable textbook
to make sure you are using it correctly
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Hypothesis testing: motivating examples

• I have a coin, which I’m not sure if is “fair”. So I throw it 10 times, and it
comes up tails 2 times. Is this evidence that the coin is biased?

• I measure the time it takes for a group of girls to push a button in an
experiment, and then I do this for a group of boys. My data show that on
average the girls are 10msec faster than the boys. Can I conclude that girls do
this task faster than boys, and if so, by how much?

• I’ve modified my syntactic parser, but I’m not sure if my modifications have
really made it more accurate. So I run both the old and the new parsers on
the same set of “test sentences” and measure the accuracy of the parses they
produce for each sentence. On average my new parser is 2% more accurate
than the old one. Is it really better than the old parser, and by how much?
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Statistics and Probability

• A statistic is a function of the data (usually chosen to summarise it)
É example: the minumum, maximum and average are three different statistics

• Probability theory is the mathematics of random phenomena

• Hypothesis tests are statistics that indicate whether a hypothesis is consistent
with the data (e.g., “Is this coin fair?”)

• Confidence intervals are statistics that estimate a range of values that
contains the true value of a parameter (e.g., “What are the lowest and highest
values for the probability of heads?”)

• There’s a general move away from hypothesis tests to confidence intervals
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Frequentists and Bayesian approaches

• Frequentist: the probability of an event is the frequency with which it appears
in an infinite sequence of replications

• Bayesian: the probability of an event measures the degree of certainty or belief
in that event

• Frequentist and Bayesian approaches have different notions of hypothesis
testing and confidence intervals

• Frequentist approaches are more restrictive and unnatural, but
computationally simple

• Bayesian approaches can easily integrate more diverse data, but
computationally intensive

• Most “pre-packaged” software implements frequentist approaches, so that’s
what we’ll cover here

6/103



Outline

Introduction

Hypothesis tests and confidence intervals

Tests for tabular data

One and two sample tests

Linear regression

Logistic regression

Mixed effects models

Conclusions

7/103



Is this coin fair?

• Hypothesis H1: this coin is not fair, i.e., pheads 6= 0:5

• Null hypothesis H0: this coin is fair, i.e., pheads = 0:5

• Data: out of 10 flips, 2 are tails
• Events as or more extreme than the data:

É 0 tails, 1 tail, 2 tails, 0 heads, 1 head, 2 heads

• Probability of these extreme events under null hypothesis: p = 0:109
É it’s conventional to reject the null hypothesis H0 when p is less than 0:05, 0:01
or 0:001
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Hypothesis tests and the null hypothesis

• The Neymann/Pearson/Wald approach to hypothesis testing:
É given a hypothesis to be tested H1, formulate an alternative null hypothesis H0
É pick a test statistic T and a significance level �
É calculate the value T (D) of the test statistic on the data D
É calculate the probability p of data sets with test statistics as or more extreme
than T (D)

É if p < � then accept H1, otherwise reject H1
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Class discussion (1)

• Suppose our hypothesis H1 were: this coin is biased toward heads, i.e.,
pheads > 0:5

• What should the null hypothesis H0 be for this H1?

• Suppose the data is as before: out of 10 flips, 2 are tails

• What are the events as or more extreme than the data?

• What is the probability of these extreme events under the null hypothesis?

• (This is an example of a one-sided test)
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Type 1 and type 2 errors

H0 is true H1 is true
coin really is fair coin really is biased

Accept H0 Type 2 error
report coin is fair false negative

Accept H1 Type 1 error
report coin is biased false positive

• In order to bound the probability of Type 2 errors below a small value �, we
may have to accept a high probability of making a Type 1 error

11/103



Class discussion (2)

• What do type 1 and type 2 errors correspond to in the following contexts?
É a medical test for whether the patient has a specific disease
É a medical test for whether the patient is cured of a disease
É a test for whether a computer program is functioning correctly
É a test for whether a child knows a certain linguistic construction

• The standard approach to hypothesis testing bounds the probability of type 2
errors to a small value �, but doesn’t bound the probability of type 1 errors. Is
this reasonable? (Consider e.g., the cases above).
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What could pheads be?

• Data: out of 10 throws, 8 are heads

• The maximum likelihood estimate bpheads = 0:8, but 8/10 heads is not that
unlikely if pheads = 0:7

• A 95% confidence interval is a statistic such were we to flip coins with various
values of pheads 10 times, 95% of the time pheads would be within the
confidence interval
É A 95% confidence interval pheads for this data is [0:444; 0:975]

• Confidence intervals can be derived from hypothesis tests
É 0:5 is in the 95% confidence interval for pheads
() H0 : pheads = 0:5 is not rejected at the 0.05 level
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Warning about implicit stopping rules

• If the significance level � = 0:05, then the null hypothesis will be rejected
about one in every twenty experiments, even if the null hypothesis is true

) If you just keep redoing your experiment, eventually the results will be
significant
É E.g., if we keep flipping a fair coin, eventually we’ll see 10 heads in a row

• Doing this deliberately is scientific fraud, but it’s easy to do this accidentally:
É e.g., keep adjusting your program/experiment until the results are good
É this is called a stopping rule, and significance levels are affected by the stopping
rule

• This can be minimised by first selecting the experimental settings on
development data, and then performing a single experiment on the test data
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Class discussion (3)

• Can you come up with other examples where one might “accidentally” produce
erroneous significance results?

• What could you do to guard against this?
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Computing hypothesis tests and confidence intervals

• For simple cases (like the biased coin example) it is possible to directly
compute the probability of the data under the null hypothesis

• Standard techniques use normal approximations which are reasonably accurate
when there are more than (say) 5 data points

• It’s often possible to compute significance levels by sampling from the null
hypothesis
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The central limit theorem
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• The central limit theorem says that the average of a set of independent and
identically-distributed samples approaches a normal distribution (a.k.a. a
Gaussian distribution) as the number of samples grows
É the normal distribution is a fairly good approximation when there are 5 or more
samples
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Review: libraries and data in R

• We’ll the ggplot2 plotting package, and the mpg dataset that comes with it:

install.packages("ggplot2")
library(ggplot2)

xtable(summary(mpg))

manufacturer model displ year cyl trans drv cty hwy fl class
1 dodge :37 caravan 2wd : 11 Min. :1.60 Min. :1999 Min. :4.00 auto(l4) :83 4:103 Min. : 9.0 Min. :12.0 c: 1 2seater : 5
2 toyota :34 ram 1500 pickup 4wd: 10 1st Qu.:2.40 1st Qu.:1999 1st Qu.:4.00 manual(m5):58 f:106 1st Qu.:14.0 1st Qu.:18.0 d: 5 compact :47
3 volkswagen:27 civic : 9 Median :3.30 Median :2004 Median :6.00 auto(l5) :39 r: 25 Median :17.0 Median :24.0 e: 8 midsize :41
4 ford :25 dakota pickup 4wd : 9 Mean :3.47 Mean :2004 Mean :5.89 manual(m6):19 Mean :16.9 Mean :23.4 p: 52 minivan :11
5 chevrolet :19 jetta : 9 3rd Qu.:4.60 3rd Qu.:2008 3rd Qu.:8.00 auto(s6) :16 3rd Qu.:19.0 3rd Qu.:27.0 r:168 pickup :33
6 audi :18 mustang : 9 Max. :7.00 Max. :2008 Max. :8.00 auto(l6) : 6 Max. :35.0 Max. :44.0 subcompact:35
7 (Other) :74 (Other) :177 (Other) :13 suv :62
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Review: Data frames in R
• Data in R is generally represented in a data frame, which is a list of
equal-length columns.

