
The impact of language models and loss

functions on repair disfluency detection

Simon Zwarts and Mark Johnson
Department of Computing

Macquarie University
Mark.Johnson@mq.edu.au

June 3, 2011

1/27



Outline

Detecting and correcting speech errors in fluent speech

Previous work on disfluency detection

Language models and reranker features

Loss functions

Experimental results

Conclusion

2/27



A typology of speech disfluencies

• Filled pauses:

I think it’s uh refreshing to see the uh support . . .

• Parentheticals

But you know I was reading the other day . . .

• Repairs:

I want a flight to Boston uh I mean to Denver on Friday

• Restarts:

Why didn’t he why didn’t she stay at home?

Bear, Dowding and Schriberg (1992), Heeman and Allen (1997, 1999), Nakatani

and Hirschberg (1994), Stolcke and Schriberg (1996)

3/27



A typology of speech disfluencies

• Filled pauses:

I think it’s uh refreshing to see the uh support . . .

• Parentheticals

But you know I was reading the other day . . .

• Repairs:

I want a flight to Boston uh I mean to Denver on Friday

• Restarts:

Why didn’t he why didn’t she stay at home?

Bear, Dowding and Schriberg (1992), Heeman and Allen (1997, 1999), Nakatani

and Hirschberg (1994), Stolcke and Schriberg (1996)

3/27



A typology of speech disfluencies

• Filled pauses:

I think it’s uh refreshing to see the uh support . . .

• Parentheticals

But you know I was reading the other day . . .

• Repairs:

I want a flight to Boston uh I mean to Denver on Friday

• Restarts:

Why didn’t he why didn’t she stay at home?

Bear, Dowding and Schriberg (1992), Heeman and Allen (1997, 1999), Nakatani

and Hirschberg (1994), Stolcke and Schriberg (1996)

3/27



A typology of speech disfluencies

• Filled pauses:

I think it’s uh refreshing to see the uh support . . .

• Parentheticals

But you know I was reading the other day . . .

• Repairs:

I want a flight to Boston uh I mean to Denver on Friday

• Restarts:

Why didn’t he why didn’t she stay at home?

Bear, Dowding and Schriberg (1992), Heeman and Allen (1997, 1999), Nakatani

and Hirschberg (1994), Stolcke and Schriberg (1996)

3/27



Why treat restarts and repairs specially?

• Filled pauses are easy to recognise and remove from speech
transcripts

• Modern NLP tools (e.g., parsers) handle parentheticals properly

• But restarts and repairs are often misanalysed by NLP tools

⇒ Detect and remove disfluencies before further processing

I want a flight to Boston uh I mean to Denver on Friday
Why didn’t he why didn’t she stay at home?

4/27



Why treat restarts and repairs specially?

• Filled pauses are easy to recognise and remove from speech
transcripts

• Modern NLP tools (e.g., parsers) handle parentheticals properly

• But restarts and repairs are often misanalysed by NLP tools

⇒ Detect and remove disfluencies before further processing

I want a flight to Boston uh I mean to Denver on Friday
Why didn’t he why didn’t she stay at home?

4/27



Why treat restarts and repairs specially?

• Filled pauses are easy to recognise and remove from speech
transcripts

• Modern NLP tools (e.g., parsers) handle parentheticals properly

• But restarts and repairs are often misanalysed by NLP tools

⇒ Detect and remove disfluencies before further processing

I want a flight to Boston uh I mean to Denver on Friday
Why didn’t he why didn’t she stay at home?

4/27



Why treat restarts and repairs specially?

• Filled pauses are easy to recognise and remove from speech
transcripts

• Modern NLP tools (e.g., parsers) handle parentheticals properly

• But restarts and repairs are often misanalysed by NLP tools

⇒ Detect and remove disfluencies before further processing

I want a flight to Boston uh I mean to Denver on Friday
Why didn’t he why didn’t she stay at home?

4/27



The structure of restarts and repairs

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• The Reparandum is often not a syntactic phrase

• The Interregnum is usually lexically and prosodically marked, but
can be empty

• The Reparandum is often a “rough copy” of the Repair
I Repairs are typically short
I Repairs are not always copies
I It’s possible e.g. for there to be anaphoric dependencies into the

reparandum

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”

5/27



The structure of restarts and repairs

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• The Reparandum is often not a syntactic phrase

• The Interregnum is usually lexically and prosodically marked, but
can be empty

• The Reparandum is often a “rough copy” of the Repair
I Repairs are typically short
I Repairs are not always copies
I It’s possible e.g. for there to be anaphoric dependencies into the

reparandum

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”

5/27



The structure of restarts and repairs

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• The Reparandum is often not a syntactic phrase

• The Interregnum is usually lexically and prosodically marked, but
can be empty

• The Reparandum is often a “rough copy” of the Repair
I Repairs are typically short
I Repairs are not always copies
I It’s possible e.g. for there to be anaphoric dependencies into the

reparandum

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”

5/27



The structure of restarts and repairs

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• The Reparandum is often not a syntactic phrase

