
Parsing in Parallel
on Multiple Cores and GPUs

Mark Johnson

Centre for Language Sciences
and

Department of Computing
Macquarie University

ALTA workshop
December 2011

1/28

Why parse in parallel?

• The future of computing is parallel processing
I CPUs are unlikely to get much faster
I but the number of processing units is likely to increase dramatically

• Can we effectively use parallel processing for parsing?
I straight-forward approach: divide the sentences amongst the

processors
I but some unsupervised grammar induction procedures require

reparsing the training corpus many times and update the grammar
after each parse

2/28

Outline

Review of parallel architectures

Approaches to parallel parsing

Experimental evaluation

Conclusion and future work

3/28

Popular parallel architectures

• Networked clusters
I commodity machines or blade servers
I communication via network (e.g., Ethernet) (slow)
I tools: Message-passing Interface (MPI), Map-Reduce

• Symmetric multi-processor (SMP) machines
I multiple processors or cores executing different code
I communication via shared memory (fast)
I tools: OpenMP, pthreads

• Graphics Processor Units (GPUs)
I Single Instruction Multiple Threads (SIMT) parallelism
I communication via specialised shared memory (fast)
I tools: CUDA, OpenCL

• Multi-core SMPs and GPUs are becoming more alike

4/28

Parallelisation in CPUs

• Modern CPUs have become increasingly parallel
I SIMD vectorised floating point arithmetic (SSE)

• Multicore (8 or 12 core) CPUs are now standard
• Highly uniform memory architecture make these easy to

program

5/28

GPUs have more compute power than CPUs

6/28

GPUs are highly parallel

• GPUs can run hundreds of threads
simultaneously

• Highly data-parallel SIMT
operations

• There are general-purpose
programming tools (CUDA, OpenCL),
but programming is hard

I non-uniform memory architecture

• Standard libraries exist for e.g.
matrix calculations (CUBLAS)

• The hardware and software are
evolving rapidly

7/28

What’s hard about parallel programming?
• Copying in parallel is easy

for i in 1, ..., n:
C[i] = A[i] + B[i]

I runs in constant time (with enough processors)

• Reduction is parallel is hard

sum = 0
for i in 1, ..., n:

sum += A[i] + B[i]

I standard approach uses a binary tree
I runs in O(log n) time
I OpenMP can automatically generate code for simple

reductions
I many tutorials on how to do this in CUDA

8/28

Outline

Review of parallel architectures

Approaches to parallel parsing

Experimental evaluation

Conclusion and future work

9/28

Sentence-level parallelism

• Baseline approach: to parse a corpus, divide the sentences
amongst the processors

I standard approach to parsing a corpus on a networked cluster
I works well on SMP machines too
I impractical on GPUs (memory, program complexity) (?)

• Not applicable in real-time applications or certain specialised
sequential algorithms (e.g., “collapsed” MCMC samplers)

10/28

Why is sub-sentential parallel parsing hard?
• Hierarchical structure⇒ parsing operations must be ordered

I assume standard bottom-up ordering here
⇒ smaller constituents needed to build larger constituents

• Scores of ambiguous parses need to be appropriately combined.
If different analyses are constructed by different processes, we
may need synchronisation

• Parallel work units must be large enough that synchronisation
costs don’t dominate

saw the man with the telescope

NP PPVB
NP

VP

I

VP

NP
S

11/28

CFGs in Chomsky Normal Form

• Every Context-Free Grammar (CFG) is equivalent to a CFG in
Chomsky Normal Form (CNF), where all rules are either:

I binary rules of the form A→ B C, where A, B and C are
nonterminal symbols, or

I unary rules of the form A→ w, where A is a nonterminal
symbol and w is a terminal symbol.

