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The Janus-faced character of modern
computational linguistics

. Engineering applications (Natural Language Processing):
▶ information extraction from large text collections
▶ machine translation
▶ speech recognition (?)

. Scientific side (Computational Linguistics):
▶ computation is the manipulation of meaning-bearing symbols in

ways that respect their meaning
▶ studies language comprehension, production and acquisition as

computational processes
. Spectacular (and lucrative) advances in NLP; can they help us

understand language?
▶ steam engines invented a century before thermodynamics and

statistical mechanics
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How can computational models help us understand
language acquisition?

. Most computational linguistics research focuses on parsing or
learning algorithms

. A computational model (Marr 1982) of acquisition specifies:
▶ the input (information available to learner)
▶ the output (generalisations learner can make)
▶ a model that relates input to output

. This talk compares:
▶ staged learning, which learns one kind of thing at a time, and
▶ joint learning, which learns several kinds of things simultaneously,

and demonstrates synergies in acquisition that only joint learners
exploit

. We do this by comparing models that differ solely in the kinds of
generalisations they can form
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Bayesian learning as
an “ideal observer” theory of learning

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

. Likelihood measures how well grammar describes data

. Prior expresses knowledge of grammar before data is seen
▶ can be very specific (e.g., Universal Grammar)
▶ can be very general (e.g., prefer shorter grammars)

. Prior can also express markedness preferences (“soft universals”)

. Posterior is a product of both likelihood and prior
▶ a grammar must do well on both to have high posterior probability

. Posterior is a distribution over grammars
▶ captures learner’s uncertainty about which grammar is correct
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The acquisition of the lexicon as non-parametric
inference

. What has to be learned in order to learn a word?
▶ pronunciation (sequence of phonemes)
▶ syntactic properties
▶ semantic properties (what kinds of things it can refer to)

There are unboundedly many different possible pronunciations (and
possible meanings?)

. Parametric inference: learn values of a finite number of
parameters

. Non-parametric inference:
▶ possibly infinite number of parameters
▶ learn which parameters are relevant as well as their values

. Adaptor grammars use a grammar to generate parameters for
learning (e.g., possible lexical items)

▶ builds on non-parametric hierarchical Bayesian inference
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Probabilistic context-free grammars
. Probabilistic context-free grammars (PCFGs) define probability

distributions over trees
. Each nonterminal node expands by

▶ choosing a rule expanding that nonterminal, and
▶ recursively expanding any nonterminal children it contains

. Probability of tree is product of probabilities of rules used to
construct it

Probability θr Rule r
1 S → NP VP
0.7 NP → Sam
0.3 NP → Sandy
1 VP → V NP
0.8 V → likes
0.2 V → hates

..
S

.

NP

.

VP

.

Sam

.

V

.

NP

.

likes

.

Sandy

P(Tree) = 1× 0.7× 1× 0.8× 0.3
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A CFG for stem-suffix morphology
Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

..
Word

.

Stem

.

Chars

.

Char

.

t

.

Chars

.

Char

.

a

.

Chars

.

Char

.

l

.

Chars

.

Char

.

k

.

Suffix

.

Chars

.

Char

.

i

.

Chars

.

Char

.

n

.

Chars

.

Char

.

g

.

Chars

.

Char

.

#

. Grammar’s trees can
represent any segmentation
of words into stems and
suffixes

⇒ Can represent true
segmentation

. But grammar’s units of
generalization (PCFG rules)
are “too small” to learn
morphemes
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A “CFG” with one rule per possible morpheme
Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

..
Word

.

Stem

.

t

.

a

.

l

.

k

.

Suffix

.

i

.

n

.

g

.

#

..
Word

.

Stem

.

j

.

u

.

m

.

p

.

Suffix

.

#

. A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

. Unbounded number of possible rules, so this is not a PCFG
▶ not a practical problem, as only a finite set of rules could possibly

be used in any particular data set
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Maximum likelihood estimate for θ is trivial
. Maximum likelihood selects θ that minimizes KL-divergence

between model and training data W distributions
. Saturated model in which each word is generated by its own rule

replicates training data distribution W exactly
⇒ Saturated model is maximum likelihood estimate

. Maximum likelihood estimate does not find any suffixes

..
Word

.