• The Interregnum is usually lexically and prosodically marked, but
can be empty

• The Reparandum is often a “rough copy” of the Repair
I Repairs are typically short
I Repairs are not always copies
I It’s possible e.g. for there to be anaphoric dependencies into the

reparandum

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”

5/27



The structure of restarts and repairs

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• The Reparandum is often not a syntactic phrase

• The Interregnum is usually lexically and prosodically marked, but
can be empty

• The Reparandum is often a “rough copy” of the Repair
I Repairs are typically short
I Repairs are not always copies
I It’s possible e.g. for there to be anaphoric dependencies into the

reparandum

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”

5/27



The structure of restarts and repairs

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• The Reparandum is often not a syntactic phrase

• The Interregnum is usually lexically and prosodically marked, but
can be empty

• The Reparandum is often a “rough copy” of the Repair
I Repairs are typically short
I Repairs are not always copies
I It’s possible e.g. for there to be anaphoric dependencies into the

reparandum

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”

5/27



Outline

Detecting and correcting speech errors in fluent speech

Previous work on disfluency detection

Language models and reranker features

Loss functions

Experimental results

Conclusion

6/27



Machine-learning approaches to disfluency

detection

. . . and
E

you
E

get︸ ︷︷ ︸
Reparandum

E
uh︸︷︷︸

Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• Train a classifier to predict whether each word is Edited or
NotEdited

I this approach classifies each word independently, but the
classification should really be made over groups of words

• A very large number of features can be usefully deployed in such a
system

Charniak and Johnson (2001), Zhang, Weng and Feng (2006)

7/27



Machine-learning approaches to disfluency

detection

. . . and
E

you
E

get︸ ︷︷ ︸
Reparandum

E
uh︸︷︷︸

Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• Train a classifier to predict whether each word is Edited or
NotEdited

I this approach classifies each word independently, but the
classification should really be made over groups of words

• A very large number of features can be usefully deployed in such a
system

Charniak and Johnson (2001), Zhang, Weng and Feng (2006)

7/27



Machine-learning approaches to disfluency

detection

. . . and
E

you
E

get︸ ︷︷ ︸
Reparandum

E
uh︸︷︷︸

Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• Train a classifier to predict whether each word is Edited or
NotEdited

I this approach classifies each word independently, but the
classification should really be made over groups of words

• A very large number of features can be usefully deployed in such a
system

Charniak and Johnson (2001), Zhang, Weng and Feng (2006)

7/27



The “true” model of repairs (?)

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• Speaker generates intended “conceptual representation”

• Speaker incrementally generates syntax and phonology,
I recognizes that what is said doesn’t mean what was intended,
I “backs up”, i.e., partially deconstructs syntax and phonology, and
I starts incrementally generating syntax and phonology again

• (but without a good model of “conceptual representation”, this
may be hard to formalize . . . )

8/27



The “true” model of repairs (?)

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• Speaker generates intended “conceptual representation”

• Speaker incrementally generates syntax and phonology,
I recognizes that what is said doesn’t mean what was intended,
I “backs up”, i.e., partially deconstructs syntax and phonology, and
I starts incrementally generating syntax and phonology again

• (but without a good model of “conceptual representation”, this
may be hard to formalize . . . )

8/27



The “true” model of repairs (?)

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• Speaker generates intended “conceptual representation”

• Speaker incrementally generates syntax and phonology,
I recognizes that what is said doesn’t mean what was intended,
I “backs up”, i.e., partially deconstructs syntax and phonology, and
I starts incrementally generating syntax and phonology again

• (but without a good model of “conceptual representation”, this
may be hard to formalize . . . )

8/27



The “true” model of repairs (?)

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• Speaker generates intended “conceptual representation”

• Speaker incrementally generates syntax and phonology,
I recognizes that what is said doesn’t mean what was intended,
I “backs up”, i.e., partially deconstructs syntax and phonology, and
I starts incrementally generating syntax and phonology again

• (but without a good model of “conceptual representation”, this
may be hard to formalize . . . )

8/27



The “true” model of repairs (?)

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• Speaker generates intended “conceptual representation”

• Speaker incrementally generates syntax and phonology,
I recognizes that what is said doesn’t mean what was intended,
I “backs up”, i.e., partially deconstructs syntax and phonology, and
I starts incrementally generating syntax and phonology again

• (but without a good model of “conceptual representation”, this
may be hard to formalize . . . )

8/27



The “true” model of repairs (?)

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Repair

a system . . .