• Numerical or boolean columns are vectors
• Categorical data is represented by a factor, which consists of:

É a vector of levels or categories
É an integer vector of values, which indexes the levels vector

levels(mpg$manufacturer)

## [1] "audi" "chevrolet" "dodge" "ford"
## [5] "honda" "hyundai" "jeep" "land rover"
## [9] "lincoln" "mercury" "nissan" "pontiac"
## [13] "subaru" "toyota" "volkswagen"

head(mpg$manufacturer)

## [1] audi audi audi audi audi audi
## 15 Levels: audi chevrolet dodge ford honda hyundai ... volkswagen

as.integer(head(mpg$manufacturer))

## [1] 1 1 1 1 1 1
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Binomial test for a single proportion
• The binomial test tests whether binary samples were generated from a source
with a given probability

• Example: Did a fair coin produce 8 heads in 10 flips?

binom.test(8, 10, p=0.5, conf.level=0.95)

##
## Exact binomial test
##
## data: 8 and 10
## number of successes = 8, number of trials = 10,
## p-value = 0.1094
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.4439 0.9748
## sample estimates:
## probability of success
## 0.8

See Dalgaard (2008) section 8.1
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Computational aside: R objects
• R functions often produce class objects as output. Their print method
produces the printed output, but they have other useful attributes.

t = binom.test(8, 10, p=0.5, conf.level=0.95)
t$p.value

## [1] 0.1094

t$estimate

## probability of success
## 0.8

summary(t)

## Length Class Mode
## statistic 1 -none- numeric
## parameter 1 -none- numeric
## p.value 1 -none- numeric
## conf.int 2 -none- numeric
## estimate 1 -none- numeric
## null.value 1 -none- numeric
## alternative 1 -none- character
## method 1 -none- character
## data.name 1 -none- character 22/103



How does p-value vary with data size?
• Run binom.test on different data sizes and effect sizes

df = expand.grid(true.p = c(0.501, 0.505, 0.51, 0.52, 0.55, 0.6),
n = floor(seq(10, 1e+05, length.out = 100)))

df$x = floor(df$true.p * df$n)
binom.test.p.value = Vectorize(function(x, n) binom.test(x, n)$p.value)
df$p.value = binom.test.p.value(df$x, df$n)
df$True.p = as.factor(df$true.p)
qplot(n, p.value, data = subset(df, p.value > 1e-10), log = "y", geom = c("line"),

colour = True.p)
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Fisher’s exact test for comparing two proportions
• Fisher’s exact test tests whether two sequences of binary samples come from
the same distribution
É Fisher’s exact test is computationally very demanding, and when the numbers
are large you should use prop.test or chisq.test

• Example: Did the same biased coin generate a sequence of 8 heads and 2
tails, and another sequence of 4 heads and 7 tails?

counts = matrix(c(8,2,4,7), 2)
fisher.test(counts)

##
## Fisher’s Exact Test for Count Data
##
## data: counts
## p-value = 0.0805
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.7307 91.0288
## sample estimates:
## odds ratio
## 6.303

See Dalgaard (2008) section 8.2
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Tests for interaction in r � c tables

d = table(mpg$class, mpg$drv)
xtable(d)

4 f r
2seater 0 0 5

compact 12 35 0
midsize 3 38 0
minivan 0 11 0
pickup 33 0 0

subcompact 4 22 9
suv 51 0 11
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Chi-squared test for interaction

• The Chi-squared test can be used to determine if there’s an interaction in
r � c tables
É Fisher’s exact test can also be used on r � c tables, but it is computationally
very demanding (use if counts are small)

chisq.test(table(mpg$class, mpg$drv))

## Warning: Chi-squared approximation may be incorrect

##
## Pearson’s Chi-squared test
##
## data: table(mpg$class, mpg$drv)
## X-squared = 221.6, df = 12, p-value < 2.2e-16

See Dalgaard (2008) section 8.4
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Which cells are most “surprising”?
• The Chi-squared test predicts the values each cell should have if there is no
interaction, and compares the actual cell values to those predictions

• We can display the relative difference between the predicted and actual values
as follows

results = chisq.test(table(mpg$class, mpg$drv))
observed = results$observed
expected = results$expected
squared.difference = (observed-expected)^2/expected
xtable(squared.difference)

4 f r
2seater 2.20 2.26 37.33

compact 3.65 8.83 5.02
midsize 12.55 20.32 4.38
minivan 4.84 7.27 1.18
pickup 23.50 14.95 3.53

subcompact 8.44 2.38 7.40
suv 20.60 28.09 2.89
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Computational exercise (1)
• Read the Wikipedia entry about Fisher’s “Lady tasting tea” experiment. Apparently the lady

(Muriel Bristol) correctly identified which cups of tea had milk poured in them first. Run
fisher.test, prop.test and chi.sq on the “lady tasting tea” data, and compare the results.
Do your results agree with the significance level in the Wikipedia entry? If not, why not? If
you run help(fisher.test) you’ll discover additional arguments to fisher.test that may
enable you to replicate the Wikipedia numbers.

• With the mpg data from the ggplot2 library, determine if the proportion of car models with
each kind of transmission has changed post-2000. Use the fisher.test, prop.test and
chisq.test on your data. (Don’t worry if you can’t run one of the tests). You may find the
following code helpful:

d = data.frame(mpg) # copy mpg data frame into a new data frame d
d$post.2000 = (mpg$year > 2000)

• Use qplot from the ggplot2 library to produce a bar graph showing the distribution of
transmission types pre- and post-2000. Use colour to indicate transmission type. (Hint: see
previous slides).

