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Topic models for document processing

• Topic models cluster documents into
one or more topics

I usually unsupervised (i.e., topics
aren’t given in training data)

• Important for document analysis and
information extraction

I Example: clustering news stories for
information retrieval

I Example: tracking evolution of a
research topic over time
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Mixture versus admixture topic models

• In a mixture model, each document has a single topic

I all words in the document come from this topic

• In admixture models, each document has a distribution over topics

I a single document can have multiple topics (number of topics in a
document controlled by prior)

⇒ can capture more complex relationships between documents than
a mixture model

• Both mixture and admixture topic models typically use a “bag of
words” representation of a document
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Example: documents from NIPS corpus

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Example (cont): ignore function words

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Example (cont): mixture topic model

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Example (cont): admixture topic model

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .

8/57



My contribution: collocation topic models

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Mixture versus admixture models

• Admixture models are more complex than mixture models

⇒ Admixture models often require more data to learn

• Mixture models can describe shorter documents (phrases or
clauses) fairly well, where one topic per document assumption is
not too bad

• Admixture models are better for longer documents, which are likely
to have more than one topic
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Problems with the “bag of words” assumption

• Each word is generated independently given the document’s
topic(s)

⇒ Ignores relationship between adjacent words

• But especially in technical documents, much specialist terminology
consists of multi-word expressions or collocations

I membrane potential is strongly indicative of neuroscience,
but membrane and potential are not

I neural network is strongly indicative of machine learning,
but neural and network are not

• Topic models can identify important terminology of a field
I much more useful when multi-word expressions are also identified
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Using Bayesian inference to find document topics

and topical words
• Define generative models M of document collections D

I P(D | M) is probability of generating D from M

• Define a Bayesian prior P(M) over possible generative models M
I P(M) is chosen to prefer “simpler” models

• Goal: find the highest probability model M given document
collection D

• Bayes rule “inverts” the generative process:

P(M | D)︸ ︷︷ ︸
Posterior

∝ P(D | M)︸ ︷︷ ︸
Likelihood

P(M)︸ ︷︷ ︸
Prior

• Computational challenge: find models M with high posterior
probability
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Generative mixture and admixture topic models
• In mixture models, each document has a single topic

I Generative model:
for each topic i , generate a word distribution ϕi

for each document j
generate a document topic zj from set of topics
for each word position k , generate word wk

from document topic’s word distribution ϕzj

• In admixture models, each document has a distribution over topics
I Generative model:

for each topic i , generate a word distribution ϕi

for each document j
generate a document topic distribution θj over topics
for each word position k
generate word’s topic zk from document’s topic distribution θj
generate word wk from word’s topic distribition ϕzk
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Bayesian inference for topic models

• Both mixture and admixture topic models are products of
multinomial distributions

⇒ conjugate prior is a product of Dirichlet distributions

• Dirichlet prior can bias towards sparse distributions
I few words in each topic
I few topics in each document (admixture model)

• Standard Bayesian inference procedures can be used to learn topic
models

I Markov Chain Monte Carlo (MCMC)
I Mean-field Variational Bayes
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Mixture topic model (formal description)

ϕi | β ∼ Dir(β) i = 1, . . . , ` = number of topics
zj | θ ∼ Cat(θ) j = 1, . . . ,m = number of documents

wj ,k | ϕ, zj ∼ ϕzj
j = 1, . . . ,m

k = 1, . . . , n = number of words in document

WZθ

ϕβ

n m

`
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Admixture (LDA) topic model (formal description)

ϕi ∼ Dir(β) i = 1, . . . , ` = number of topics
θj ∼ Dir(α) j = 1, . . . ,m = number of documents
zj ,k ∼ Cat(θj) j = 1, . . . ,m

k = 1, . . . , n = number of words in a document
wj ,k ∼ Cat(ϕzj,k

) j = 1, . . . ,m

k = 1, . . . , n

WZθα

ϕβ

n m

`
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Grammars and automata

• Context-Free Grammars (CFGs) were initially developed as a formal
model of hierarchical constituent structure in natural languages

• But they are useful for other applications as well
I important tool for compiler design
I strong connections with push-down automata

• Here we use Probabilistic CFGs as compact specifications of
stochastic automata
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Probabilistic context-free grammars
• Probabilistic context-free grammars (PCFGs) define probability

distributions over trees
• Each nonterminal node expands by

I choosing a rule expanding that nonterminal, and
I recursively expanding any nonterminal children it contains