Stem

.

t

.

a

.

l

.

k

.

i

.

n

.

g

.

Suffix

.

#
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Forcing generalization via sparse priors
. Idea: use Bayesian prior that prefers fewer rules
. Set of rules is fixed in standard PCFG estimation,

but can “turn rule off” by setting θA→β ≈ 0
. Dirichlet prior with αA→β ≈ 0 prefers θA→β ≈ 0

 0
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P
(θ

1
|α
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Rule probability θ1

α = (1,1)
α = (0.5,0.5)

α = (0.25,0.25)
α = (0.1,0.1)

12/86



Morphological segmentation experiment

. Trained on orthographic verbs from U Penn. Wall Street Journal
treebank

. Uniform Dirichlet prior prefers sparse solutions as α → 0

. Gibbs sampler samples from posterior distribution of parses
▶ reanalyses each word based on parses of the other words
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Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed

including including including including
add add add add

adds adds adds add s
added added add ed added

adding adding add ing add ing
continue continue continue continue

continues continues continue s continue s
continued continued continu ed continu ed

continuing continuing continu ing continu ing
report report report report

reports report s report s report s
reported reported reported reported

reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsiz e downsiz e

downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted

14/86



Relative frequencies of inflected verb forms
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Types and tokens
. A word type is a distinct word shape
. A word token is an occurrence of a word

Data = “the cat chased the other cat”
Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”
Types = “the”, “cat”, “chased”, “other”

. Estimating θ from word types rather than word tokens eliminates
(most) frequency variation

▶ 4 common verb suffixes, so when estimating from verb types
θSuffix→i n g # ≈ 0.25

. Several psycholinguists believe that humans learn morphology from
word types

. Adaptor grammar mimics Goldwater et al “Interpolating between
Types and Tokens” morphology-learning model
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Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted
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Desiderata for an extension of PCFGs

. PCFG rules are “too small” to be effective units of generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

. Type-based inference mitigates over-dispersion
⇒ Hierarchical Bayesian model where:

▶ context-free rules generate types
▶ another process replicates types to produce tokens

. Adaptor grammars:
▶ learn probability of entire subtrees (how a nonterminal expands to

terminals)
▶ use grammatical hierarchy to define a Bayesian hierarchy, from

which type-based inference naturally emerges
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Bayesian inference for Dirichlet-multinomials

. Probability of next event with uniform Dirichlet prior
with mass α over m outcomes and observations
Z1:n = (Z1, . . . ,Zn)

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

where nk(Z1:n) is number of times k appears in Z1:n

. Example: Coin (m = 2), α = 1, Z1:2 = (heads, heads)
▶ P(Z3 = heads | Z1:2, α) ∝ 2.5
▶ P(Z3 = tails | Z1:2, α) ∝ 0.5
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Dirichlet-multinomials with many outcomes

. Predictive probability:

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

. Suppose the number of outcomes m ≫ n. Then:

P(Zn+1 = k | Z1:n, α) ∝


nk(Z1:n) if nk(Z1:n) > 0

α/m if nk(Z1:n) = 0

. But most outcomes will be unobserved, so:

P(Zn+1 ̸∈ Z1:n | Z1:n, α) ∝ α
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From Dirichlet-multinomials to Chinese Restaurant
Processes

. . .
. Suppose number of outcomes is unbounded

but we pick the event labels
. If we number event types in order of occurrence
⇒ Chinese Restaurant Process

Z1 = 1

P(Zn+1 = k | Z1:n, α) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (0)

..........

. Customer → table mapping Z =

. P(z) = 1

. Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (1)

...

α

.........

. Customer → table mapping Z = 1

. P(z) = α/α

. Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (2)

...

1

....

α

......

. Customer → table mapping Z = 1, 1

. P(z) = α/α× 1/(1 + α)

. Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (3)

...

2

....

α

........

. Customer → table mapping Z = 1, 1, 2

. P(z) = α/α× 1/(1 + α)× α/(2 + α)

. Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (4)

...

2

.....