• Now repeat this experiment, but don’t distinguish the different kinds of manual and
automatic transmission. You may find the following code helpful:

d$manual = (d$trans %in% c("manual(m5)", "manual(m6)"))
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Parametric and non-parametric tests

• Parametric tests assume that the data are generated from a certain family of
probability distributions (usually normal distributions)

• Non-parametric tests don’t assume that the data come from any specific
family of probability distributions

• Parametric tests are typically easier to compute and more powerful when their
assumptions are met

• When in doubt, it’s probably safer to use non-parametric tests
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One-sample t-test
• A one-sample t-test tests whether a sequence of real-valued samples come
from a distribution with a mean (population average) equal to some fixed
value �0
É the t-test is a parametric test: it assumes the data have a normal distribution

• Example: Is the mean highway miles-per-gallon 25?

t.test(mpg$hwy, mu=25)

##
## One Sample t-test
##
## data: mpg$hwy
## t = -4.007, df = 233, p-value = 8.274e-05
## alternative hypothesis: true mean is not equal to 25
## 95 percent confidence interval:
## 22.67 24.21
## sample estimates:
## mean of x
## 23.44

See Dalgaard (2008) section 5.1 31/103



Is hwy normally distributed?

qplot(hwy, data=mpg, geom="density", fill=I("blue"))
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See Dalgaard (2008) section 4.2.3 for ways of determining non-normality
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Wilcoxon signed rank test

• A Wilcoxon signed rank test tests whether a sequence of real-valued samples
come from a distribution with a median equal to �0
É it performs a binomial test on whether the observations are greater than �0

• It is more robust but less powerful than the t-test

wilcox.test(mpg$hwy, mu=25)

##
## Wilcoxon signed rank test with continuity correction
##
## data: mpg$hwy
## V = 8224, p-value = 4.535e-05
## alternative hypothesis: true location is not equal to 25

See Dalgaard (2008) section 5.2
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Computational exercise (2)

• Run the t.test and the wilcox.test on the mpg$hwy data, but with the null
hypothesis that � = 24. Is this result what you’d expect? Can you explain
what’s happened?

• The wilcox.test can compute a non-parametric confidence interval for the
(pseudo)median. Use R’s help facility to find out how to get this confidence
interval, and then compare the confidence intervals from t.test and
wilcox.test on the mpg$hwy data.

• Now run the t.test and the wilcox.test on the mpg$cty data, with the
null hypothesis that � = 16. Is this result what you’d expect? You might need
to plot mpg$hwy and mpg$cty to understand why they behave differently (see
previous slides for how to make density plots)
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Two-sample t-test
• A two-sample t-test tests whether two sequences of real-valued samples come
from distributions with different means.
É this is a parametric test, which assumes that both sequences are normally
distributed

• Example: Is the highway miles-per-gallon better in 2008 than in 1999?

t.test(hwy~year, data=mpg)

##
## Welch Two Sample t-test
##
## data: hwy by year
## t = -0.0329, df = 231.6, p-value = 0.9738
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.563 1.512
## sample estimates:
## mean in group 1999 mean in group 2008
## 23.43 23.45

See Dalgaard (2008) section 5.3
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Is the normal approximation justified?

d = data.frame(hwy=mpg$hwy, year=factor(mpg$year))
qplot(hwy, data=d, geom="density", fill=year, colour=year, alpha=I(0.4))
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Two-sample Wilcoxon test

• A two-sample Wilcoxon test tests whether two sequences of real-valued
samples come from distributions with different medians
É it rank orders the values, and tests the distribution of ranks
) tied values can be problematic for this test

• It is more robust but less powerful than the two-sample t-test

wilcox.test(hwy~year, data=mpg)

##
## Wilcoxon rank sum test with continuity correction
##
## data: hwy by year
## W = 6526, p-value = 0.5377
## alternative hypothesis: true location shift is not equal to 0

See Dalgaard (2008) section 5.5
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Computational exercise (3)

• Do SUVs (what we call 4x4s) have better or worse fuel economy than
minivans? From the mpg dataset, prepare a subset of the data that only
contains class==minivan and class==suv. (Hint: use the subset function
described in the previous slides). Then perform t-tests and two-sample
Wilcoxon tests on both the city and highway miles-per-gallon values.
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Paired t-test
• A paired t-test is used when there are two measurements on each item. The
statistics are basically one-sample tests of the difference between the two
measurements.
É paired tests are more powerful than unpaired tests
É this is a parametric test, which assumes that the differences are normally
distributed

• Example: Is the highway miles-per-gallon better than the city miles-per-gallon?

t.test(mpg$hwy, mpg$cty, paired=TRUE)

##
## Paired t-test
##
## data: mpg$hwy and mpg$cty
## t = 44.49, df = 233, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 6.290 6.873
## sample estimates:
## mean of the differences
## 6.581

See Dalgaard (2008) section 5.6
39/103



The matched-pairs Wilcoxon test

• The matched-pairs Wilcoxon test is a non-parametric version of the paired
t-test

wilcox.test(mpg$hwy, mpg$cty, paired=TRUE)

##
## Wilcoxon signed rank test with continuity correction
##
## data: mpg$hwy and mpg$cty
## V = 27495, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

See Dalgaard (2008) section 5.7
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Computational exercise (4)

• What happens if you run the unpaired two-sample versions of the t-test and
the Wilcoxon test on the mpg$hwy and mpg$cty data? How do the results
compare with the results when you analyse the data as paired (which, of
course, it is)? Pay attention to the significance levels and the confidence
intervals. Can you explain your results?

• The diamonds data set, distributed with the ggplot2 library, contains
measurements on 54,000 diamonds (run help(diamonds) to find out more
about it). Each diamond has a depth and table measurement. What is the
confidence interval for the difference in means and the difference in
(pseudo)medians? Can you explain why these are different? (Hint: plot the
density of the the differences in depth and table).
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Class discussion (4)

• What would be the appropriate tests in the following situations:
É We want to know if age affects a child’s hearing acuity, so we measure the
hearing acuity for a group of one year olds, wait a year and measure the same
children again when they are two.

É We want to do the same thing as above, but we can’t wait a year, so we
measure the hearing acuity of a group of one year olds, and another group of
two year olds.

É I’d like to know if modifications to a syntactic parser have improved its
performance. How should I do this, and what tests should I perform?

É We have developed two different experimental treatments for Ebola. How could
we tell which works better, and what tests should we use?

É Can you think of any situations where you’d use a binomial test for a single
proportion? (Perhaps indirectly?)

• What are the advantages and disadvantages of experimental designs that use
paired tests?
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What is linear regression?

• Regression estimates the relationship between two or more random variables

• In simple linear regression there is a response or predicted variable Y and a
explanatory or predictor variable X , which we assume are related by:

Y � �+ �X + N(0; �2)

where N(0; �2) is a normal distribution with zero mean and standard deviation
�.

