
A brief introduction to Information Retrieval

Mark Johnson

Department of Computing
Macquarie University

1/64

Readings for today’s talk

• Natural Language Processing: Analyzing Text with Python and the
Natural Language Toolkit

I Steven Bird, Ewan Klein, and Edward Loper
I The book describing NLTK
I http://www.nltk.org/book

• Introduction to Information Retrieval
I Manning, Raghavan and Schütze.
I Cambridge University Press. 2008. ISBN: 0521865719.
I http://nlp.stanford.edu/IR-book/

2/64

http://www.nltk.org/book
http://nlp.stanford.edu/IR-book/

Machine learning and data mining

• Huge amounts of data are now on-line
I much of it is unstructured text

• Data mining: extracting information from large data sources
I Big data: the data is so large that standard techniques (hardware,

algorithms, etc.) cannot be used

• Machine learning: techniques for generalising from data

I Supervised learning: data comes with labels, goal is to generalise to new
data

– identify stock take-over announcements in financial news
– choosing most profitable ads to display on web pages
– identify autistic children from their brain scans

I Unsupervised learning: goal is to group or cluster data in meaningful ways

– detecting and tracking topics in news or social media
– find the translations of words in parallel corpora
– identify different kinds of customers for market research

3/64

Outline

Information Retrieval

Inverted index

Processing Boolean queries with an inverted index

Query optimisation

Term Frequency and Inverse Document Frequency

Using Tf.Idf to rank search results

More sophisticated retrieval techniques

Summary

4/64

Information retrieval terminology

Document • A unit of text available for retrieval

Collection • A set of documents used for retrieval

Term • The elements of documents used for retrieval
• Usually words or phrases

Query • A user’s information need expressed using terms

5/64

Diversity of information retrieval applications

• Web search engines:
I large number of web pages

– highly variable
– constantly changing

I must be easy to use
I many web pages about most topics (redundancy)

⇒ don’t need to retrieve all relevant documents
⇒ sort documents by relevance, i.e., ranked retrieval

• Specialised document retrieval, e.g., law records
I high quality manually curated collections with metadata
I highly-trained users (e.g., legal librarians)

– can use specialised query languages

I very important to retrieve all relevant documents

6/64

Precision and recall

• Precision and recall are two ways of measuring the accuracy of an IR
system

• Suppose an IR system returns a set S of documents for some query, but
we know the correct or “gold” set of documents for that query is G :

I the correct documents the system returned is C = S ∩ G
I recall is the fraction of gold documents that the system finds

recall =
|S ∩ G |
|G |

=
|C |
|G |

(1)

I precision is the fraction of documents that the system returns that are
correct

precision =
|S ∩ G |
|S |

=
|C |
|S |

(2)

7/64

Precision and recall example

• Document collection: {‘Anthony and Cleopatra’, ‘Julius Caesar’,
‘The Tempest’, ‘Hamlet’, ‘Macbeth’}

• Query: which documents mention Brutus?

• System answer:
S = {‘Julius Caesar’, ‘The Tempest’, ‘Hamlet’, ‘Macbeth’}

• Gold answer: G = {‘Anthony and Cleopatra’, ‘Julius Caesar’, ‘Hamlet’}
• C = S ∩ G = {‘Julius Caesar’, ‘Hamlet’}
• recall = |C |/|G | = 2/3, i.e., system found 2/3 of correct docs

• precision = |C |/|S | = 2/4, i.e., 1/2 of system’s answer was correct

8/64

The precision/recall tradeoff

• A trivial algorithm can achieve perfect recall (how?)

• It’s often easy to achieve very high precision (how?)

• Often IR algorithms can be tuned to optimise either precision or recall

• Precision is usually more important than recall if:
I the same information is in many documents (redundancy)
I the user is not prepared to look through many documents

• Recall is usually more important than precision if:
I a valuable piece of information might be in a single document
I the user is prepared to inspect many documents

9/64

More advanced accuracy measures

• Often desirable to have a single measure of system accuracy

• F-score is the harmonic mean of precision and recall

f-score =
1

1
precision + 1

recall

=
2 |C |
|S |+ |G |

• In a real information retrieval application, it’s impossible to find all the
gold documents G ⇒ can’t calculate recall

I we can calculate precision by manually scoring system output

• Mean average precision (MAP) is precision averaged over
I several different queries
I many different levels of recall

10/64

Documents as “bags of words”

• A bag or a multiset is an unordered collection
(a set that can contain more than one instance of each element

• “Documents are ‘bags of words’ ” means word order is ignored

• A “bag of words” retrieval system treats the following documents
identically:

I man bites dog
I dog bites man
I dog man bites

• “Bags of words” models can be surprisingly good

11/64

Boolean retrieval

• The Boolean model is arguably the simplest model to base an
information retrieval system on.