1

...

α

.....

. Customer → table mapping Z = 1, 1, 2, 1

. P(z) = α/α× 1/(1 + α)× α/(2 + α)× 2/(3 + α)

. Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Labeled Chinese Restaurant Process (0)

..........

. Table → label mapping Y =

. Customer → table mapping Z =

. Output sequence X =

. P(X) = 1

. Base distribution P0(Y) generates a label Yk for each table k

. All customers sitting at table k (i.e., Zi = k) share label Yk

. Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (1)

..fish.

α

.........

. Table → label mapping Y = fish

. Customer → table mapping Z = 1

. Output sequence X = fish

. P(X) = α/α× P0(fish)

. Base distribution P0(Y) generates a label Yk for each table k

. All customers sitting at table k (i.e., Zi = k) share label Yk

. Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (2)

..fish.

1

....

α

......

. Table → label mapping Y = fish

. Customer → table mapping Z = 1, 1

. Output sequence X = fish,fish

. P(X) = P0(fish)× 1/(1 + α)

. Base distribution P0(Y) generates a label Yk for each table k

. All customers sitting at table k (i.e., Zi = k) share label Yk

. Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (3)

..fish.

2

... apple.

α

.......

. Table → label mapping Y = fish,apple

. Customer → table mapping Z = 1, 1, 2

. Output sequence X = fish,fish,apple

. P(X) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)

. Base distribution P0(Y) generates a label Yk for each table k

. All customers sitting at table k (i.e., Zi = k) share label Yk

. Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (4)

..fish.

2

.... apple.

1

...

α

.....

. Table → label mapping Y = fish,apple

. Customer → table mapping Z = 1, 1, 2

. Output sequence X = fish,fish,apple,fish

. P(X) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)× 2/(3 + α)

. Base distribution P0(Y) generates a label Yk for each table k

. All customers sitting at table k (i.e., Zi = k) share label Yk

. Customer i sitting at table Zi has label Xi = YZi
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Summary: Chinese Restaurant Processes
. Chinese Restaurant Processes (CRPs) generalise

Dirichlet-Multinomials to an unbounded number of outcomes
▶ concentration parameter α controls how likely a new outcome is
▶ CRPs exhibit a rich get richer power-law behaviour

. Pitman-Yor Processes (PYPs) generalise CRPs with an additional
concentration parameter

▶ this parameter specifies the asymptotic power-law behaviour
. Labeled CRPs use a base distribution to define distributions over

arbitrary objects
▶ base distribution “labels the tables”
▶ base distribution can have infinite support
▶ concentrates mass on a countable subset
▶ power-law behaviour ⇒ Zipfian distributions
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Adaptor grammars: informal description

. The trees generated by an adaptor grammar are defined by CFG
rules as in a CFG

. A subset of the nonterminals are adapted

. Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG

. Adapted nonterminals can expand in two ways:
▶ by picking a rule and recursively expanding its children, or
▶ by generating a previously generated tree, with probability

proportional to the number of times previously generated
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Adaptor grammar for stem-suffix morphology

Word → Stem Suffix
Stem → Phons
Suffix → Phons
Phons → Phon
Phons → Phon Phons

or in abbreviated form with
non-adapted nonterminals suppressed

.. Word.

Stem

.

Phons

.

Phon

.

t

.

Phons

.

Phon

.

a

.

Phons

.

Phon

.

l

.

Phons

.

Phon

.

k

.

Suffix

.

Phons

.

Phon

.

i

.

Phons

.

Phon

.

n

.

Phons

.

Phon

.

g

.

Phons

.

Phon

.

#

Word → Stem Suffix
Stem → Phon+

Suffix → Phon+

..
Word

.

Stem

.

t

.

a

.

l

.

k

.

Suffix

.

i

.

n

.

g

.

#
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Adaptor grammar for stem-suffix morphology (0)

..Word → Stem Suffix ........

Stem → Phoneme+

....

Suffix → Phoneme⋆

.......

Generated words:
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Adaptor grammar for stem-suffix morphology (1a)

..Word → Stem Suffix .........

Stem → Phoneme+

....