• Given data D = ((x1; y1); : : : ; (xn; yn)) the goal of simple linear regression is
to find the regression coefficient � and the intercept �
É � is the slope of the line relating X and Y
É � is the expected value of Y when X = 0
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Regression on highway and city mpg

lm(hwy~cty, data=mpg)

##
## Call:
## lm(formula = hwy ~ cty, data = mpg)
##
## Coefficients:
## (Intercept) cty
## 0.892 1.337

• This says:

Hwy � 1:337Cty + 0:892+ N(0; �2)

See Dalgaard (2008) section 6.1
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Understanding a model formula
• “�” means “distributed as” or “distributed according to”
• So a formula like

Hwy � 1:337Cty + 0:892+ N(0; �2)

can be read as: to generate a sample value for Hwy, sum the following values:
É 1:337 � Cty
É 0:892
É a sample from N(0; �2) (a normal distribution with variance �2)

df = expand.grid(p=seq(-4, 4, length.out=100))
df$normal.density = dnorm(df$p, mean=0, sd=1)
qplot(p, normal.density, data=df, geom="line")
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Information about a regression
m = lm(hwy~cty, data=mpg)
summary(m)

##
## Call:
## lm(formula = hwy ~ cty, data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.341 -1.279 0.021 1.034 4.046
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.892 0.469 1.9 0.058 .
## cty 1.337 0.027 49.6 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1.75 on 232 degrees of freedom
## Multiple R-squared: 0.914,Adjusted R-squared: 0.913
## F-statistic: 2.46e+03 on 1 and 232 DF, p-value: <2e-16

See Dalgaard (2008) section 6.1
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Plotting a simple linear regression
• By default, ggplot plots a 95% confidence interval of the mean value of the
prediction (which is not the standard deviation of the data)

• See stat_smooth documentation for more informationm

ggplot(mpg, aes(x = cty, y = hwy)) + geom_jitter() +
stat_smooth(method = "lm")
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Using predict to predict values from a model
• What highway mpg would a car with 20 city mpg get?

m = lm(hwy~cty, data=mpg)
predict(m, newdata=data.frame(cty=c(20)))

## 1
## 27.64

predict(m, newdata=data.frame(cty=c(20)), se.fit=TRUE)

## $fit
## 1
## 27.64
##
## $se.fit
## [1] 0.1425
##
## $df
## [1] 232
##
## $residual.scale
## [1] 1.752
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Computational exercise (5)

• Run this regression the “other way around”, i.e., where hwy is the predictor
variable and cty is the predicted variable, and compare the results with the
regression in these notes. Can you explain the relationship between the
regression coefficients from this regression, and the regression where cty is
the predictor variable and hwy is the predicted variable?

• Use predict to predict the city mpg for a car with 30 highway mpg. What is
the standard error of this prediction?
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Multiple linear regression

• Example: What’s the relationship between engine displacement, number of
cylinders and highway mpg?

lm(hwy~displ+cyl, data=mpg)

##
## Call:
## lm(formula = hwy ~ displ + cyl, data = mpg)
##
## Coefficients:
## (Intercept) displ cyl
## 38.22 -1.96 -1.35

Hwy � 38:22� 1:96Displ� 1:35Cyl+ N(0; �2)
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Model formulae in R

• General form of a model formula:

Response variable � combination of explanatory variables

• The “combination of explanatory variables” includes the following:

symbol example meaning

+ +x include variable x
� �x exclude variable x
: x : y interaction between x and y
� x � y same as x + y + x : y
1 �1 exclude the intercept
: : include all variables in data
f () log(x) include log(x)
I () I (x � x) include x2 as variable
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Class discussion (5)
• In a model formula, -1 means “remove the intercept term”. When and why
might you want to do this?

lm(hwy~displ, data=mpg)

##
## Call:
## lm(formula = hwy ~ displ, data = mpg)
##
## Coefficients:
## (Intercept) displ
## 35.70 -3.53

lm(hwy~displ-1, data=mpg)

##
## Call:
## lm(formula = hwy ~ displ - 1, data = mpg)
##
## Coefficients:
## displ
## 5.51
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Interaction terms in multiple regression

• Example: What’s the relationship between engine displacement, number of
cylinders and highway mpg?

lm(hwy~displ*cyl, data=mpg)

##
## Call:
## lm(formula = hwy ~ displ * cyl, data = mpg)
##
## Coefficients:
## (Intercept) displ cyl displ:cyl
## 52.193 -7.487 -3.340 0.756

Hwy � 52:193� 7:487Displ� 3:340Cyl+ 0:756CylDispl+ N(0; �2)
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Significance of interaction terms
• Example: What’s the relationship between engine displacement, number of
cylinders and highway mpg?

summary(lm(hwy~displ*cyl, data=mpg))

##
## Call:
## lm(formula = hwy ~ displ * cyl, data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.780 -2.254 -0.541 2.144 13.649
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 52.193 3.134 16.66 < 2e-16 ***
## displ -7.487 1.275 -5.87 1.5e-08 ***
## cyl -3.340 0.580 -5.75 2.8e-08 ***
## displ:cyl 0.756 0.161 4.71 4.3e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3.6 on 230 degrees of freedom
## Multiple R-squared: 0.64,Adjusted R-squared: 0.635
## F-statistic: 136 on 3 and 230 DF, p-value: <2e-16 55/103



Computational exercise (6)

• What is the difference between the models hwy ~ displ+cyl+cty and
hwy ~ displ*cyl*cty. Fit both models and check that your understanding is
correct.

• Use summary to determine which of the predictors in each of the models has a
parameter significantly different to zero. Is cty a “significant predictor”?
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Using linear regression to find non-linear relationships
• The predictor variables can be non-linear functions of the data

m = lm(hwy ~ cty + I(cty*cty), data=mpg)
summary(m)

##
## Call:
## lm(formula = hwy ~ cty + I(cty * cty), data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.289 -1.117 -0.053 0.918 3.918
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.05610 1.25893 -3.22 0.0015 **
## cty 1.90574 0.13740 13.87 < 2e-16 ***
## I(cty * cty) -0.01533 0.00364 -4.21 3.6e-05 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1.69 on 231 degrees of freedom
## Multiple R-squared: 0.92,Adjusted R-squared: 0.919
## F-statistic: 1.33e+03 on 2 and 231 DF, p-value: <2e-16
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Plotting a non-linear relationship
m = lm(hwy ~ cty + I(cty * cty), data = mpg)
d = expand.grid(cty = seq(0, 40, length.out = 100))
preds = predict(m, newdata = d, type = "response", se = TRUE)
d$y = preds$fit
d$ymin = preds$fit - 2 * preds$se.fit
d$ymax = preds$fit + 2 * preds$se.fit
ggplot(mpg, aes(x = cty, y = hwy)) + geom_jitter() + geom_ribbon(data = d,

aes(y = y, ymin = ymin, ymax = ymax), alpha = 0.2) + geom_line(data = d,
aes(y = y), colour = "blue")
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Computational exercise (7)

• This model is unbelievable, since it predicts that a vehicle could have negative
highway mpg while having positive city miles per gallon
É how can you force the city and highway mpg to be zero at the same time?
(Hint: it involves a simple change to the model formula).