• Speaker generates intended “conceptual representation”

• Speaker incrementally generates syntax and phonology,
I recognizes that what is said doesn’t mean what was intended,
I “backs up”, i.e., partially deconstructs syntax and phonology, and
I starts incrementally generating syntax and phonology again

• (but without a good model of “conceptual representation”, this
may be hard to formalize . . . )

8/27



Approximating the “true model”

Boston uh I meanI want a flight to Denver on Fridayto

• Use Repair string as approximation to intended meaning

• Reparandum string is “rough copy” of Repair string
I involves crossing (rather than nested) dependencies

• String with reparandum and interregnum excised is usually
well-formed

I after correcting the error, what’s left should have high probability
⇒ use model of normal language to interpret ill-formed input

9/27



Approximating the “true model”

Boston uh I meanI want a flight to Denver on Fridayto

• Use Repair string as approximation to intended meaning

• Reparandum string is “rough copy” of Repair string
I involves crossing (rather than nested) dependencies

• String with reparandum and interregnum excised is usually
well-formed

I after correcting the error, what’s left should have high probability
⇒ use model of normal language to interpret ill-formed input

9/27



Approximating the “true model”

Boston uh I meanI want a flight to Denver on Fridayto

• Use Repair string as approximation to intended meaning

• Reparandum string is “rough copy” of Repair string
I involves crossing (rather than nested) dependencies

• String with reparandum and interregnum excised is usually
well-formed

I after correcting the error, what’s left should have high probability
⇒ use model of normal language to interpret ill-formed input

9/27



Approximating the “true model”

Boston uh I meanI want a flight to Denver on Fridayto

• Use Repair string as approximation to intended meaning

• Reparandum string is “rough copy” of Repair string
I involves crossing (rather than nested) dependencies

• String with reparandum and interregnum excised is usually
well-formed

I after correcting the error, what’s left should have high probability
⇒ use model of normal language to interpret ill-formed input

9/27



Approximating the “true model”

Boston uh I meanI want a flight to Denver on Fridayto

• Use Repair string as approximation to intended meaning

• Reparandum string is “rough copy” of Repair string
I involves crossing (rather than nested) dependencies

• String with reparandum and interregnum excised is usually
well-formed

I after correcting the error, what’s left should have high probability
⇒ use model of normal language to interpret ill-formed input

9/27



Approximating the “true model”

Boston uh I meanI want a flight to Denver on Fridayto

• Use Repair string as approximation to intended meaning

• Reparandum string is “rough copy” of Repair string
I involves crossing (rather than nested) dependencies

• String with reparandum and interregnum excised is usually
well-formed

I after correcting the error, what’s left should have high probability
⇒ use model of normal language to interpret ill-formed input

9/27



The Noisy Channel Model

Source signal x
. . . and you can get a system . . .

Noisy signal u
. . . and you get, you can get a system . . .

Noisy channel model Pr(U|X )

Source model Pr(X )
(statistical parser)

• Noisy channel models combines two different submodels
• Channel model needs to generate crossing dependencies
⇒ TAG transducer

Johnson and Charniak (2004)

10/27



The Noisy Channel Model

Source signal x
. . . and you can get a system . . .

Noisy signal u
. . . and you get, you can get a system . . .

Noisy channel model Pr(U|X )

Source model Pr(X )
(statistical parser)

• Noisy channel models combines two different submodels
• Channel model needs to generate crossing dependencies
⇒ TAG transducer

Johnson and Charniak (2004)

10/27



Reranking the Noisy Channel model

• Log probs from source model and
channel model are reranker features

• MaxEnt reranker can use additional
features as well

⇒ Best of both noisy channel and
machine-learning approaches

• Johnson et al used a parser-based
language model

MaxEnt reranker

Improved language model

Noisy channel model with bigram LM

Input string

25 highest scoring hypotheses

Probabilities for hypotheses

Most likely hypothesis

Johnson, Charniak and Lease (2004)

11/27



Reranking the Noisy Channel model

• Log probs from source model and
channel model are reranker features

• MaxEnt reranker can use additional
features as well

⇒ Best of both noisy channel and
machine-learning approaches

• Johnson et al used a parser-based
language model

MaxEnt reranker

Improved language model

Noisy channel model with bigram LM

Input string

25 highest scoring hypotheses

Probabilities for hypotheses

Most likely hypothesis

Johnson, Charniak and Lease (2004)

11/27



Reranking the Noisy Channel model

• Log probs from source model and
channel model are reranker features

• MaxEnt reranker can use additional
features as well

⇒ Best of both noisy channel and
machine-learning approaches

• Johnson et al used a parser-based
language model

MaxEnt reranker

Improved language model

Noisy channel model with bigram LM

Input string

25 highest scoring hypotheses

Probabilities for hypotheses

Most likely hypothesis

Johnson, Charniak and Lease (2004)

11/27



Reranking the Noisy Channel model

• Log probs from source model and
channel model are reranker features

• MaxEnt reranker can use additional
features as well

⇒ Best of both noisy channel and
machine-learning approaches

• Johnson et al used a parser-based
language model

MaxEnt reranker

Improved language model

Noisy channel model with bigram LM

Input string

25 highest scoring hypotheses

Probabilities for hypotheses

Most likely hypothesis

Johnson, Charniak and Lease (2004)

11/27



Other related work

• Schuler (2010) uses a Hierarchical Hidden Markov Model to
simultaneously parse and perform disfluency detection

• Snover (2004) investigates the utility of lexical and prosodic cues
for disfluency detection

• Kahn, Lease, Charniak, Johnson and Ostendorf (2005) integrated
prosodic cues into the noisy-channel reranker to parse
speech-recogniser output