Suffix → Phoneme⋆

.......

Generated words:
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Adaptor grammar for stem-suffix morphology (1b)

..Word → Stem Suffix .........

Stem → Phoneme+

.....

Suffix → Phoneme⋆

........

Generated words:
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Adaptor grammar for stem-suffix morphology (1c)

..Word → Stem Suffix .........

Stem → Phoneme+

.

Stem

c a t

....

Suffix → Phoneme⋆

.

Suffix

s

.......

Generated words:
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Adaptor grammar for stem-suffix morphology (1d)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

........

Stem → Phoneme+

.

Stem

c a t

....

Suffix → Phoneme⋆

.

Suffix

s

.......

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2a)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

.........

Stem → Phoneme+

.

Stem

c a t

....

Suffix → Phoneme⋆

.

Suffix

s

.......

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2b)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

.........

Stem → Phoneme+

.

Stem

c a t

.....

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2c)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

.........

Stem → Phoneme+

.

Stem

c a t

..

Stem

d o g

...

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2d)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

..
Word

Stem

d o g

Suffix

s

.......

Stem → Phoneme+

.

Stem

c a t

..

Stem

d o g

...

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats, dogs
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Adaptor grammar for stem-suffix morphology (3)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

...
Word

Stem

d o g

Suffix

s

.......

Stem → Phoneme+

.

Stem

c a t

..

Stem

d o g

...

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats, dogs, cats
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Properties of adaptor grammars

. Probability of reusing an adapted subtree TA
∝ number of times TA was previously generated

▶ adapted subtrees are not independent
– an adapted subtree can be more probable than the rules used

to construct it
▶ but they are exchangable ⇒ efficient sampling algorithms
▶ “rich get richer” ⇒ Zipf power-law distributions

. Each adapted nonterminal is associated with a
Chinese Restaurant Process or Pitman-Yor Process

▶ CFG rules define base distribution of CRP or PYP
. CRP/PYP parameters (e.g., αA) can themselves be estimated

(e.g., slice sampling), so AG models have no tunable parameters
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Bayesian hierarchy inverts grammatical hierarchy

. Grammatically, a Word is
composed of a Stem and a
Suffix, which are composed
of Chars

. To generate a new Word
from an Adaptor Grammar:

▶ reuse an old Word, or
▶ generate a fresh one from

the base distribution, i.e.,
generate a Stem and a
Suffix

..
Word

.

Stem

.

Chars

.

Char

.

t

.

Chars

.

Char

.

a

.

Chars

.

Char

.

l

.

Chars

.

Char

.

k

.

Suffix

.

Chars

.

Char

.

i

.

Chars

.

Char

.

n

.

Chars

.

Char

.

g

.

Chars

.

Char

.

#
. Lower in the tree ⇒ higher in Bayesian hierarchy
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Learning an adaptor grammar

. Sampling algorithms are a natural implementation because they
sample the parameters (tree fragments) as well as their values

▶ sufficient statistics are number of times each rule and tree
fragment is used in a derivation

. Gibbs sampler for learning an AG from strings alone:
1. select a training sentence (e.g., at random)
2. (subtract sentence’s rule and fragment counts if parsed before)
3. sample a parse for sentence given parses of other sentences

– PCFG proposal distribution and MH correction
4. add new parse’s rule and tree fragment counts to global totals
▶ repeat steps 1.–4. forever

. Computationally-intensive step is parsing sentences of training data
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Unsupervised word segmentation

. Input: phoneme sequences with sentence boundaries (Brent)

. Task: identify word boundaries, and hence words
j △ u ▲ w △ ɑ △ n △ t ▲ t △ u ▲ s △ i ▲ ð △ ə ▲ b △ ʊ △ k

“you want to see the book”
. Ignoring phonology and morphology, this involves learning the

pronunciations of the lexical items in the language
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PCFG model of word segmentation

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons
Phon → a | b | . . .