É rerun the calculation above, but with your new model
É what other changes does this make to the model’s preductions?
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Nonlinear curve fitting and “smoothing”

qplot(cty, hwy, data=mpg, geom=c("jitter","smooth"))

## geom_smooth: method="auto" and size of largest group is <1000,
so using loess. Use ’method = x’ to change the smoothing method.
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Discrete predictors
• Example: What’s the relationship between drive type and highway mpg?

summary(mpg$drv)

## 4 f r
## 103 106 25

lm(hwy~drv, data=mpg)

##
## Call:
## lm(formula = hwy ~ drv, data = mpg)
##
## Coefficients:
## (Intercept) drvf drvr
## 19.17 8.99 1.83

Hwy � 19:17+ 8:99 [[Drv=f]] + 1:83 [[Drv=r]] + N(0; �2); where:

[[Drv=r]] = 1 if Drv=r and 0 if Drv 6=r
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Significance of discrete predictors
• Example: Do the different drive types affect highway mpg?

summary(lm(hwy~drv, data=mpg))

##
## Call:
## lm(formula = hwy ~ drv, data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.16 -2.17 -1.00 1.96 15.84
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.175 0.404 47.5 <2e-16 ***
## drvf 8.986 0.567 15.8 <2e-16 ***
## drvr 1.825 0.913 2.0 0.047 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 4.1 on 231 degrees of freedom
## Multiple R-squared: 0.531,Adjusted R-squared: 0.527
## F-statistic: 131 on 2 and 231 DF, p-value: <2e-16
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Reordering levels to obtain desired predictor comparisons
• Example: Which drive types are different to r in terms of highway mpg?

mpg$new.drv = relevel(mpg$drv, 3)
summary(mpg$new.drv)

## r 4 f
## 25 103 106

summary(lm(hwy~new.drv, data=mpg))

##
## Call:
## lm(formula = hwy ~ new.drv, data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.16 -2.17 -1.00 1.96 15.84
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.000 0.819 25.63 < 2e-16 ***
## new.drv4 -1.825 0.913 -2.00 0.047 *
## new.drvf 7.160 0.911 7.86 1.4e-13 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 4.1 on 231 degrees of freedom
## Multiple R-squared: 0.531,Adjusted R-squared: 0.527
## F-statistic: 131 on 2 and 231 DF, p-value: <2e-16
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Computational exercise (8)

• How does highway mpg vary depending on manufacturer?

• The manufacturers in the mpg data are ordered alphabetically, so audi comes
first. Arguably volkswagen is a more mainstream manufacturer. Reorder the
levels so volkswagen is the baseline manufacturer. Do any manufacturers
have a significantly better highway mpg than volkswagen?
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Combining categorical predictors (1)
• Example: What is the relationship between transmission, drive type and
highway mpg?

summary(lm(hwy~trans+drv, data=mpg))

##
## Call:
## lm(formula = hwy ~ trans + drv, data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.493 -2.493 -0.586 2.240 14.507
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.038 1.826 10.43 <2e-16 ***
## transauto(l3) -0.800 3.247 -0.25 0.806
## transauto(l4) -1.307 1.812 -0.72 0.471
## transauto(l5) -0.233 1.895 -0.12 0.902
## transauto(l6) -2.712 2.383 -1.14 0.256
## transauto(s4) 3.708 2.859 1.30 0.196
## transauto(s5) 0.454 2.840 0.16 0.873
## transauto(s6) 1.627 2.007 0.81 0.418
## transmanual(m5) 2.114 1.823 1.16 0.248
## transmanual(m6) 1.007 1.977 0.51 0.611
## drvf 8.762 0.567 15.45 <2e-16 ***
## drvr 2.260 0.889 2.54 0.012 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3.88 on 222 degrees of freedom
## Multiple R-squared: 0.595,Adjusted R-squared: 0.575
## F-statistic: 29.7 on 11 and 222 DF, p-value: <2e-16
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Combining categorical predictors (2)
• Example: What is the relationship between transmission, drive type and
highway mpg?

summary(lm(hwy~trans*drv, data=mpg))

##
## Call:
## lm(formula = hwy ~ trans * drv, data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.676 -2.219 -0.676 1.644 14.324
##
## Coefficients: (6 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.193 2.626 6.93 5.2e-11
## transauto(l3) -0.800 3.212 -0.25 0.804
## transauto(l4) -0.222 2.708 -0.08 0.935
## transauto(l5) -0.227 2.721 -0.08 0.934
## transauto(l6) 0.807 3.777 0.21 0.831
## transauto(s4) 7.807 3.777 2.07 0.040
## transauto(s5) -0.193 4.652 -0.04 0.967
## transauto(s6) 3.807 3.001 1.27 0.206
## transmanual(m5) 3.093 2.757 1.12 0.263
## transmanual(m6) 0.950 2.189 0.43 0.665
## drvf 9.607 1.987 4.83 2.6e-06
## drvr 4.857 2.407 2.02 0.045
## transauto(l3):drvf NA NA NA NA
## transauto(l4):drvf -0.902 2.187 -0.41 0.680
## transauto(l5):drvf 2.552 2.510 1.02 0.310
## transauto(l6):drvf -5.607 4.323 -1.30 0.196
## transauto(s4):drvf -10.607 5.105 -2.08 0.039
## transauto(s5):drvf 1.393 5.105 0.27 0.785
## transauto(s6):drvf -3.607 2.810 -1.28 0.201
## transmanual(m5):drvf -1.166 2.258 -0.52 0.606
## transmanual(m6):drvf NA NA NA NA
## transauto(l3):drvr NA NA NA NA
## transauto(l4):drvr -4.078 2.730 -1.49 0.137
## transauto(l5):drvr 0.177 3.697 0.05 0.962
## transauto(l6):drvr -5.857 4.531 -1.29 0.198
## transauto(s4):drvr NA NA NA NA
## transauto(s5):drvr NA NA NA NA
## transauto(s6):drvr -1.857 4.758 -0.39 0.697
## transmanual(m5):drvr -1.893 3.190 -0.59 0.554
## transmanual(m6):drvr NA NA NA NA
##
## (Intercept) ***
## transauto(l3)
## transauto(l4)
## transauto(l5)
## transauto(l6)
## transauto(s4) *
## transauto(s5)
## transauto(s6)
## transmanual(m5)
## transmanual(m6)
## drvf ***
## drvr *
## transauto(l3):drvf
## transauto(l4):drvf
## transauto(l5):drvf
## transauto(l6):drvf
## transauto(s4):drvf *
## transauto(s5):drvf
## transauto(s6):drvf
## transmanual(m5):drvf
## transmanual(m6):drvf
## transauto(l3):drvr
## transauto(l4):drvr
## transauto(l5):drvr
## transauto(l6):drvr
## transauto(s4):drvr
## transauto(s5):drvr
## transauto(s6):drvr
## transmanual(m5):drvr
## transmanual(m6):drvr
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3.84 on 210 degrees of freedom
## Multiple R-squared: 0.625,Adjusted R-squared: 0.584
## F-statistic: 15.2 on 23 and 210 DF, p-value: <2e-16
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Using anova to compare nested models