• Zhang, Weng and Feng (2006) uses a MaxEnt model with a large
number of features

12/27



Other related work

• Schuler (2010) uses a Hierarchical Hidden Markov Model to
simultaneously parse and perform disfluency detection

• Snover (2004) investigates the utility of lexical and prosodic cues
for disfluency detection

• Kahn, Lease, Charniak, Johnson and Ostendorf (2005) integrated
prosodic cues into the noisy-channel reranker to parse
speech-recogniser output

• Zhang, Weng and Feng (2006) uses a MaxEnt model with a large
number of features

12/27



Other related work

• Schuler (2010) uses a Hierarchical Hidden Markov Model to
simultaneously parse and perform disfluency detection

• Snover (2004) investigates the utility of lexical and prosodic cues
for disfluency detection

• Kahn, Lease, Charniak, Johnson and Ostendorf (2005) integrated
prosodic cues into the noisy-channel reranker to parse
speech-recogniser output

• Zhang, Weng and Feng (2006) uses a MaxEnt model with a large
number of features

12/27



Other related work

• Schuler (2010) uses a Hierarchical Hidden Markov Model to
simultaneously parse and perform disfluency detection

• Snover (2004) investigates the utility of lexical and prosodic cues
for disfluency detection

• Kahn, Lease, Charniak, Johnson and Ostendorf (2005) integrated
prosodic cues into the noisy-channel reranker to parse
speech-recogniser output

• Zhang, Weng and Feng (2006) uses a MaxEnt model with a large
number of features

12/27



Outline

Detecting and correcting speech errors in fluent speech

Previous work on disfluency detection

Language models and reranker features

Loss functions

Experimental results

Conclusion

13/27



How does the language model affect performance?

• Is the size of the training corpus important?
I n-gram KN language model trained on Google Web1T corpus

(≈ 1012 words)

• Is it important that the language model is trained on fluent
language?

I 4-gram KN language model trained on Gigaword corpus
(1.6× 109 words)

• Is it important that the language model is trained on speech data?
I 4-gram KN language model trained on Fischer corpus

(2.2× 107 words)

• Is it important that the language model is disfluency annotated?
I 4-gram KN language model trained on Switchboard corpus

(1.3× 106 words)

14/27



How does the language model affect performance?

• Is the size of the training corpus important?
I n-gram KN language model trained on Google Web1T corpus

(≈ 1012 words)

• Is it important that the language model is trained on fluent
language?

I 4-gram KN language model trained on Gigaword corpus
(1.6× 109 words)

• Is it important that the language model is trained on speech data?
I 4-gram KN language model trained on Fischer corpus

(2.2× 107 words)

• Is it important that the language model is disfluency annotated?
I 4-gram KN language model trained on Switchboard corpus

(1.3× 106 words)

14/27



How does the language model affect performance?

• Is the size of the training corpus important?
I n-gram KN language model trained on Google Web1T corpus

(≈ 1012 words)

• Is it important that the language model is trained on fluent
language?

I 4-gram KN language model trained on Gigaword corpus
(1.6× 109 words)

• Is it important that the language model is trained on speech data?
I 4-gram KN language model trained on Fischer corpus

(2.2× 107 words)

• Is it important that the language model is disfluency annotated?
I 4-gram KN language model trained on Switchboard corpus

(1.3× 106 words)

14/27



How does the language model affect performance?

• Is the size of the training corpus important?
I n-gram KN language model trained on Google Web1T corpus

(≈ 1012 words)

• Is it important that the language model is trained on fluent
language?

I 4-gram KN language model trained on Gigaword corpus
(1.6× 109 words)

• Is it important that the language model is trained on speech data?
I 4-gram KN language model trained on Fischer corpus

(2.2× 107 words)

• Is it important that the language model is disfluency annotated?
I 4-gram KN language model trained on Switchboard corpus

(1.3× 106 words)

14/27



How does the language model affect performance?

• Is the size of the training corpus important?
I n-gram KN language model trained on Google Web1T corpus

(≈ 1012 words)

• Is it important that the language model is trained on fluent
language?

I 4-gram KN language model trained on Gigaword corpus
(1.6× 109 words)

• Is it important that the language model is trained on speech data?
I 4-gram KN language model trained on Fischer corpus

(2.2× 107 words)

• Is it important that the language model is disfluency annotated?
I 4-gram KN language model trained on Switchboard corpus

(1.3× 106 words)

14/27



How does the language model affect performance?

• Is the size of the training corpus important?
I n-gram KN language model trained on Google Web1T corpus

(≈ 1012 words)

• Is it important that the language model is trained on fluent
language?

I 4-gram KN language model trained on Gigaword corpus
(1.6× 109 words)

• Is it important that the language model is trained on speech data?
I 4-gram KN language model trained on Fischer corpus

(2.2× 107 words)

• Is it important that the language model is disfluency annotated?
I 4-gram KN language model trained on Switchboard corpus

(1.3× 106 words)

14/27



How does the language model affect performance?