• Probability of tree is product of probabilities of rules used to
construct it

Probability θr Rule r
1 S→ NP VP
0.7 NP→ Sam
0.3 NP→ Sandy
1 VP→ V NP
0.8 V→ likes
0.2 V→ hates

S

NP VP

Sam V NP

likes Sandy

P(Tree) =

1× 0.7× 1× 0.8× 0.3
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Context-Free Grammars (formal definition)
• A CFG (N ,W ,R, S) defines sets of trees TX for each
X ∈ N ∪W :

I if X ∈ W then TX = {X} (the 1-node tree labelled X )
I if X ∈ N then:

TX =
⋃

X→B1...Bn∈RX

TreeX (TB1 , . . . , TBn)

where RA = {A→ β : A→ β ∈ R} for each A ∈ N , and

TreeA(TB1 , . . . , TBn) =

{
A

t1 tn. . .
:

ti ∈ TBi
,

i = 1, . . . , n

}

That is, TreeA(TB1 , . . . , TBn) consists of the set of trees with
whose root node is labelled A and whose ith child is a member of
TBi

.
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Probabilistic Context-Free Grammars
• A PCFG is a CFG (N ,W ,R, S) and multinomials θA over RA for

each A ∈ N
I θA→β is the probability of A expanding to β

• A PCFG associates each X ∈ N ∪W with a distribution GX over
trees TX

I if X ∈ W then GX (X ) = 1 (i.e., all mass concentrated on 1-node
tree)

I if A ∈ N then:

GA(t) =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn)(t) (1)

where:

TDA(G1, . . . ,Gn)

(
A

t1 tn. . .

)
=

n∏
i=1

Gi (ti ).

That is, TDA(G1, . . . ,Gn) is a distribution over TA where each
subtree ti is generated independently from Gi .
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Bayesian inference for PCFGs

• Each rule’s probability θA→β is given by a categorical
distribution associated with its parent A

⇒ A PCFG can be viewed as a product of multinomials

• The conjugate prior is a product of Dirichlet
distributions (one per nonterminal)

• Bayesian inference procedures for PCFGs
I Markov Chain Monte Carlo (Metropolis-within-Gibbs)
I Mean-field variational Bayes

θA | αA ∼ Dir(αA), A ∈ N = set of nonterminals
Ti | θA ∼ TDS(θ), i = 1, . . . , n = number of sentences
Wi | Ti = Yield(Ti). Wi is sequence of words in sentence i

W

T

n

θ

α

N
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Mixture topic models as PCFGs (1)

• Idea: Design PCFG so that:
I non-deterministic rules implement generative steps in topic model
I deterministic rules propagate information to appropriate place

Sentence→ Topic′i i ∈ 1, . . . , `
Topic′i → Topic′i Topici i ∈ 1, . . . , `
Topic′i → Topici i ∈ 1, . . . , `
Topici → w i ∈ 1, . . . , `

w ∈ W

Sentence

Topic4’

Topic4’

Topic4’

Topic4’

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic4

faster
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Mixture topic models as PCFGs (2)

• Choose a topic for sentence (non-deterministically)

Sentence→ Topic′i i ∈ 1, . . . , `
Topic′i → Topic′i Topici i ∈ 1, . . . , `
Topic′i → Topici i ∈ 1, . . . , `
Topici → w i ∈ 1, . . . , `

w ∈ W

Sentence

Topic4’

Topic4’

Topic4’

Topic4’

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic4

faster
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Mixture topic models as PCFGs (3)

• Copy sentence topic to each word (deterministically)

Sentence→ Topic′i i ∈ 1, . . . , `
Topic′i → Topic′i Topici i ∈ 1, . . . , `
Topic′i → Topici i ∈ 1, . . . , `
Topici → w i ∈ 1, . . . , `

w ∈ W

Sentence

Topic4’

Topic4’

Topic4’

Topic4’

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic4

faster
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Mixture topic models as PCFGs (4)

• Generate each word from sentence topic (non-deterministically)

Sentence→ Topic′i i ∈ 1, . . . , `
Topic′i → Topic′i Topici i ∈ 1, . . . , `
Topic′i → Topici i ∈ 1, . . . , `
Topici → w i ∈ 1, . . . , `

w ∈ W

Sentence

Topic4’

Topic4’

Topic4’

Topic4’

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic4

faster
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Why are these reductions interesting?