• Queries are Boolean expressions, e.g., Caesar and Brutus

• The seach engine returns all documents that satisfy the Boolean
expression.

Does Google use the Boolean model?

12/64

Does Google use the Boolean model?

• On Google, the default interpretation of a query [w1 w2 . . .wn] is w1

AND w2 AND . . . AND wn

• Cases where you get hits that do not contain one of the wi :
I anchor text
I page contains variant of wi (morphology, spelling correction, synonym)
I long queries (n large)
I boolean expression generates very few hits

• Simple Boolean vs. Ranking of result set

I Simple Boolean retrieval returns matching documents in no particular
order.

I Google (and most well designed Boolean engines) rank the result set –
they rank good hits (according to some estimator of relevance) higher
than bad hits.

13/64

Boolean queries

• The Boolean retrieval model can answer any query that is a Boolean
expression.

I Boolean queries are queries that use and, or and not to join query
terms.

I Views each document as a set of terms.
I Is precise: Document matches condition or not.

• Primary commercial retrieval tool for 3 decades

• Many professional searchers (e.g., lawyers) still like Boolean queries.
I You know exactly what you are getting.

14/64

Unstructured data in 1650

• Which plays of Shakespeare contain the words
Brutus and Caesar and not Calpurnia?

• grep (search) through all of Shakespeare’s plays for Brutus and Caesar,
then remove plays containing Calpurnia.

• Why is grep not the solution?
I Slow (for large collections)
I “not Calpurnia” is non-trivial
I Ranked retrieval (find best document)

• Idea behind indexing for information retrieval
I build an inverted index to speed retrieval
I building the index is slow, but it only needs to be built once,
I index can be built off-line, i.e., before queries have been seen

15/64

Term-document incidence matrix
Anthony Julius The Hamlet Othello Macbeth . . .

and Caesar Tempest
Cleopatra

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

• Entry is 1 (True) if term occurs in document.
Example: Calpurnia occurs in Julius Caesar.

• Entry is 0 (False) if term doesn’t occur in document.
Example: Calpurnia doesn’t occur in The tempest.

16/64

Retrieval using incidence vectors

• So we have a 0/1 vector for each term.

• To answer the query:
Brutus and Caesar and not Calpurnia:

I Take the vectors for Brutus, Caesar, and Calpurnia
I Bitwise negate the vector of Calpurnia

– not Calpurnia = not 010000 = 101111

I Do a (bitwise) and on the three vectors
I 110100 and 110111 and 101111 = 100100

17/64

Boolean retrieval using incidence matrix for
Brutus and Caesar and not Calpurnia

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

result: 1 0 0 1 0 0

18/64

Answers to query

Anthony and Cleopatra, Act III, Scene ii
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed i’ the

Capitol; Brutus killed me.

19/64

Outline

Information Retrieval

Inverted index

Processing Boolean queries with an inverted index

Query optimisation

Term Frequency and Inverse Document Frequency

Using Tf.Idf to rank search results

More sophisticated retrieval techniques

Summary

20/64

Incidence matrix is impractical for big collections

• Consider a collection with:
I N = 106 documents, each with about 1,000 tokens
I M = 500,000 different terms

⇒ Incidence matrix has 106 × 500,000 = 500 billion entries

• But the matrix has no more than 1 billion 1s (why?)
I extremely sparse (500×0s for each 1)
I use a representation that only records the 1s

21/64

Inverted Index

For each term t, store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

22/64

Document retrieval using an inverted index

• An inverted index maps terms to the documents that contain them
I it “inverts” the collection (which maps documents to the words they

contain)
I will permit us to answer boolean queries without visiting entire corpus

• An inverted index is slow to construct (requires visiting entire corpus)
I but this only needs to be done once
I can be used for any number of queries
I can be done before any queries have been seen

• Usually the dictionary is kept in RAM, but the postings lists (the
documents for each term in dictionary) are stored on hard disk

23/64

Inverted index construction

1. Collect the documents to be indexed:

Friends, Romans, countrymen. So let it be with Caesar . . .

2. Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3. Do linguistic preprocessing, producing a list of normalized tokens, which

are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted
index, consisting of a dictionary and postings.