• Is the size of the training corpus important?
I n-gram KN language model trained on Google Web1T corpus

(≈ 1012 words)

• Is it important that the language model is trained on fluent
language?

I 4-gram KN language model trained on Gigaword corpus
(1.6× 109 words)

• Is it important that the language model is trained on speech data?
I 4-gram KN language model trained on Fischer corpus

(2.2× 107 words)

• Is it important that the language model is disfluency annotated?
I 4-gram KN language model trained on Switchboard corpus

(1.3× 106 words)

14/27



How does the language model affect performance?

• Is the size of the training corpus important?
I n-gram KN language model trained on Google Web1T corpus

(≈ 1012 words)

• Is it important that the language model is trained on fluent
language?

I 4-gram KN language model trained on Gigaword corpus
(1.6× 109 words)

• Is it important that the language model is trained on speech data?
I 4-gram KN language model trained on Fischer corpus

(2.2× 107 words)

• Is it important that the language model is disfluency annotated?
I 4-gram KN language model trained on Switchboard corpus

(1.3× 106 words)

14/27



Additional reranker features

• Bigram language model and channel model log probabilities from
noisy channel model

• Log probabilities of other language models

• CopyFlags: Edited flags surrounding a sequence of “copied”
words (745 features)

• WordsFlags: Edited flags surrounding specific lexical items
(256,808 features)

• SentenceEdgeFlags: Distance of Edited flags from the
beginning or end of sentence (22 features)

15/27



Additional reranker features

• Bigram language model and channel model log probabilities from
noisy channel model

• Log probabilities of other language models

• CopyFlags: Edited flags surrounding a sequence of “copied”
words (745 features)

• WordsFlags: Edited flags surrounding specific lexical items
(256,808 features)

• SentenceEdgeFlags: Distance of Edited flags from the
beginning or end of sentence (22 features)

15/27



Additional reranker features

• Bigram language model and channel model log probabilities from
noisy channel model

• Log probabilities of other language models

• CopyFlags: Edited flags surrounding a sequence of “copied”
words (745 features)

• WordsFlags: Edited flags surrounding specific lexical items
(256,808 features)

• SentenceEdgeFlags: Distance of Edited flags from the
beginning or end of sentence (22 features)

15/27



Additional reranker features

• Bigram language model and channel model log probabilities from
noisy channel model

• Log probabilities of other language models

• CopyFlags: Edited flags surrounding a sequence of “copied”
words (745 features)

• WordsFlags: Edited flags surrounding specific lexical items
(256,808 features)

• SentenceEdgeFlags: Distance of Edited flags from the
beginning or end of sentence (22 features)

15/27



Additional reranker features

• Bigram language model and channel model log probabilities from
noisy channel model

• Log probabilities of other language models

• CopyFlags: Edited flags surrounding a sequence of “copied”
words (745 features)

• WordsFlags: Edited flags surrounding specific lexical items
(256,808 features)

• SentenceEdgeFlags: Distance of Edited flags from the
beginning or end of sentence (22 features)

15/27



Outline

Detecting and correcting speech errors in fluent speech

Previous work on disfluency detection

Language models and reranker features

Loss functions

Experimental results

Conclusion

16/27



The unbalanced nature of the corpus

. . . I want a flight to Boston︸ ︷︷ ︸
Reparandum

uh I mean︸ ︷︷ ︸
Interregnum

to Denver︸ ︷︷ ︸
Repair

on Friday . . .

• Switchboard corpus annotates reparandum, interregnum and repair

• Trained on Switchboard files sw[23]*.dps (1.3M words)

• Punctuation and partial words ignored

• 31K repairs, average repair length 1.6 words

• Number of training words: reparandum 50K (3.8%), interregnum
10K (0.8%), repair 53K (4%), too complicated 24K (1.8%)

17/27



The unbalanced nature of the corpus

. . . I want a flight to Boston︸ ︷︷ ︸
Reparandum

uh I mean︸ ︷︷ ︸
Interregnum

to Denver︸ ︷︷ ︸
Repair

on Friday . . .

• Switchboard corpus annotates reparandum, interregnum and repair

• Trained on Switchboard files sw[23]*.dps (1.3M words)

• Punctuation and partial words ignored

• 31K repairs, average repair length 1.6 words

• Number of training words: reparandum 50K (3.8%), interregnum
10K (0.8%), repair 53K (4%), too complicated 24K (1.8%)

17/27



The unbalanced nature of the corpus

. . . I want a flight to Boston︸ ︷︷ ︸
Reparandum

uh I mean︸ ︷︷ ︸
Interregnum

to Denver︸ ︷︷ ︸
Repair

on Friday . . .

• Switchboard corpus annotates reparandum, interregnum and repair

• Trained on Switchboard files sw[23]*.dps (1.3M words)

• Punctuation and partial words ignored

• 31K repairs, average repair length 1.6 words

• Number of training words: reparandum 50K (3.8%), interregnum
10K (0.8%), repair 53K (4%), too complicated 24K (1.8%)

17/27



The unbalanced nature of the corpus

. . . I want a flight to Boston︸ ︷︷ ︸
Reparandum

uh I mean︸ ︷︷ ︸
Interregnum

to Denver︸ ︷︷ ︸
Repair

on Friday . . .