• Not claiming that topic modelling should be done using PCFGs

I PCFG parsing takes time proportional to cube of document length
I standard topic model algorithms take time linear in document

length

• The PCFG reductions suggest new kinds of models that merge
grammars and topic models

I easily implemented and evaluated on small corpora

• Grammars are good at:

I grouping words into hierarchically-structured larger units
I tracking relative ordering of these units
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The internal structure of named entities
• Named entities: people, companies, places, etc.

• Represented as flat Noun Phrases (NPs) in Penn WSJ treebank
• Internal structure useful for e.g. coreference resolution

I Bill Clinton and Hillary Clinton are unlikely to corefer because Bill
and Hillary are both first names

I Secretary Clinton and Hillary Clinton can corefer because
Secretary is an honorific

• Can we learn the internal structure of named entities?

I document ∼ base NP consisting of proper nouns
topic ∼ type of named entity

I two “topics” (person names, company names)
I each “topic” has six ordered positions
I learn which words occur in which position of each “topic”

• Used in unsupervised cross-document coreference model of
Elsner, Charniak and Johnson (2009)
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A mixture topic grammar for named entities

NP

AP

AP0

A0

Mr

AP1

A1

Albert

AP2

A2

J.

AP3

A3

Smith

AP4

A4

Jr.

NP→ AP NP→ BP
AP→ APi BP→ BPi 0 ≤ i ≤ 6
APi → Ai BPi → Bi 0 ≤ i ≤ 6
APi → Ai APj BPi → Bi BPj 0 ≤ i < j ≤ 6

NP

AP

AP1

A1

Barrett

AP3

A3

Smith
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Analyses of company names

NP

BP

BP0

B0

Balfour

BP1

B1

Maclaine

BP5

B5

International

BP6

B6

Ltd.

NP→ AP NP→ BP
AP→ APi BP→ BPi 0 ≤ i ≤ 6
APi → Ai BPi → Bi 0 ≤ i ≤ 6
APi → Ai APj BPi → Bi BPj 0 ≤ i < j ≤ 6
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From Multinomials to Dirichlet Processes

• Dirichlet Processes (DPs) are the infinite-dimensional
generalisation of Dirichlet-Multinomials

• Predictive distribution: predict zn+1 given observations
z = (z1, . . . , zn)

I Finite set of outcomes (1, . . . ,m):
Dirichlet-multinomial with prior α = (α1, . . . , αm)

P(Zn+1 = k | z) ∝ nk(z) + αk

where nk(z) is the number of times k appears in z = (z1, . . . , zn)
I Infinite set of outcomes Ω:

Dirichlet process DP(α,P0) with base distribution P0(Z ) and
concentration parameter α

P(Zn+1 = z ′ | z) ∝ nz ′(z) + αP0(z ′)
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Dirichlet Processes as Adaptors
• DPs generalise Dirichlet-multinomials

P(Zn+1 = z ′ | z) ∝ nz ′(z) + αP0(z ′)

• DPs follow a “rich get richer” law
I frequent outcomes are increasingly likely to be predicted

• The DP is stochastic:
in general, every sample z = (z1, z2, . . .) is different
⇒ DPs map a base distribution P0 to a distribution over distributions

DP(α,P0)

• Pitman-Yor Processes (PYPs) generalise Dirichlet Processes

• An adaptor is a function that maps a base distribution P0 to a
distribution over distributions with the same support as P0

I Dirichlet Processes and Pitman-Yor Processes can be used as
adaptors
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Adaptor grammars as generalised PCFGs
• An adaptor grammar is a PCFG with a set A ⊆ N of adapted

nonterminals, and adaptors CX for each X ∈ A
• Dirichlet Process Adaptor Grammar:

I If X ∈ W then GX (X ) = 1 (all mass on singelton tree X )
I If X ∈ N \ A is not adapted then X expands as in PCFG, i.e.,:

GX =
∑

X→Y1...Ym∈RX

θX→Y1...YmTDX (GY1 , . . . ,GYm)

I If X ∈ A is adapted, then PCFG distribution is adapted:

GX ∼ DP(α,HX )