. CFG trees can describe
segmentation, but

. PCFGs can’t distinguish good
segmentations from bad ones

▶ PCFG rules are too small a unit of generalisation
▶ need to learn e.g., probability that bʊk is a Word
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Towards non-parametric grammars

Words → Word
Words → Word Words
Word → all possible phoneme sequences

. Learn probability Word → b ʊ k

. But infinitely many possible Word expansions
⇒ this grammar is not a PCFG
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. Given fixed training data, only finitely many useful rules
⇒ use data to choose Word rules as well as their probabilities

. An adaptor grammar can do precisely this!
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Unigram adaptor grammar (Brent)

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons
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. Word nonterminal is adapted
⇒ To generate a Word:

▶ select a previously generated Word subtree
with prob. ∝ number of times it has been generated

▶ expand using Word → Phons rule with prob. ∝ αWord
and recursively expand Phons

54/86



Unigram model of word segmentation
. Unigram “bag of words” model (Brent):

▶ generate a dictionary, i.e., a set of words, where each word is a
random sequence of phonemes

– Bayesian prior prefers smaller dictionaries
▶ generate each utterance by choosing each word at random from

dictionary
. Brent’s unigram model as an adaptor grammar:

Words → Word+

Word → Phoneme+
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. Accuracy of word segmentation learnt: 56% token f-score

(same as Brent model)
. But we can construct many more word segmentation models using

AGs
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Adaptor grammar learnt from Brent corpus
. Initial grammar

1 Words → Word Words 1 Words → Word
1 Word → Phon
1 Phons → Phon Phons 1 Phons → Phon
1 Phon → D 1 Phon → G
1 Phon → A 1 Phon → E

. A grammar learnt from Brent corpus
16625 Words → Word Words 9791 Words → Word
1575 Word → Phons
4962 Phons → Phon Phons 1575 Phons → Phon
134 Phon → D 41 Phon → G
180 Phon → A 152 Phon → E
460 Word → (Phons (Phon y) (Phons (Phon u)))
446 Word → (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word → (Phons (Phon D) (Phons (Phon 6)))
372 Word → (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))
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Undersegmentation errors with Unigram model
Words → Word+ Word → Phon+

. Unigram word segmentation model assumes each word is generated
independently

. But there are strong inter-word dependencies (collocations)

. Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)
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Accuracy of unigram model
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Boundary precision of unigram model

Number of training sentences

B
ou

nd
ar

y 
P

re
ci

si
on

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000 10000

Boundary recall of unigram model

Number of training sentences

B
ou

nd
ar

y 
R

ec
al

l

0.0

0.2

0.4

0.6

0.8

1 10 100 1000 10000

59/86



Collocations ⇒ Words
Sentence → Colloc+
Colloc → Word+

Word → Phon+
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. A Colloc(ation) consists of one or more words
. Both Words and Collocs are adapted (learnt)
. Significantly improves word segmentation accuracy over unigram

model (76% f-score; ≈ Goldwater’s bigram model)
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Two hypotheses about language acquisition
1. Pre-programmed staged acquisition of linguistic components

▶ Conventional view of lexical acquisition, e.g., Kuhl (2004)
– child first learns the phoneme inventory, which it then uses to

learn
– phonotactic cues for word segmentation, which are used to

learn
– phonological forms of words in the lexicon, . . .

2. Interactive acquisition of all linguistic components together
▶ corresponds to joint inference for all components of language
▶ stages in language acquisition might be due to:

– child’s input may contain more information about some
components

– some components of language may be learnable with less data
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Synergies: an advantage of interactive learning

. An interactive learner can take advantage of synergies in
acquisition

▶ partial knowledge of component A provides information about
component B

▶ partial knowledge of component B provides information about
component A

. A staged learner can only take advantage of one of these
dependencies

. An interactive or joint learner can benefit from a positive feedback
cycle between A and B

. Are there synergies in learning how to segment words and
identifying the referents of words?
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Jointly learning words and syllables
Sentence → Colloc+ Colloc → Word+

Word → Syllable{1:3} Syllable → (Onset) Rhyme
Onset → Consonant+ Rhyme → Nucleus (Coda)
Nucleus → Vowel+ Coda → Consonant+
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. Rudimentary syllable model (an improved model might do better)

. With 2 Collocation levels, f-score = 84%
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Distinguishing internal onsets/codas helps
Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF SyllableIF → (OnsetI) RhymeF
OnsetI → Consonant+ RhymeF → Nucleus (CodaF)
Nucleus → Vowel+ CodaF → Consonant+

.. Sentence.