• Model m0 is a submodel “nested” within model m1, so we can compare the fit
of these two models with anova

m0 = lm(hwy~trans+drv, data=mpg)
m1 = lm(hwy~trans*drv, data=mpg)
anova(m0, m1)

## Analysis of Variance Table
##
## Model 1: hwy ~ trans + drv
## Model 2: hwy ~ trans * drv
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 222 3343
## 2 210 3096 12 247 1.4 0.17

See Dalgaard (2008) section 12.6

67/103



Computational exercise (9)

• We can use anova to compare nested models in general, but it’s often not
necessary with continuous predictors as lm gives a significance level for each
parameter weight.
É anova is useful with categorical predictors because each categorical predictor is
usually associated with many parameters (one for each category, except for the
baseline)

• Use anova to calculate the significance of the interaction term in the linear
model hwy~displ*cyl, and compare that value with the significance of the
parameter associated with the interaction term computed by lm.
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Combining continuous and categorical predictors (1)
• Example: What’s the relationship between displacement, drive type and
highway mpg?

summary(lm(hwy~new.drv+displ, data=mpg))

##
## Call:
## lm(formula = hwy ~ new.drv + displ, data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.000 -1.907 -0.394 1.578 13.921
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.083 1.287 28.04 <2e-16 ***
## new.drv4 -5.258 0.734 -7.17 1e-11 ***
## new.drvf -0.467 0.892 -0.52 0.6
## displ -2.914 0.218 -13.35 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3.08 on 230 degrees of freedom
## Multiple R-squared: 0.736,Adjusted R-squared: 0.732
## F-statistic: 213 on 3 and 230 DF, p-value: <2e-16 69/103



Combining continuous and categorical predictors (2)
• Example: What’s the relationship between displacement, drive type and
highway mpg?

lm(hwy ~ drv*displ, data=mpg)

##
## Call:
## lm(formula = hwy ~ drv * displ, data = mpg)
##
## Coefficients:
## (Intercept) drvf drvr displ
## 30.683 6.695 -4.903 -2.878
## drvf:displ drvr:displ
## -0.724 1.955

• The extra “crossed” terms allows the slope of the line to vary with Drv. It’s
equivalent to fitting 3 different linear models, one for each value of drv!

Hwy � 30:7+ 6:7 [[Drv=f]]� 4:9 [[Drv=r]]

�2:88Displ� 0:72Displ [[Drv=f]] + 1:96Displ [[Drv=r]]
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Plotting linear and categorical predictors
• Example: What’s the relationship between displacement, drive type and
highway mpg?

ggplot(mpg, aes(x = displ, y = hwy)) + geom_jitter() +
facet_wrap(~drv) + stat_smooth(method = "lm")
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• Warning: this corresponds to the model formula hwy ~ drv*displ. It’s
equivalent to fitting 3 different linear models, one for each value of drv!
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Explicitly plotting a model’s predictions
m = lm(hwy ~ drv + displ, data = mpg)
d = expand.grid(displ = seq(1, 7, length.out = 100), drv = levels(mpg$drv))
preds = predict(m, newdata = d, type = "response", se = TRUE)
d$y = preds$fit
d$ymin = preds$fit - 2 * preds$se.fit
d$ymax = preds$fit + 2 * preds$se.fit
ggplot(mpg, aes(x = displ, y = hwy)) + geom_jitter() + facet_wrap(~drv) +

geom_ribbon(data = d, aes(y = y, ymin = ymin, ymax = ymax), alpha = 0.2) +
geom_line(data = d, aes(y = y), colour = "blue")
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Modifying the model to allow interaction
m = lm(hwy ~ drv * displ, data = mpg)
d = expand.grid(displ = seq(1, 7, length.out = 100), drv = levels(mpg$drv))
preds = predict(m, newdata = d, type = "response", se = TRUE)
d$y = preds$fit
d$ymin = preds$fit - 2 * preds$se.fit
d$ymax = preds$fit + 2 * preds$se.fit
ggplot(mpg, aes(x = displ, y = hwy)) + geom_jitter() + facet_wrap(~drv) +

geom_ribbon(data = d, aes(y = y, ymin = ymin, ymax = ymax), alpha = 0.2) +
geom_line(data = d, aes(y = y), colour = "blue")
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Warning: whether a predictor is significant depends on
the other predictors! (1)
summary(lm(hwy~displ, data=mpg))

##
## Call:
## lm(formula = hwy ~ displ, data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.104 -2.165 -0.224 2.059 15.010
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35.698 0.720 49.5 <2e-16 ***
## displ -3.531 0.195 -18.1 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3.84 on 232 degrees of freedom
## Multiple R-squared: 0.587,Adjusted R-squared: 0.585
## F-statistic: 329 on 1 and 232 DF, p-value: <2e-16

74/103



Warning: whether a predictor is significant depends on
the other predictors! (2)
summary(lm(hwy~displ+cty, data=mpg))

##
## Call:
## lm(formula = hwy ~ displ + cty, data = mpg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.312 -1.242 0.005 1.030 4.124
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1514 1.2127 0.95 0.34
## displ -0.0343 0.1479 -0.23 0.82
## cty 1.3291 0.0449 29.60 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1.76 on 231 degrees of freedom
## Multiple R-squared: 0.914,Adjusted R-squared: 0.913
## F-statistic: 1.22e+03 on 2 and 231 DF, p-value: <2e-16
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Interaction between predictors

• In general, adding a new predictor reduces the significance of the other
predictors
É the significance of a predictor depends on the amount of the variance in the
predicted variable it explains

É the new predictor may be a better “explanation” of the variance than the old
predictors

• Highly correlated predictors have very large confidence intervals in predictor
weights
É if two predictor variables are exact copies (e.g., by mistake) the confidence
intervals on their predictor weights is infinite

Y � �+ �1X1 + �2X2 + N(0; �2)

) neither will be significant, even if both would be significant on their own
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Class discussion (6)

• Suppose I’m interested in the relationship between hearing impairment,
phonetic awareness and reading ability in children. What model formula should
be used here? How should I interpret the significance levels?