HX =
∑

X→Y1...Ym∈RX

θX→Y1...YmTDX (GY1 , . . . ,GYm)

• Other kinds of adaptor grammars use different adaptors
I Pitman-Yor adaptor grammars use Pitman-Yor Processes as

adaptors
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Predictive distribution of DP adaptor grammars

• Predictive distribution: predict next tree tn+1 given previously
generated trees t = (t1, . . . , tn)

• Predictive model “caches” adapted subtrees:

I An unadapted nonterminal B expands using B → β with
probability θB→β

I Each adapted nonterminal B is associated with a DP that caches
previously generated subtrees in TB

I An adapted nonterminal B expands:

– to a subtree t ′ ∈ TB probability proportional to the number of
times t ′ was previously generated

– using B → β with probability proportional to α θB→β

37/57



Predictive distribution of DP adaptor grammars

• Predictive distribution: predict next tree tn+1 given previously
generated trees t = (t1, . . . , tn)

• Predictive model “caches” adapted subtrees:

I An unadapted nonterminal B expands using B → β with
probability θB→β

I Each adapted nonterminal B is associated with a DP that caches
previously generated subtrees in TB

I An adapted nonterminal B expands:

– to a subtree t ′ ∈ TB probability proportional to the number of
times t ′ was previously generated

– using B → β with probability proportional to α θB→β

37/57



Predictive distribution of DP adaptor grammars

• Predictive distribution: predict next tree tn+1 given previously
generated trees t = (t1, . . . , tn)

• Predictive model “caches” adapted subtrees:
I An unadapted nonterminal B expands using B → β with

probability θB→β

I Each adapted nonterminal B is associated with a DP that caches
previously generated subtrees in TB

I An adapted nonterminal B expands:

– to a subtree t ′ ∈ TB probability proportional to the number of
times t ′ was previously generated

– using B → β with probability proportional to α θB→β

37/57



Predictive distribution of DP adaptor grammars

• Predictive distribution: predict next tree tn+1 given previously
generated trees t = (t1, . . . , tn)

• Predictive model “caches” adapted subtrees:
I An unadapted nonterminal B expands using B → β with

probability θB→β

I Each adapted nonterminal B is associated with a DP that caches
previously generated subtrees in TB

I An adapted nonterminal B expands:

– to a subtree t ′ ∈ TB probability proportional to the number of
times t ′ was previously generated

– using B → β with probability proportional to α θB→β

37/57



Predictive distribution of DP adaptor grammars

• Predictive distribution: predict next tree tn+1 given previously
generated trees t = (t1, . . . , tn)

• Predictive model “caches” adapted subtrees:
I An unadapted nonterminal B expands using B → β with

probability θB→β

I Each adapted nonterminal B is associated with a DP that caches
previously generated subtrees in TB

I An adapted nonterminal B expands:

– to a subtree t ′ ∈ TB probability proportional to the number of
times t ′ was previously generated

– using B → β with probability proportional to α θB→β

37/57



Predictive distribution of DP adaptor grammars

• Predictive distribution: predict next tree tn+1 given previously
generated trees t = (t1, . . . , tn)

• Predictive model “caches” adapted subtrees:
I An unadapted nonterminal B expands using B → β with

probability θB→β

I Each adapted nonterminal B is associated with a DP that caches
previously generated subtrees in TB

I An adapted nonterminal B expands:

– to a subtree t ′ ∈ TB probability proportional to the number of
times t ′ was previously generated

– using B → β with probability proportional to α θB→β

37/57



Predictive distribution of DP adaptor grammars

• Predictive distribution: predict next tree tn+1 given previously
generated trees t = (t1, . . . , tn)

• Predictive model “caches” adapted subtrees:
I An unadapted nonterminal B expands using B → β with

probability θB→β

I Each adapted nonterminal B is associated with a DP that caches
previously generated subtrees in TB

I An adapted nonterminal B expands:

– to a subtree t ′ ∈ TB probability proportional to the number of
times t ′ was previously generated

– using B → β with probability proportional to α θB→β

37/57



Adaptor grammars for word segmentation
• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

y Mu Nw Ma Mn Mt Nt Mu Ns Mi ND M6 Nb MU Mk

Words→Word
Words→Word Words
Word→ Phonemes
Phonemes→ Phoneme Phonemes
Phonemes→ Phoneme
Phoneme→ a | . . . | z