• Switchboard corpus annotates reparandum, interregnum and repair

• Trained on Switchboard files sw[23]*.dps (1.3M words)

• Punctuation and partial words ignored

• 31K repairs, average repair length 1.6 words

• Number of training words: reparandum 50K (3.8%), interregnum
10K (0.8%), repair 53K (4%), too complicated 24K (1.8%)

17/27



The unbalanced nature of the corpus

. . . I want a flight to Boston︸ ︷︷ ︸
Reparandum

uh I mean︸ ︷︷ ︸
Interregnum

to Denver︸ ︷︷ ︸
Repair

on Friday . . .

• Switchboard corpus annotates reparandum, interregnum and repair

• Trained on Switchboard files sw[23]*.dps (1.3M words)

• Punctuation and partial words ignored

• 31K repairs, average repair length 1.6 words

• Number of training words: reparandum 50K (3.8%), interregnum
10K (0.8%), repair 53K (4%), too complicated 24K (1.8%)

17/27



Evaluate using f-score instead of accuracy

• Only around 5% words are Edited ⇒ trivial classifier that always
predicts NotEdited scores 95% accuracy

• F-score f is geometric mean of precision and recall

f =
2c

g + e

where g and e are number of gold and predicted Edited words,
and c is the number of correct Edited words

• Trivial classifier has 100% precision but 0% recall ⇒ f-score = 0

• Alternative measure: error rate (= number of Edited word errors
divided by number of true Edited words)

Charniak and Johnson (2001), Rich Text Evaluation (2004)

18/27



Evaluate using f-score instead of accuracy

• Only around 5% words are Edited ⇒ trivial classifier that always
predicts NotEdited scores 95% accuracy

• F-score f is geometric mean of precision and recall

f =
2c

g + e

where g and e are number of gold and predicted Edited words,
and c is the number of correct Edited words

• Trivial classifier has 100% precision but 0% recall ⇒ f-score = 0

• Alternative measure: error rate (= number of Edited word errors
divided by number of true Edited words)

Charniak and Johnson (2001), Rich Text Evaluation (2004)

18/27



Evaluate using f-score instead of accuracy

• Only around 5% words are Edited ⇒ trivial classifier that always
predicts NotEdited scores 95% accuracy

• F-score f is geometric mean of precision and recall

f =
2c

g + e

where g and e are number of gold and predicted Edited words,
and c is the number of correct Edited words

• Trivial classifier has 100% precision but 0% recall ⇒ f-score = 0

• Alternative measure: error rate (= number of Edited word errors
divided by number of true Edited words)

Charniak and Johnson (2001), Rich Text Evaluation (2004)

18/27



Evaluate using f-score instead of accuracy

• Only around 5% words are Edited ⇒ trivial classifier that always
predicts NotEdited scores 95% accuracy

• F-score f is geometric mean of precision and recall

f =
2c

g + e

where g and e are number of gold and predicted Edited words,
and c is the number of correct Edited words

• Trivial classifier has 100% precision but 0% recall ⇒ f-score = 0

• Alternative measure: error rate (= number of Edited word errors
divided by number of true Edited words)

Charniak and Johnson (2001), Rich Text Evaluation (2004)

18/27



Modify classifier to optimise expected f-score

• A standard MaxEnt estimator optimises log-loss, which weights
Edited ∼ NotEdited errors equally

• We can modify the estimator so it optimises an approximate
expected f-score instead

f̃ =
2Ew[c]

g + Ew[e]

I approximation assumes that expectation distributes over division

• f̃ and its derivatives can be easily calculated

⇒ use L-BFGS to estimate feature weights ŵ

• Similar calculation can be done for expected error rate

Jansche (2005), Smith and Eisner (2006)

19/27



Modify classifier to optimise expected f-score

• A standard MaxEnt estimator optimises log-loss, which weights
Edited ∼ NotEdited errors equally

• We can modify the estimator so it optimises an approximate
expected f-score instead

f̃ =
2Ew[c]

g + Ew[e]

I approximation assumes that expectation distributes over division

• f̃ and its derivatives can be easily calculated

⇒ use L-BFGS to estimate feature weights ŵ

• Similar calculation can be done for expected error rate

Jansche (2005), Smith and Eisner (2006)

19/27



Modify classifier to optimise expected f-score

• A standard MaxEnt estimator optimises log-loss, which weights
Edited ∼ NotEdited errors equally

• We can modify the estimator so it optimises an approximate
expected f-score instead

f̃ =
2Ew[c]

g + Ew[e]

I approximation assumes that expectation distributes over division

• f̃ and its derivatives can be easily calculated

⇒ use L-BFGS to estimate feature weights ŵ

• Similar calculation can be done for expected error rate

Jansche (2005), Smith and Eisner (2006)