24/64

Constructing an inverted index in Python

• Documents: NLTK corpora in Gutenberg collection
I import nltk makes the collection available (if you’ve installed NLTK and

the NLTK data)
I nltk.corpus.gutenberg.fileids() returns a list of names of Gutenberg files

>>> import nltk
>>> nltk.corpus.gutenberg.fileids()
[’austen−emma.txt’, ’austen−persuasion.txt’,]

• Inverted index is a dictionary mapping each word token to a set of file
names

I gutenberg.words(filename) returns a list of words in filename

25/64

Constructing an inverted index in Python: the code

1 import nltk, collections
2

3 def make inverted index(corpus):
4 inverted index = collections.default dict(set)
5 for filename in corpus.fileids():
6 for term in corpus.words(filename):
7 inverted index[term].add(filename)
8 return inverted index

26/64

Constructing an inverted index in Python: notes

3 def make inverted index(corpus):
4 inverted index = collections.default dict(set)
5 for filename in corpus.fileids():
6 for term in corpus.words(filename):
7 inverted index[term].add(filename)
8 return inverted index

• The inverted index maps each term to a set of filenames

• If a term has not been seen before, default dict creates a set for it

27/64

Outline

Information Retrieval

Inverted index

Processing Boolean queries with an inverted index

Query optimisation

Term Frequency and Inverse Document Frequency

Using Tf.Idf to rank search results

More sophisticated retrieval techniques

Summary

28/64

Duality: use set theory to do logic

• Instead of working with Boolean vectors,
just use sets containing the True elements

Logical operation Set operation
and intersection
or union
not complement

29/64

Simple conjunctive query (two terms)

• Consider the query: truth AND justice

• To find all matching documents using inverted index:

1. Locate truth in the dictionary
2. Retrieve its postings list from the postings file
3. Locate justice in the dictionary
4. Retrieve its postings list from the postings file
5. Intersect the two postings lists
6. Return intersection to user

30/64

Simple conjunctive query in Python

1 def search1(inverted index):
2 truth filenames = inverted index[”truth”]
3 justice filenames = inverted index[”justice”]
4 return truth filenames & justice filenames

• & computes set intersection

31/64

More complex query in Python

1 def search2(inverted index):
2 brutus filenames = inverted index[”Brutus”]
3 caesar filenames = inverted index[”Caesar”]
4 calpurnia filenames = inverted index[”Calpurnia”]
5 return (brutus filenames & caesar filenames) − calpurnia filenames

• – computes set difference

32/64

Running the searches in Python

>>> from wk02a import ∗
>>> inverted index = make inverted index(nltk.corpus.gutenberg)
>>> search1(inverted index)
set([’milton−paradise.txt’, ’austen−emma.txt’, ’chesterton−ball.txt’, ’bible−kjv.txt’, ’chesterton−thursday.txt’, ’chesterton−brown.txt’, ’whitman−leaves.txt’, ’melville−moby dick.txt’, ’austen−persuasion.txt’, ’edgeworth−parents.txt’, ’carroll−alice.txt’, ’austen−sense.txt’])
>>> search2(inverted index)
set([’shakespeare−caesar.txt’, ’shakespeare−hamlet.txt’])

33/64

Query processing: Exercise

france −→ 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 11 → 12 → 13 → 14 → 15

paris −→ 2 → 6 → 10 → 12 → 14

lear −→ 12 → 15

Compute hit list for ((paris AND NOT france) OR lear)

34/64

Outline

Information Retrieval

Inverted index

Processing Boolean queries with an inverted index

Query optimisation

Term Frequency and Inverse Document Frequency

Using Tf.Idf to rank search results

More sophisticated retrieval techniques

Summary

35/64

Query optimisation

• Consider a query that is an and of n terms, n > 2

• For each of the terms, get its postings list, then and them together

• Example query: Brutus AND Calpurnia AND Caesar

• What is the best order for processing this query?