• Adapted nonterminals (e.g.,
Word) highlighted and
underlined

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k
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Adaptor grammars for named entity parsing

NP→ (A0) (A1) . . . (A6) NP→ (B0) (B1) . . . (B6)
A0→ Words B0→ Words
. . . . . .
A6→ Words B6→ Words
NP→ Unordered+ Unordered→ Words
Words→ Word Words→ Words Word
Word→ w for each w ∈ W

• Grammar learns three kinds of named entities

• Two are ordered sequences as before
I each “slot” can be filled with a collocation
I captures multi-word expressions like van Dover
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Sample parses for named entities

NP

A1

Words

Word

robert

A2

Words

Word

b

A3

Words

Words

Word

van

Word

dover

NP

B0

Words

Words

Word

american

Word

express

B1

Words

Words

Word

information

Word

services

B6

Words

Word

co

See Elsner, Charniak and Johnson (2009)
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Using “document ids” to identify documents

• Admixture topic models are standardly applied to entire documents

• Standard PCFG parsing algorithms require time proportional to
cube of sentence length

I while it’s possible for a PCFG to generate full documents, with
standard parsing algorithms it would be unacceptably slow

• Document ids permit us to break a document into several smaller
chunks

I a document id is a special nonterminal identifying the document
this input came from
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Admixture topic models as PCFGs (1)

• Prefix strings from document j with a document identifier “ j”

Sentence→ Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , `

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , `

w ∈ W

Sentence

Doc3’

Doc3’

Doc3’

Doc3’

Doc3’

3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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Admixture topic models as PCFGs (2)

• Spine deterministically propagates document id up through tree

Sentence→ Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , `

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , `

w ∈ W

Sentence

Doc3’

Doc3’

Doc3’

Doc3’

Doc3’

3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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Admixture topic models as PCFGs (3)

• Docj → Topici rules nondeterministically map documents to topics

Sentence→ Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , `

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , `

w ∈ W

Sentence

Doc3’

Doc3’

Doc3’

Doc3’

Doc3’

3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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Admixture topic models as PCFGs (4)

• Topici → w rules nondeterministically map topics to words

Sentence→ Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , `

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , `

w ∈ W

Sentence

Doc3’

Doc3’

Doc3’

Doc3’

Doc3’

3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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Topic model with collocations

• Combines PCFG for admixture topic model and segmentation
adaptor grammar

Sentence→ Docj j ∈ 1, . . . ,m
Docj → j j ∈ 1, . . . ,m
Docj → Docj Topici i ∈ 1, . . . , `;

j ∈ 1, . . . ,m
Topici →Words i ∈ 1, . . . , `
Words→Word
Words→Words Word
Word→ w w ∈ W

Sentence

Doc3

Doc3

Doc3

3

Topic5

Words

Words

Word

polynomial

Word

size

Topic15

Words

Words

Word

threshold

Word

circuits
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Data preparation in Griffiths et al (2007)

• Documents are papers from NIPS proceedings (∼ 3 million words)

• Case normalised

• Segmented at punctuation and function words

annotating an unlabeled dataset is one of the bottlenecks in

using supervised learning to build good predictive models. getting a dataset labeled

by experts can be expensive and time consuming. with the advent of

crowdsourcing services . . .

the task of recovering intrinsic images is to separate a given input image into its

material-dependent properties, known as reflectance or albedo, and its

light-dependent properties, such as shading, shadows, specular highlights, . . .
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Finding topical collocations in NIPS abstracts

• Run topical collocation adaptor grammar on NIPS corpus

• Run with ` = 20 topics (i.e., 20 distinct Topici nonterminals)

• Corpus is segmented by punctuation
I terminal strings are fairly short
⇒ inference is fairly efficient

• Used Pitman-Yor adaptors
I sampled Pitman-Yor a and b parameters
I flat and “vague Gamma” priors on Pitman-Yor a and b parameters

• See Griffiths et al (2007) for an alternative topical collocation
model, and Johnson and Goldwater (2009) for details on inference
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Sample output on NIPS corpus, 20 topics
• Multiword subtrees learned by adaptor grammar:

T 0 → gradient descent T 1 → associative memory
T 0 → cost function T 1 → standard deviation
T 0 → fixed point T 1 → randomly chosen
T 0 → learning rates T 1 → hamming distance
T 3 → membrane potential T 10 → ocular dominance
T 3 → action potentials T 10 → visual field
T 3 → visual system T 10 → nervous system
T 3 → primary visual cortex T 10 → action potential