• Is there a danger of “just so” stories justifying combinations of predictors that
yield significant results? If so, what might be done to reduce this?
É would experiment pre-registration help?
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Searching for significance and exploratory data analysis

• It’s easy to run many regressions with different combinations of predictors
• But it’s not clear what significance levels mean if you do this

É you shouldn’t trust the significance levels the software returns if you do this

• Exploratory data analysis is searching for relationships between variables
(instead of testing whether a relationship exists)
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Automatically searching for significant predictors
• step searches for significant combinations of predictors

É verb|direction="forward"| means add variables, direction="backward" means
remove variables, and direction="both" means both add and remove variables

É it attempts to minimise the Akaike Information Criterion (AIC)
É recall that . abbreviates “all possible predictors”

• This is very much exploratory data analysis; minor changes to the data can produce very
different results!

m = lm(hwy ~ cty+manufacturer+model+displ+cyl+trans+drv+class+year, data=mpg)
step(m, direction="both")

## Start: AIC=62.51
## hwy ~ cty + manufacturer + model + displ + cyl + trans + drv +
## class + year
##
##
## Step: AIC=62.51
## hwy ~ cty + manufacturer + model + displ + cyl + trans + class +
## year
##
##
## Step: AIC=62.51
## hwy ~ cty + model + displ + cyl + trans + class + year
##
## Df Sum of Sq RSS AIC
## - class 2 0 195 59
## <none> 194 63
## - displ 1 3 197 64
## - cyl 1 3 198 64
## - year 1 4 199 66
## - trans 9 23 217 70
## - model 33 104 299 97
## - cty 1 727 921 425
##
## Step: AIC=58.87
## hwy ~ cty + model + displ + cyl + trans + year
##
## Df Sum of Sq RSS AIC
## <none> 195 59
## - displ 1 3 198 61
## - cyl 1 3 198 61
## - year 1 4 199 62
## + class 2 0 194 63
## - trans 9 24 219 68
## - model 37 451 646 266
## - cty 1 736 930 423
##
## Call:
## lm(formula = hwy ~ cty + model + displ + cyl + trans + year,
## data = mpg)
##
## Coefficients:
## (Intercept) cty
## -87.0128 1.1042
## modela4 modela4 quattro
## 5.9645 5.0913
## modela6 quattro modelaltima
## 4.5768 4.2650
## modelc1500 suburban 2wd modelcamry
## 1.3866 4.5100
## modelcamry solara modelcaravan 2wd
## 4.1089 3.0991
## modelcivic modelcorolla
## 3.8200 4.4070
## modelcorvette modeldakota pickup 4wd
## 5.4174 0.7221
## modeldurango 4wd modelexpedition 2wd
## 0.5050 2.6688
## modelexplorer 4wd modelf150 pickup 4wd
## 0.5490 0.1681
## modelforester awd modelgrand cherokee 4wd
## 2.1683 0.1755
## modelgrand prix modelgti
## 5.9110 3.6978
## modelimpreza awd modeljetta
## 2.5977 4.0550
## modelk1500 tahoe 4wd modelland cruiser wagon 4wd
## 0.2101 1.3186
## modelmalibu modelmaxima
## 5.0082 3.4246
## modelmountaineer 4wd modelmustang
## 0.9315 3.5796
## modelnavigator 2wd modelnew beetle
## 2.2226 4.7026
## modelpassat modelpathfinder 4wd
## 5.2880 0.4105
## modelram 1500 pickup 4wd modelrange rover
## 0.4454 2.2515
## modelsonata modeltiburon
## 4.9063 4.0824
## modeltoyota tacoma 4wd displ
## 0.1925 0.4231
## cyl transauto(l3)
## -0.2630 -0.4544
## transauto(l4) transauto(l5)
## 1.0555 1.7029
## transauto(l6) transauto(s4)
## 1.7110 0.2313
## transauto(s5) transauto(s6)
## 2.2306 0.8660
## transmanual(m5) transmanual(m6)
## 1.1252 0.9628
## year
## 0.0439
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Computational exercise (10)

• Run the step procedure from the previous slide to see how it adds and
removes predictors in models. What set of predictors does it converge on?

• You can use the step procedure on models with complex interaction terms as
well. Try it on the model formula displ ~ class*trans*drv. What do the
results mean?
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Why logistic regression?

• Logistic regression is used to predict binary responses, such as:
É an experimental subject completes a task correctly,
É a patient dies after taking a drug,
É a program crashes under particular circumstances, etc.

• It can also be used to avoid the normality assumptions in linear regression, as
in:
É identifying the circumstances in which program 1 performs better than program
2

See Dalgaard (2008) chapter 13
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Preparing some binary data

levels(mpg$manufacturer)

[1] "audi" "chevrolet" "dodge" "ford" [5] "honda" "hyundai" "jeep" "land rover"
[9] "lincoln" "mercury" "nissan" "pontiac" [13] "subaru" "toyota" "volkswagen"

american = c("chevrolet", "dodge", "ford", "jeep", "lincoln",
"mercury", "pontiac")

mpg$american = (mpg$manufacturer %in% american)
xtable(mpg[17:20, c("manufacturer", "model", "american")])

manufacturer model american
17 audi a6 quattro FALSE
18 audi a6 quattro FALSE
19 chevrolet c1500 suburban 2wd TRUE
20 chevrolet c1500 suburban 2wd TRUE
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Does fuel efficiency predict American?
summary(glm(american~hwy+cty, data=mpg, family=binomial))

##
## Call:
## glm(formula = american ~ hwy + cty, family = binomial, data = mpg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.358 -0.604 -0.151 0.651 2.755
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.2022 1.2299 7.48 7.3e-14 ***
## hwy 0.1272 0.0958 1.33 0.18
## cty -0.7632 0.1687 -4.52 6.1e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 320.00 on 233 degrees of freedom
## Residual deviance: 195.32 on 231 degrees of freedom
## AIC: 201.3
##
## Number of Fisher Scoring iterations: 6
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What does logistic regression compute?