• All standard O(n3) CFG parsing algorithms explicitly or
implicitly convert the grammar into CNF

12/28

The parsing chart
• String positions identify the begin and end of each constituent
• Example: If w = the cat chased the dog, then the string

positions are:

0 the 1 cat 2 chased 3 the 4 dog 5

and the substring w2:5 = chased the dog
• Given a string to parse w = w1 . . . wn, the chart is a table

Chart[i, k, A] where:

Chart[i, k, A] = score of all analyses A ⇒+ wi+1 . . . wk

• Example (continued): Chart[2, 5, VP] is score of all ways of
analysing chased the dog as a VP.

• The parse tree can be identified in O(n2) time from a complete
chart, so constructing the chart is the rate-limiting step

13/28

The chart recursion for a CNF PCFG

• Terminals: (base case)

Chart[i− 1, i, A] = P(A→ wi)

• Nonterminals: (recursion)

Chart[i, k, A]

= ∑
A→B C

∑
j:i<j<k

P(A→ B C)Chart[i, j, B]Chart[j, k, C]

(For Viterbi parsing, replace sums with max)

B C

A

wi:j wj:k

S

14/28

Computing the chart

B C
A

wi:j wj:k

S
for i in 0, . . ., n−1:

for a in 0, . . ., m−1:
Chart[i,i+1,a] = Terminal[Word[i],a]

for gap in 2, . . ., n:
for i in 0, . . ., n−gap:

k = i+gap
for a in 0, . . ., m−1:

Chart[i,k,a] = 0
for j in i+1, . . ., k−1:

for b in 0, . . ., m−1:
for c in 0, . . ., m−1:

Chart[i,k,a] += Rule[a,b,c]∗Chart[i,j,b]∗Chart[j,k,c]

• Non-terminal calculation consumes bulk of time
• The blue loops can be freely reordered and computed in parallel
• The red loops can be freely reordered and accumulate in parallel
• Need to synchronise updates to Chart[A, i, k]

15/28

Factored CKY parsing

B C
A

wi:j wj:k

S
for gap in 2, . . ., n:

for i in 0,..,n−gap:
k = i+gap
for b in 0, . . ., m−1:

for c in 0, . . ., m−1:
BC[b,c] = 0

for j in i+1, . . ., k−1:
BC[b,c] += Chart[i,j,b]∗Chart[j,k,c]

for a in 0, . . ., m−1:
Chart[i,k,a] = 0
for b in 0, . . ., m−1:

for c in 0, . . ., m−1:
Chart[i,k,a] += Rule[a,b,c]∗BC[b,c]

• Proposed by Dunlop, Bodenstab and Roark (2010)
I reduces “grammar constant” by reducing the degree of loop

nesting

16/28

Multi-core SMP parallelism for PCFG parsing
• Experimented with a parallel matrix algebra package, but

results were disappointing
• OpenMP programs are C++ programs with pragmas that

indicate which loops can be parallelised, and how
• Synchronisation constructs used:

I thread-private variables
I parallel “for” reductions
I atomic updates (for reductions)

• Experimented with various loop reorderings and
parallelisation

• Here we report results for parallelising:
I the outermost loops (over i and a)
I the innermost loops (over j, b and c)
I all loops

17/28

A CUDA GPU kernel for PCFG parsing
• Using CUBLAS ran 100× slower than unparallelised CPU

version
• Direct translation into CUDA ran 200× slower than

unparallelised CPU version
• Recoded algorithm to exploit:

I global memory (slow but accessible to all blocks; stores Chart)
I texture memory (faster but read-only; stores Rule)
I shared memory (accessible to all threads in block; stores BC)
I thread-local memory (to accumulate intermediate results)

• Computes all diagonals in chart in parallel
• Used a custom algorithm to perform reduction in parallel:

BC[b,c] += Chart[i,j,b]∗Chart[j,k,c]

I code used depends on whether it can be done in one block

18/28

Outline

Review of parallel architectures

Approaches to parallel parsing

Experimental evaluation

Conclusion and future work

19/28

Experimental set-up

• Experimented on a range of different dense PCFGs
I a PCFG is dense iff P(A→ B C) > 0 for most A, B, C
I dense grammars arise in unsupervised grammar learning
I report results for a PCFG with 32 nonterminals, 32,768 binary

rules with random rule probabilities (as typical in
unsupervised grammar learning)