Colloc

.

Word

.

OnsetI

.

h

.

Nucleus

.

æ

.

CodaF

.

v

.

Colloc

.

Word

.

Nucleus

.

ə

.

Word

.

OnsetI

.

d

.

r

.

Nucleus

.

ɪ

.

CodaF

.

ŋ

.

k
. With 2 Collocation levels, not distinguishing initial/final clusters,

f-score = 84%
. With 3 Collocation levels, distinguishing initial/final clusters,

f-score = 87%
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Collocations2 ⇒ Words ⇒ Syllables
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Accuracy of Collocation + Syllable model
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Accuracy of Collocation + Syllable model by word frequency
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Summary of English word segmentation

. Word segmentation accuracy depends on the kinds of
generalisations learnt.

Generalization Accuracy
words as units (unigram) 56%
+ associations between words (collocations) 76%
+ syllable structure 84%
+ interaction between

segmentation and syllable structure 87%

. Synergies in learning words and syllable structure
▶ joint inference permits the learner to explain away potentially

misleading generalizations
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Prior work: mapping words to topics

. Input to learner:
▶ word sequence: Is that the pig?
▶ objects in nonlinguistic context: dog, pig

. Learning objectives:
▶ identify utterance topic: pig
▶ identify word-topic mapping: pig 7→ pig
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Frank et al (2009) “topic models” as PCFGs
. Prefix sentences with possible

topic marker, e.g., pig|dog
. PCFG rules choose a topic from

topic marker and propagate it
through sentence

. Each word is either generated
from sentence topic or null
topic ∅
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. Grammar can require at most one topical word per sentence

. Bayesian inference for PCFG rules and trees corresponds to
Bayesian inference for word and sentence topics using topic model
(Johnson 2010)
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Word segmentation with adaptor grammars

. Adaptor grammars (AGs) can learn the probability of entire
subtrees (as well as rules)

. AGs can express several different word segmentation models

. Learning collocations as well as words significantly improves
segmentation accuracy

Sentence → Colloc+
Colloc → Word+

Word → Phon+
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AGs for joint segmentation and topic-mapping
. Combine topic-model PCFG with word segmentation AGs
. Input consists of unsegmented phonemic forms prefixed with

possible topics:
pig|dog ɪ z ð æ t ð ə p ɪ g

. E.g., combination of Frank “topic model”
and unigram segmentation model

▶ equivalent to Jones et al (2010)

. Easy to define other
combinations of topic
models and
segmentation models
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Collocation topic model AG
..
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. Collocations are either “topical” or not

. Easy to modify this grammar so
▶ at most one topical word per sentence, or
▶ at most one topical word per topical collocation
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Experimental set-up
. Input consists of unsegmented phonemic forms prefixed with

possible topics:
pig|dog ɪ z ð æ t ð ə p ɪ g

▶ Child-directed speech corpus collected by Fernald et al (1993)
▶ Objects in visual context annotated by Frank et al (2009)

. Bayesian inference for AGs using MCMC (Johnson et al 2009)
▶ Uniform prior on PYP a parameter
▶ “Sparse” Gamma(100, 0.01) on PYP b parameter

. For each grammar we ran 8 MCMC chains for 5,000 iterations
▶ collected word segmentation and topic assignments at every 10th

iteration during last 2,500 iterations
⇒ 2,000 sample analyses per sentence

▶ computed and evaluated the modal (i.e., most frequent) sample
analysis of each sentence
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Does non-linguistic context help segmentation?
Model word segmentation

segmentation topics token f-score
unigram not used 0.533
unigram any number 0.537
unigram one per sentence 0.547

collocation not used 0.695
collocation any number 0.726
collocation one per sentence 0.719
collocation one per collocation 0.750

. Not much improvement with unigram model
▶ consistent with results from Jones et al (2010)

. Larger improvement with collocation model
▶ most gain with one topical word per topical collocation

(this constraint cannot be imposed on unigram model)
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Does better segmentation help topic identification?
. Task: identify object (if any) this sentence is about

Model sentence topic
segmentation topics accuracy f-score

unigram not used 0.709 0
unigram any number 0.702 0.355
unigram one per sentence 0.503 0.495

collocation not used 0.709 0
collocation any number 0.728 0.280
collocation one per sentence 0.440 0.493
collocation one per collocation 0.839 0.747

. The collocation grammar with one topical word per topical
collocation is the only model clearly better than baseline
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Does better segmentation help learning word-topic
mappings?