36/64

Query optimisation

• Example query: Brutus AND Calpurnia AND Caesar

• Simple and effective optimisation: Process in order of increasing
frequency

• Start with the shortest postings list, then keep cutting further

• In this example, first Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

37/64

Query optimisation

• Example query: Brutus AND Calpurnia AND Caesar

• Simple and effective optimisation: Process in order of increasing
frequency

• Start with the shortest postings list, then keep cutting further

• In this example, first Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

37/64

Query optimisation

• Example query: Brutus AND Calpurnia AND Caesar

• Simple and effective optimisation: Process in order of increasing
frequency

• Start with the shortest postings list, then keep cutting further

• In this example, first Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

37/64

Query optimisation

• Example query: Brutus AND Calpurnia AND Caesar

• Simple and effective optimisation: Process in order of increasing
frequency

• Start with the shortest postings list, then keep cutting further

• In this example, first Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

37/64

Query optimisation

• Example query: Brutus AND Calpurnia AND Caesar

• Simple and effective optimisation: Process in order of increasing
frequency

• Start with the shortest postings list, then keep cutting further

• In this example, first Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

37/64

More general optimisation

• Example query: (madding or crowd) and (ignoble or strife)

• Get frequencies for all terms

• Estimate the size of each or by the sum of its frequencies (conservative)

• Process in increasing order of or sizes

• How should negation be handled?
I Example query: (NOT strife) AND crowd

38/64

Outline

Information Retrieval

Inverted index

Processing Boolean queries with an inverted index

Query optimisation

Term Frequency and Inverse Document Frequency

Using Tf.Idf to rank search results

More sophisticated retrieval techniques

Summary

39/64

Identifying the most important words in a document

• Automatically identifying the most important words of a document is
useful for:

I identifying key-words of a document
I summarisation and gisting

• Tf.Idf (Term Frequency times Inverse Document Frequency) is a very
simple way of doing this

I Tf.Idf is a bag-of-words approach (i.e., only uses word-document counts;
ignores word order)

• There are many more sophisticated ways of identifying the most
important words

I more important words may come early in a document

40/64

Term Frequency

• Inspiration: very important words in a document should appear very
often in that document

• Tf(d ,w) = number of times term w appears in document d

• Unfortunately, the highest frequency words often tell us little about a
document. (Why?)

41/64

Term Frequency example

D1 : computers process data quickly

D2 : data computers use data quickly

D3 : programs run quickly

Term t Document d Term frequency Tf(d ,w)

computers D1 1
computers D2 1
computers D3 0

data D1 1
data D2 2
data D3 0

quickly D1 1
quickly D2 1
quickly D3 1

.

42/64

Term Frequency meets the Gutenberg Corpus

• shakespeare-hamlet.txt
Highest term frequency words: [(’the’, 860), (’and’, 606), (’of’, 576),
(’to’, 576), (’I’, 553), (’you’, 479), (’a’, 449), (’my’, 435), (’in’, 359),
(’it’, 354)]

• bible-kjv.txt
Highest term frequency words: [(’the’, 62103), (’and’, 38847), (’of’,
34480), (’to’, 13396), (’And’, 12846), (’that’, 12576), (’in’, 12331),
(’shall’, 9760), (’he’, 9665), (’unto’, 8940)]

• carroll-alice.txt
Highest term frequency words: [(’the’, 1527), (’and’, 802), (’to’, 725),
(’a’, 615), (’I’, 543), (’it’, 527), (’she’, 509), (’of’, 500), (’said’, 456),
(’Alice’, 396)]

43/64

Document Frequency

• Inspiration: very important words shouldn’t be very common

• Document frequency is the number of documents this word appears in

• Df(c ,w) = number of documents in corpus c containing w

• Note: Important words should have a low document frequency

⇒ Rank by inverse document frequency 1/Df(c ,w)

44/64

Document frequency example

D1 : computers process data quickly

D2 : data computers use data quickly

D3 : programs run quickly

Term t Document frequency Df(c,w) 1/Df(c,w)

computers 2 0.5
process 1 1

data 2 0.5
quickly 3 0.33

use 1 1
.

45/64

Inverse Document Frequency meets Gutenberg

• shakespeare-hamlet.txt
Lowest document frequency words: [(’forgone’, 1), (’vncharge’, 1),
(’cheefe’, 1), (’Combate’, 1), (’Hamlets’, 1), (’gamboll’, 1), (’Carters’,
1), (’Marcellus’, 1), (’Spectators’, 1), (’Blasting’, 1)]

• bible-kjv.txt
Lowest document frequency words: [(’Hashubah’, 1), (’Doeg’, 1),
(’Jehoash’, 1), (’respecteth’, 1), (’deserveth’, 1), (’Libnah’, 1), (’Peniel’,
1), (’Myra’, 1), (’Jedidiah’, 1), (’holpen’, 1)]

• carroll-alice.txt
Lowest document frequency words: [(’NEAR’, 1), (’BEG’, 1), (’BEE’,
1), (’CURTSEYING’, 1), (’Game’, 1), (’barrowful’, 1), (’punching’, 1),
(’blacking’, 1), (’rosetree’, 1), (’Lory’, 1)]