• Sample skeletal parses:
3 (T 5 polynomial size) (T 15 threshold circuits)
4 (T 11 studied) (T 19 pattern recognition algorithms)
4 (T 2 feedforward neural network) (T 1 implements)
5 (T 11 single) (T 10 ocular dominance stripe) (T 12 low)

(T 3 ocularity) (T 12 drift rate)
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Some collocations found in NIPS corpus
Count Topic Collocation

2 T0 unites states israeli binational science foundation bsf
2 T5 batch k-means empty circles online gradient

12 T1 partially observable markov decision processes
12 T2 defense advanced research projects agency

7 T5 radial basis function rbf network
5 T6 analog vlsi neural network chip
4 T12 national science foundation graduate fellowship
3 T10 globally optimal on-line learning rules
3 T12 radial basis function rbf units
3 T13 non-parametric multi-scale statistical image model
3 T15 weight vector estimate requires knowledge
3 T17 orientation bands intersect ocular dominance
3 T18 optimal brain damage le cun
3 T6 normalized mean squared prediction error

47 T5 markov chain monte carlo
43 T12 radial basis function rbf
41 T12 radial basis function networks
39 T7 independent component analysis ica
35 T11 principal component analysis pca
29 T11 hidden markov models hmms
23 T12 radial basis function network
21 T11 hidden markov model hmm
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Some collocations found in NIPS corpus (cont.)
Count Topic Collocation

17 T11 principal components analysis pca
16 T11 hidden markov models hmm
14 T18 artificial neural network ann
13 T15 optimal brain damage obd
12 T4 kanerva sparse distributed memory
11 T14 hybrid monte carlo method
11 T19 artificial neural networks ann
10 T0 mean square error mse
10 T12 radial basis functions rbfs
10 T16 markov decision process pomdp
10 T11 hidden markov model hmm
10 T3 atr human information processing
10 T18 artificial neural networks anns
10 T9 spin spin correlation function

9 T2 naive mean field approximation
9 T0 mean squared error mse
9 T7 support vector machines svms
9 T8 owl sound localization system
8 T1 compatible lateral bipolar transistors
8 T13 nsf presidential young investigator
8 T14 basic differential multiplier method
8 T18 recurrent analog neural nets
8 T2 stochastic gradient descent algorithm
7 T1 mean squared prediction error
7 T13 online maximum margin algorithm
7 T15 delay neural network tdnn
7 T17 projection pursuit learning network
7 T17 support vector machine svm
7 T8 hybrid reinforcement learning system
7 T9 contrast sensitive silicon retina
6 T2 akaike information criterion aic
6 T10 gradient descent learning rule
6 T11 fully connected committee machine
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Application: “perspective” and sentiment analysis
• Hardisty et al (2010) use a topical collocation model in a

“perspective” sentiment analysis

• Data: the Bitter Lemons corpus
essays on mid-East issues from Israeli and Palestinian perspectives

• Supervised training: training sentences belong to one of two
“super documents”

I learns distributions over topics associated with each perspective
I can be viewed as a “semi-supervised” approach

• Label test documents by finding “super document” most likely to
generate them

• Compared a number of other supervised and semi-supervised
methods (including SVMs, other collocation-based approaches)

• Found that adaptor grammar topical collocations (with a
hierarchical topic structure) performed best of all
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Conclusions

• Topic models are useful for automatically classifying and extracting
information from document collections

• Although PCFGs are generally thought of as methods for syntactic
analysis, they can be used to express topic models as well

• Both mixture and admixture topic models can be expressed as
PCFGs

• The connection between PCFGs and topic models suggests lots of
new types of topic models

I PCFGs are good at capturing structural relationships
⇒ unsupervised models that learn the structure of names

• Adaptor grammars generalise PCFGs by memoising entire subtrees

⇒ topic models that learn topical collocations rather than just topical
words
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Future work

• Evaluation methods for topical collocation models
I many variants of these models are possible
I each of them has tunable hyperparameters
I application-based evaluation (e.g., Hardisty et al)

• Efficient inference procedures specialised for particular models
I the grammar-based approach is very general
I but more efficient procedures can be constructed for particular

models

• Find other applications of topic model/grammar hybrids
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