• Logistic regression predicts the probability p that the response variable is true:

logit(p) = �+ �1X1 + : : :+ �nXn;

where logit(p) = log(p=1� p) is known as the log odds of p.
É the log odds of a probability vary from �1 to 1, while a probability is always
between 0 and 1

) Logistic regression is just like linear regression, except that it predicts the log
odds of the response variable

• So the previous logistic regression showed:

logit(pAmerican) = 9:2+ 0:13Hwy � 0:76Cty

I.e., an increase in Hwy increases the probability of American, while an
increase in Cty decreases the probability of American.
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Plotting a logistic regression

mpg$American = 1 * mpg$american # convert Boolean to 0/1 values
ggplot(mpg, aes(x = cty, y = American)) + geom_point(alpha = I(0.2)) +

stat_smooth(method = "glm", family = "binomial")
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Categorical predictors in logistic regression
summary(glm(american~drv+displ, data=mpg, family=binomial))

##
## Call:
## glm(formula = american ~ drv + displ, family = binomial, data = mpg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.926 -0.412 -0.203 0.303 2.239
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.501 1.436 -6.61 3.7e-11 ***
## drvf 1.282 0.555 2.31 0.021 *
## drvr 16.693 1061.712 0.02 0.987
## displ 2.416 0.347 6.95 3.6e-12 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 320.00 on 233 degrees of freedom
## Residual deviance: 143.24 on 230 degrees of freedom
## AIC: 151.2
##
## Number of Fisher Scoring iterations: 17
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Warning: the significance of a predictor depends on the
other predictors! (1)

summary(glm(american~hwy, data=mpg, family=binomial))

##
## Call:
## glm(formula = american ~ hwy, family = binomial, data = mpg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.100 -0.715 -0.353 0.639 2.247
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.6189 0.8737 7.58 3.6e-14 ***
## hwy -0.3020 0.0381 -7.94 2.1e-15 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 320.00 on 233 degrees of freedom
## Residual deviance: 219.28 on 232 degrees of freedom
## AIC: 223.3
##
## Number of Fisher Scoring iterations: 5
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Warning: the significance of a predictor depends on the
other predictors! (2)

summary(glm(american~hwy+cty, data=mpg, family=binomial))

##
## Call:
## glm(formula = american ~ hwy + cty, family = binomial, data = mpg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.358 -0.604 -0.151 0.651 2.755
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.2022 1.2299 7.48 7.3e-14 ***
## hwy 0.1272 0.0958 1.33 0.18
## cty -0.7632 0.1687 -4.52 6.1e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 320.00 on 233 degrees of freedom
## Residual deviance: 195.32 on 231 degrees of freedom
## AIC: 201.3
##
## Number of Fisher Scoring iterations: 6
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Class discussion (7)

• Suppose I wanted to identify the circumstances in which my new syntactic
parser performs better than a baseline parser. How could I use glm to do this?
É Hint: think of the Wilcoxon paired sample test (i.e., the non-parametric test for
difference in paired samples)

• What are the advantages and disadvantages of using logistic regression on the
binary “better/worse” data, as compared to linear regression on the differences
in (say) accuracy scores.

• How would you handle tied scores (i.e., cases where the two parsers behaved
identically)?
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Computational exercise (11)

• Add a Boolean variable pre.2000 in the mpg data frame, which is TRUE when
year > 2000. Use head and summary to check that you have correctly
assigned this variable (there should be 117 pre-2000 rows and 117 post-2000
rows).

• Now develop different models for predicting whether a car is pre-2000 or
post-2000. Can you find predictors that seem highly predictive?

• You can use anova to compare nested glm models and step to search for glm
models in the same way as we did for lm models
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Why mixed effects models? (1)
• sleepstudy data: reaction times after varying days of sleep deprivation
• Reactions get slower as the days go on

install.packages("lme4")
library(lme4)

qplot(Days, Reaction, data = sleepstudy, geom = c("point"), colour = Subject)
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Why mixed effects models? (2)

• We can fit a line to all the data, but it doesn’t fit that well

qplot(Days, Reaction, data = sleepstudy, geom = c("point")) +
geom_smooth(method = "lm")
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Why mixed effects models? (3)
• We can fit a line for each subject, i.e., make Subject a predictor
• But this tells us nothing about subjects in general, i.e., do reaction times get
slower with more sleep deprivation?

qplot(Days, Reaction, data = sleepstudy, geom = c("point"), colour = Subject) +
geom_smooth(method = "lm", se = FALSE)
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Why mixed effects models? (4)

• A mixed effects model estimates a group mean slope from which the individual
slopes are generated

m <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
m

## Linear mixed model fit by REML [’lmerMod’]
## Formula: Reaction ~ Days + (Days | Subject)
## Data: sleepstudy
## REML criterion at convergence: 1744
## Random effects:
## Groups Name Std.Dev. Corr
## Subject (Intercept) 24.74
## Days 5.92 0.07
## Residual 25.59
## Number of obs: 180, groups: Subject, 18
## Fixed Effects:
## (Intercept) Days
## 251.4 10.5
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Fixed and random effects

• The predictors we used with linear and logistic regression are fixed effects

• The parameters associated with each subject are random effects

• A model with both fixed and random effects is called a mixed effects model
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Hypothesis testing and confidence intervals

• Formulate an alternative null hypothesis H0, which would be true if your
hypothesis H1 is true

• Pick a test statistic T and a significance level �

• Run your experiment and collect data D

• Calculate the probability p of all possible experimental outcomes with values
for T more extreme than T (D)

• If p � �, then reject the null hypothesis H0, i.e., accept your hypothesis H1

• A 1� � confidence interval for a parameter is a range such that if the
experiment were repeated many times, the parameter’s true value would be
outside this range at most � of the time
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Hypothesis tests for tabular data

• binom.test tests whether binary samples are generated with a given
probability

• fisher.test, prop.test and chisq.test can test whether two or more
categorical samples came from the same source
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One and two sample tests

• These tests are for real-valued data

null hypothesis parametric test non-parametric test

mean equal to fixed value one-sample t-test Wilcoxon signed rank test
equal means two-sample t-test two-sample Wilcoxon test

zero mean difference paired t-test matched pairs Wilcoxon test
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Regression

• Linear and logistic regression describe the behaviour of a predicted or response
variable in terms of one or more predictor or explanatory variables

• Confidence intervals on the predictor variable weights let us identify whether
the contribution of a variable is significant

• Beware: whether a variable is a significant predictor depends on the other
predictors in the model!
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Statistics is not magic!

• It is easy to produce erroneous results by:
É repeating (e.g., tweaking) an experiment until the results are significant
É searching for (combinations of) predictors that are significant

• “Throwing in the kitchen sink” is probably not a good way to do statistical
analysis
É (close to) colinear predictors will appear insignificant

103/103


	Introduction
	Hypothesis tests and confidence intervals
	Tests for tabular data
	One and two sample tests
	Linear regression
	Logistic regression
	Mixed effects models
	Conclusions