46/64

A first try at Tf.Idf (DON’T USE)

• Idea: Combine Tf and Df into a single formula

• We want its value to be big when:
I Tf is big, and
I Df is small

• First try at Tf.Idf
(Term Frequency times Inverse Document Frequency)

Tf.Idf(c, d ,w) =
Tf(d ,w)

Df(c ,w)

47/64

First try Tf.Idf example (DON’T USE)

D1 : computers process data quickly

D2 : data computers use data quickly

D3 : programs run quickly

t d Tf(d ,w) Df(c,w) Tf(d ,w)/Df(c,w)

computers D1 1 2 0.5
computers D2 1 2 0.5
computers D3 0 2 0

data D1 1 2 0.5
data D2 2 2 1
data D3 0 2 0

quickly D1 1 3 0.33
quickly D2 1 3 0.33
quickly D3 1 3 0.33

.

48/64

First try Tf.Idf meets Gutenberg

• shakespeare-hamlet.txt
Highest Tf.Idf v0 words: [(’Ham’, 168.5), (’Qu’, 62.0), (’Laer’, 60.0),
(’Ophe’, 56.0), (’haue’, 53.6), (’Pol’, 49.0), (’the’, 47), (’Hor’, 47.5),
(’Rosin’, 43.0), (’Horatio’, 40.0)]

• bible-kjv.txt
Highest Tf.Idf v0 words: [(’the’, 3450), (’LORD’, 2217.0), (’and’,
2158), (’of’, 1915), (’unto’, 1490.0), (’to’, 744), (’And’, 713), (’that’,
698), (’in’, 685), (’saith’, 631.0)]

• carroll-alice.txt
Highest Tf.Idf v0 words: [(’Alice’, 132), (’the’, 84), (’Mock’, 56),
(’Gryphon’, 55), (’Hatter’, 55), (’and’, 44), (’Duchess’, 42), (’to’, 40),
(’Dormouse’, 40), (’a’, 34)]

49/64

Tf.Idf as used in this class

• General intuition is that Tf.Idf version 0 gives rare words too high a score

⇒ Tweak formula to put less weight on document frequency
I what about the the, and, of, etc., in the output?
I use a stop-list containing 100 most frequent words in corpus
I the new Tf.Idf formula will deal with these

• Tf.Idf formula used in this class:

Tf.Idf(c, d ,w) = Tf(d ,w) log

(
N

Df(c,w)

)
where N = number of documents in collection

50/64

A brief reminder about logarithms

xlog(x)log10(x)

• Logarithms are calculated with respect to a base
I I’m using logarithms base e u 2.718, a.k.a. natural logarithms, sometimes

also written ln(x) or loge(x)
I Logarithms base 10 are also common; these are written log10(x)
I Logarithms with different bases only differ by a scaling factor,

log10(x) u 2.3× loge(x)

• The logarithm of 1 is 0, or in maths log(1) = 0

• Since we want the words or documents that score highest under Tf.Idf,
it doesn’t matter which base we use for our logarithms

51/64

Tf.Idf example

D1 : computers process data quickly

D2 : data computers use data quickly

D3 : programs run quickly

t d Tf(d ,w) Df(c,w) N/Df(c,w) Tf(d ,w) log(N/Df(c,w))

computers D1 1 2 1.5 0.40
computers D2 1 2 1.5 0.40
computers D3 0 2 1.5 0

data D1 1 2 1.5 0.40
data D2 2 2 1.5 0.80
data D3 0 2 1.5 0

quickly D1 1 3 1 0
quickly D2 1 3 1 0
quickly D3 1 3 1 0

.

52/64

Tf.Idf meets Gutenberg

• shakespeare-hamlet.txt
Highest Tf.Idf words: [(’Ham’, 740), (’haue’, 288), (’Hor’, 208), (’Qu’,
179), (’Hamlet’, 177), (’Laer’, 173), (’Ophe’, 161), (’Pol’, 141),
(’Rosin’, 124), (’selfe’, 118)]

• bible-kjv.txt
Highest Tf.Idf words: [(’LORD’, 11916), (’unto’, 9821), (’Israel’, 2827),
(’saith’, 2772), (’David’, 1906), (’Judah’, 1792), (’hath’, 1551), (’shalt’,
1118), (’Jesus’, 1073), (’thereof’, 995)]