19/27



Modify classifier to optimise expected f-score

• A standard MaxEnt estimator optimises log-loss, which weights
Edited ∼ NotEdited errors equally

• We can modify the estimator so it optimises an approximate
expected f-score instead

f̃ =
2Ew[c]

g + Ew[e]

I approximation assumes that expectation distributes over division

• f̃ and its derivatives can be easily calculated

⇒ use L-BFGS to estimate feature weights ŵ

• Similar calculation can be done for expected error rate

Jansche (2005), Smith and Eisner (2006)

19/27



Modify classifier to optimise expected f-score

• A standard MaxEnt estimator optimises log-loss, which weights
Edited ∼ NotEdited errors equally

• We can modify the estimator so it optimises an approximate
expected f-score instead

f̃ =
2Ew[c]

g + Ew[e]

I approximation assumes that expectation distributes over division

• f̃ and its derivatives can be easily calculated

⇒ use L-BFGS to estimate feature weights ŵ

• Similar calculation can be done for expected error rate

Jansche (2005), Smith and Eisner (2006)

19/27



Modify classifier to optimise expected f-score

• A standard MaxEnt estimator optimises log-loss, which weights
Edited ∼ NotEdited errors equally

• We can modify the estimator so it optimises an approximate
expected f-score instead

f̃ =
2Ew[c]

g + Ew[e]

I approximation assumes that expectation distributes over division

• f̃ and its derivatives can be easily calculated

⇒ use L-BFGS to estimate feature weights ŵ

• Similar calculation can be done for expected error rate

Jansche (2005), Smith and Eisner (2006)

19/27



Outline

Detecting and correcting speech errors in fluent speech

Previous work on disfluency detection

Language models and reranker features

Loss functions

Experimental results

Conclusion

20/27



Experimental set-up

• All partial words and punctuation were deleted from training,
held-out and test

• Training data: Switchboard sw[23]?.dps files

• Held-out data: Switchboard sw4[5-9]?.dps files

• Test data (only used once): Switchboard sw[0-1]?.dps files

Johnson and Charniak (2001)

21/27



Experimental set-up

• All partial words and punctuation were deleted from training,
held-out and test

• Training data: Switchboard sw[23]?.dps files

• Held-out data: Switchboard sw4[5-9]?.dps files

• Test data (only used once): Switchboard sw[0-1]?.dps files

Johnson and Charniak (2001)

21/27



Experimental set-up

• All partial words and punctuation were deleted from training,
held-out and test

• Training data: Switchboard sw[23]?.dps files

• Held-out data: Switchboard sw4[5-9]?.dps files

• Test data (only used once): Switchboard sw[0-1]?.dps files

Johnson and Charniak (2001)

21/27



Experimental set-up

• All partial words and punctuation were deleted from training,
held-out and test

• Training data: Switchboard sw[23]?.dps files

• Held-out data: Switchboard sw4[5-9]?.dps files

• Test data (only used once): Switchboard sw[0-1]?.dps files

Johnson and Charniak (2001)

21/27



Results on held-out data

Model F-score
NC (noisy channel, no reranking) 0.756

Model log loss expected f-score loss
NC + Switchboard 0.776 0.791
NC + Fisher 0.771 0.797
NC + Gigaword 0.777 0.797
NC + Web1T 0.781 0.798

NC + Reranker Feat. 0.824 0.827
NC + Reranker Feat. + Switchboard 0.827 0.828
NC + Reranker Feat. + Fisher 0.841 0.856
NC + Reranker Feat. + Gigaword 0.843 0.852
NC + Reranker Feat. + Web1T 0.843 0.850

NC + Reranker Feat. + All LM 0.841 0.857

22/27



Results on test corpus

• One run on test corpus, NC + Reranker Feat. + All LM,
expected f-score loss: 0.838

• Previous results:
I Charniak and Johnson (2001) (Boosting classifier): 0.759
I Johnson and Charniak (2004) (Noisy channel model): 0.797
I Zhang, Weng and Feng (2006) (Ultra-large feature space, prosodic

features): 0.8205 (note: test data not exactly comparable)

23/27



Results on test corpus

• One run on test corpus, NC + Reranker Feat. + All LM,
expected f-score loss: 0.838

• Previous results:
I Charniak and Johnson (2001) (Boosting classifier): 0.759
I Johnson and Charniak (2004) (Noisy channel model): 0.797
I Zhang, Weng and Feng (2006) (Ultra-large feature space, prosodic

features): 0.8205 (note: test data not exactly comparable)

23/27



Results on test corpus

• One run on test corpus, NC + Reranker Feat. + All LM,
expected f-score loss: 0.838

• Previous results:
I Charniak and Johnson (2001) (Boosting classifier): 0.759
I Johnson and Charniak (2004) (Noisy channel model): 0.797
I Zhang, Weng and Feng (2006) (Ultra-large feature space, prosodic

features): 0.8205 (note: test data not exactly comparable)

23/27



Results on test corpus

• One run on test corpus, NC + Reranker Feat. + All LM,
expected f-score loss: 0.838