. Task: identify head nouns of NPs referring to topical objects
(e.g. pɪg 7→ pig in input pig | dog ɪ z ð æ t ð ə p ɪ g)

Model topical word
segmentation topics f-score

unigram not used 0
unigram any number 0.149
unigram one per sentence 0.147

collocation not used 0
collocation any number 0.220
collocation one per sentence 0.321
collocation one per collocation 0.636

. The collocation grammar with one topical word per topical
collocation is best at identifying head nouns of topical NPs
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Accuracy as a function of grammar and topicality
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Summary of jointly learning word segmentation
and word-to-topic mappings

. Word to object mapping is learnt more accurately when words are
segmented more accurately

▶ improving segmentation accuracy improves topic detection and
acquisition of topical words

. Word segmentation accuracy improves when exploiting
non-linguistic context information

▶ incorporating word-topic mapping improves segmentation accuracy
(at least with collocation grammars)

⇒ There are synergies a learner can exploit when learning word
segmentation and word-object mappings

. Limitation: model handles topic dependencies by “feature-passing”,
but atomic labels have limited ability to handle richly-structured
topics
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Conclusions and future work
. Joint learning often uses information in the input more effectively

than staged learning
▶ Learning syllable structure and word segmentation
▶ Learning word-topic associations and word segmentation

. Do children exploit such synergies in language acquisition?

. Adaptor grammars are a flexible framework for stating
non-parametric hierarchical Bayesian models

▶ the accuracies obtained here are the best reported in the literature
. Future work: make the models more realistic

▶ extend expressive power of AGs (e.g., feature-passing)
▶ richer data (e.g., more non-linguistic context)
▶ more realistic data (e.g., stress, phonological variation)
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How specific should our computational models be?
. Marr’s (1982) three levels of computational models:

▶ computational level (inputs, outputs and relation between them)
▶ algorithmic level (steps involved in mapping from input to output)
▶ implementation level (physical processes involved)

. Algorithmic-level models are extremely popular, but I think we
should focus on computational-level models first

▶ we know almost nothing about how hierarchical structures are
represented and manipulated in the brain

⇒ we know almost nothing about which data structures and
operations are neurologically plausible

▶ current models only explain a tiny fraction of language processing
or acquisition

▶ typically computational models can be extended, while algorithms
need to be completely changed

⇒ today’s computational models have a greater chance of being
relevant than today’s algorithms

84/86



Why a child’s learning algorithm may be nothing
like our algorithms

. Enormous differences in “hardware” ⇒ different feasible algorithms

. As scientists we need generic learning algorithms, but a child only
needs a specific learning algorithm

▶ as scientists we want to study the effects of different modelling
assumptions on learning

⇒ we need generic algorithms that work for a range of different
models, so we can compare them

▶ a child only needs an algorithm that works for whatever model
they have

⇒ the child’s algorithm might be specialised to their model, and need
not work at all for other kinds of models

. The field of machine learning has developed many generic learning
algorithms: Expectation-maximisation, variational Bayes, Markov
chain Monte Carlo, Gibbs samplers, particle filters, . . .
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The future of Bayesian models of language
acquisition

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

. So far our grammars and priors don’t encode much linguistic
knowledge, but in principle they can!

▶ how do we represent this knowledge?
▶ how can we learn efficiently using this knowledge?

. Should permit us to empirically investigate effects of specific
universals on the course of language acquisition

. My guess: the interaction between innate knowledge and learning
will be richer and more interesting than either the rationalists or
empiricists currently imagine!
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