• carroll-alice.txt
Highest Tf.Idf words: [(’Alice’, 709), (’Mock’, 161), (’Gryphon’, 158),
(’Hatter’, 158), (’Turtle’, 129), (’Duchess’, 121), (’Dormouse’, 115),
(’Rabbit’, 80), (’Caterpillar’, 78), (’Hare’, 55)]

53/64

Outline

Information Retrieval

Inverted index

Processing Boolean queries with an inverted index

Query optimisation

Term Frequency and Inverse Document Frequency

Using Tf.Idf to rank search results

More sophisticated retrieval techniques

Summary

54/64

Using Tf.Idf to rank search results

• Inspiration: query terms should be important terms in document
I use Tf.Idf to measure how important each query term is
I rank documents by the sum of their Tf.Idf scores for query words

• Problem: long documents have higher Tf.Idf scores

• Solution: scale the Tf.Idf scores by dividing by document length

Score(c , d , ts) =
1

|d |
∑
t∈ts

Tf.Idf(c , d , t)

where ts are the search terms and |d | is the length of document d .

55/64

Scaled Tf.Idf retrieval example

D1 : computers process data quickly

D2 : data computers use data quickly

D3 : programs run quickly

Query: data computers

• Conjunctive Boolean query returns D1 and D2
t d Tf.Idf(c, d ,w) Tf.Idf(c, d ,w)/|d |

computers D1 0.40 0.10
computers D2 0.40 0.08
computers D3 0 0

data D1 0.40 0.10
data D2 0.80 0.16
data D3 0 0

• Score(c,D1, data and computers) = 0.20
Score(c,D2, data and computers) = 0.24

• So ranked retrieval results are D2, D1

56/64

Outline

Information Retrieval

Inverted index

Processing Boolean queries with an inverted index

Query optimisation

Term Frequency and Inverse Document Frequency

Using Tf.Idf to rank search results

More sophisticated retrieval techniques

Summary

57/64

Relevance feedback

• Idea: Use user feedback to improve document ranking
I Users inspect documents in some order
I After the user has inspected a document, they can tell you if it’s relevant
I Use the user-supplied relevance information about current document to

rank the remaining documents

• Example:
I User has identified a set R of relevant documents
I Use e.g., Tf.Idf to find most important words W in R
I Conduct a ranked search for W , and return results to user

58/64

Query expansion

• Queries are often missing relevant terms

⇒ low recall (relevant documents are not retrieved)

• Query expansion adds related words to query

• Example:
I User query: cheap and car
I Expanded query: (cheap or inexpensive) and (car or automobile)

• Standard way to perform query expansion is using a thesaurus, which
lists synonyms for words

59/64

Query expansion via Pseudo-relevance feedback

• Idea: Use search results to find new relevant search terms

1. Search for user’s original query, returning documents R0

2. Identify key words W in R0 (e.g., with modified Tf.Idf)
3. Run a new approximate search for W , returning documents R1

4. Rank R0 ∪ R1 and return to user

• This works because synonyms often appear in the same document

60/64

Outline

Information Retrieval

Inverted index

Processing Boolean queries with an inverted index

Query optimisation

Term Frequency and Inverse Document Frequency

Using Tf.Idf to rank search results

More sophisticated retrieval techniques

Summary

61/64

Review of Boolean information retrieval

• Bag of words assumption: ignore word order

• Boolean retrieval defines relevant documents using Boolean operations
on term-document incidence matrix

• Making search practical on large collections:
I searching by inspecting all documents (grep-search) is impractically slow
I term-document incidence matrix is too big
I inverted index is a practical solution

62/64

Document retrieval using an inverted index

• An inverted index maps each term to the documents that contain it
I it “inverts” the collection (which maps documents to the words they

contain)
I will permit us to answer boolean queries without visiting entire corpus

• An inverted index is slow to construct (requires visiting entire corpus)
I but this only needs to be done once
I can be used for any number of queries
I can be done before any queries have been seen

• Usually the dictionary is kept in RAM, but the postings lists (the
documents for each term in dictionary) are stored on hard disk

63/64

Ranking search results and query expansion

• Tf.Idf and similiar methods can identify the most important terms in a
document

• This can be used to rank search results by how well the query terms
match the important words in the document

• Query expansion often improves recall in information retrieval by
retrieving documents with words not appearing the query

64/64

	Information Retrieval
	Inverted index
	Processing Boolean queries with an inverted index
	Query optimisation
	Term Frequency and Inverse Document Frequency
	Using Tf.Idf to rank search results
	More sophisticated retrieval techniques
	Summary