• Previous results:
I Charniak and Johnson (2001) (Boosting classifier): 0.759
I Johnson and Charniak (2004) (Noisy channel model): 0.797
I Zhang, Weng and Feng (2006) (Ultra-large feature space, prosodic

features): 0.8205 (note: test data not exactly comparable)

23/27



Results on test corpus

• One run on test corpus, NC + Reranker Feat. + All LM,
expected f-score loss: 0.838

• Previous results:
I Charniak and Johnson (2001) (Boosting classifier): 0.759
I Johnson and Charniak (2004) (Noisy channel model): 0.797
I Zhang, Weng and Feng (2006) (Ultra-large feature space, prosodic

features): 0.8205 (note: test data not exactly comparable)

23/27



Outline

Detecting and correcting speech errors in fluent speech

Previous work on disfluency detection

Language models and reranker features

Loss functions

Experimental results

Conclusion

24/27



Conclusions

• The noisy channel model is useful for detecting speech disfluencies

• A reranker can markedly improve performance

• The choice of training data used in the language model does not
seem to be very important

I not necessary for LM to be trained on disfluency-annotated data
I not necessary for LM to be trained on speech data

• Using additional reranker features boosts performance still further

• Optimising a loss function more closely related to the evaluation
metric further boosts performance

25/27



Conclusions

• The noisy channel model is useful for detecting speech disfluencies

• A reranker can markedly improve performance

• The choice of training data used in the language model does not
seem to be very important

I not necessary for LM to be trained on disfluency-annotated data
I not necessary for LM to be trained on speech data

• Using additional reranker features boosts performance still further

• Optimising a loss function more closely related to the evaluation
metric further boosts performance

25/27



Conclusions

• The noisy channel model is useful for detecting speech disfluencies

• A reranker can markedly improve performance

• The choice of training data used in the language model does not
seem to be very important

I not necessary for LM to be trained on disfluency-annotated data
I not necessary for LM to be trained on speech data

• Using additional reranker features boosts performance still further

• Optimising a loss function more closely related to the evaluation
metric further boosts performance

25/27



Conclusions

• The noisy channel model is useful for detecting speech disfluencies

• A reranker can markedly improve performance

• The choice of training data used in the language model does not
seem to be very important

I not necessary for LM to be trained on disfluency-annotated data
I not necessary for LM to be trained on speech data

• Using additional reranker features boosts performance still further

• Optimising a loss function more closely related to the evaluation
metric further boosts performance

25/27



Conclusions

• The noisy channel model is useful for detecting speech disfluencies

• A reranker can markedly improve performance

• The choice of training data used in the language model does not
seem to be very important

I not necessary for LM to be trained on disfluency-annotated data
I not necessary for LM to be trained on speech data

• Using additional reranker features boosts performance still further

• Optimising a loss function more closely related to the evaluation
metric further boosts performance

25/27



Conclusions

• The noisy channel model is useful for detecting speech disfluencies

• A reranker can markedly improve performance

• The choice of training data used in the language model does not
seem to be very important

I not necessary for LM to be trained on disfluency-annotated data
I not necessary for LM to be trained on speech data

• Using additional reranker features boosts performance still further

• Optimising a loss function more closely related to the evaluation
metric further boosts performance

25/27



Conclusions

• The noisy channel model is useful for detecting speech disfluencies

• A reranker can markedly improve performance

• The choice of training data used in the language model does not
seem to be very important

I not necessary for LM to be trained on disfluency-annotated data
I not necessary for LM to be trained on speech data

• Using additional reranker features boosts performance still further

• Optimising a loss function more closely related to the evaluation
metric further boosts performance

25/27



Future work

• Work with real speech recogniser output (Kahn et al, 2005)

• Experiment with a parsing-based language model trained on large
(unlabelled) corpus

• Develop a system that does not require sentence-segmented input

⇒ incremental parser-based language model trained from
semi-supervised data

26/27



Future work

• Work with real speech recogniser output (Kahn et al, 2005)

• Experiment with a parsing-based language model trained on large
(unlabelled) corpus

• Develop a system that does not require sentence-segmented input

⇒ incremental parser-based language model trained from
semi-supervised data

26/27



Future work

• Work with real speech recogniser output (Kahn et al, 2005)

• Experiment with a parsing-based language model trained on large
(unlabelled) corpus

• Develop a system that does not require sentence-segmented input

⇒ incremental parser-based language model trained from
semi-supervised data

26/27



Future work

• Work with real speech recogniser output (Kahn et al, 2005)

• Experiment with a parsing-based language model trained on large
(unlabelled) corpus

• Develop a system that does not require sentence-segmented input

⇒ incremental parser-based language model trained from
semi-supervised data

26/27



Acknowledgements
• Australian Research Council Discovery Project DP110102593
• Australian Research Council’s “Thinking Head Project”
• ARC/NHMRC Special Research Initiative Grant TS0669874

27/27


	Detecting and correcting speech errors in fluent speech
	Previous work on disfluency detection
	Language models and reranker features
	Loss functions
	Experimental results
	Conclusion