• Experiments run on dual quad-core 3.0GHz Intel Harpertown
CPUs and a NVIDIA Fermi s2050 GPU with 448 CUDA cores
running at 1.15GHz

• Software: CUDA 3.2 toolkit and gcc 4.4.4 with SSE3 SIMD
floating-point vector subsystem

• All experiments run twice in succession; variation < 1%

20/28

Average parse times
Parser Sentences/sec Speed-up
Baseline 11 1.0

(i) outer parallel 84 7.5
(ii) inner parallel 11 1.0
(iii) both parallel 29 2.6

Factored 122 11.0
(i) outer parallel 649 60.0
(ii) inner parallel 27 2.4
(iii) both parallel 64 5.7

CUDA 206 18.4

• Parsing speeds of the various algorithms on 1,345 sentences
from section 24 of the Penn WSJ treebank.

• Speed-up is relative to the baseline parser.

21/28

Parse times as a function of sentence length

Sentence length

P
ar

si
ng

 ti
m

e
(s

ec
on

ds
)

1e−05

1e−04

0.001

0.01

0.1

1

20 40 60 80

Parser

● baseline

● factored

● baseline+outer SMP

● factored+outer SMP

● CUDA

22/28

Speedups as a function of sentence length

Sentence length

S
pe

ed
−

up
 r

el
at

iv
e

to
 b

as
el

in
e

pa
rs

er

0.1

1

10

100

20 40 60 80

Parser

● baseline

● factored

● baseline+outer SMP

● factored+outer SMP

● CUDA

23/28

Outline

Review of parallel architectures

Approaches to parallel parsing

Experimental evaluation

Conclusion and future work

24/28

Conclusion

• Large speedups with both SMP and CUDA parallelism
I SMP speedup close to theoretical maximum (×8)
I parallelising inner loops hurts rather than helps

perhaps this destroys SSE SIMD vectorisation?
• SMP implementation was faster than CUDA implementation

I CUDA is 18× faster than baseline
I CUDA is comparatively slower on short sentences (initialisation

costs?)

• The Dunlop, Bodenstab and Roark (2010) factorisation is very
useful!

25/28

Future work

• Repeat these experiments on newer hardware
I 24-core SMP machines now available
I new GPUs are more powerful and easier to program

• Experiment with other GPU-based parsing algorithms
I non-uniform architecture⇒many variations to try
I parse multiple (short) sentences at once

• Extend this work to other kinds of grammars
I sparse PCFGs
I dependency grammars

26/28

PCFG parsing as matrix arithmetic
(2) build larger constituents from smaller
for gap = 2, . . . , n:

for i = 0, . . . , n–gap:
k = i + gap
for A in Nonterminals:

for j = i+1, . . . , k–1:
Chart[i,k,A] += Chart[i,j,·]T × R[A] × Chart[j,k,·]

where R is a vector of matrices

R[A](B, C) = P(A→ B C)

• Our matrices are often small⇒ not much parallelism gain (?)
• Other matrix formulations may be more efficient

I accumulating results one at a time is inefficient
I would be nice to parallelise more loops

27/28

Sparse grammars
• Many realistic grammars are sparse, so dense matrix-based

approaches are inefficient in time and memory
I Converting a grammar into CNF may introduce many new

nonterminals
– Example: left binarisation replaces VP→ VB NP PP with the

pair of rules
VP→ VB NP PP
VB NP→ VB NP

– new nonterminals (e.g., VB NP) appear in few rules
• The sparsity pattern depends heavily on the grammar

involved
⇒ fastest parsing algorithm may depend on grammar

• Hash tables are a standard uniprocessor implementation
technique for sparse grammars

I For SMP, parallel hash tables seem practical
I For GPUs, other techniques (e.g., sort and reduce) may be

more effective

28/28

	Review of parallel architectures
	Approaches to parallel parsing
	Experimental evaluation
	Conclusion and future work

