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Random variables and “distributed according to”
notation

o A probability distribution F is a non-negative function whose
values sum (integrate) to 1.

e A random variable X is distributed according to F, written X ~ F,
iff:
P(X =x) = F(x) for all x

e You'll sometimes see the notion
X|Y ~ F

which means “X is distributed conditonal on Y according to F",
i.e.,

P(X|Y) = F(X|Y).
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Outline

Introduction to Bayesian Inference
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Bayes' rule

P(Data | Hypothesis) P(Hypothesis)
P(Data)

P(Hypothesis | Data) =

e Bayesian's use Bayes' Rule to update beliefs in hypotheses in
response to data

P(Hypothesis | Data) is the posterior distribution,

P(Hypothesis) is the prior distribution,
P(Data | Hypothesis) is the likelihood, and

P(Data) is a normalising constant sometimes called the evidence
(often intractable to calculate)
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Discrete distributions

A discrete distribution has a finite set of outcomes 1,..., m

A discrete distribution is parameterized by a vector
0 = (01,...,0,), where P(X =j|0) = 0; (so >, 0, =1)

» Example: An m-sided die, where 6; = prob. of face j
Suppose X = (X, ..., X,) and each X;|@ ~ DISCRETE(@). Then:

P(X]|0) H DISCRETE(X;; 0) H 6

i=1

where N; is the number of times j occurs in X.

Goal of next few slides: compute posterior distribution P(8|X)
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Multinomial distributions

e Suppose X; ~ DISCRETE(O) for i =1,...,n, and
N; is the number of times j occurs in X

e Then N|n, 8 ~ Murt1(8, n), and

P(N|n,0) = o INIHQ

where n!/ HJm:l N;!'is the number of sequences of values with
occurence counts N

e The vector N is known as a sufficient statistic for @ because it
supplies as much information about 6 as the original sequence X
does.
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Dirichlet distributions

e Dirichlet distributions are probability distributions over multinomial
parameter vectors
» called Beta distributions when m = 2
o Parameterized by a vector o = (o, ..., @m) where a; > 0 that
determines the shape of the distribution

DIR(O | a) — ﬁ]‘[efﬂ

j=1

o 17 ey)
c@ = | L1070 = Fem )

J

e [ is a generalization of the factorial function
e (k) = (k — 1)! for positive integer k
o [(x)=(x—1I(x—1) for all x
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Plots of the Dirichlet distribution
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Dirichlet distributions as priors for 6
e Generative model:

0 | a ~ Dir(a)
X;i | 6 ~ DISCRETE(#), i=1,...,n

e We can depict this as a Bayes net using plates, which indicate
replication

)
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Inference for @ with Dirichlet priors
e Data X = (Xi,...,X,) generated i.i.d. from DISCRETE(@)
e Prior is DIr(ax). By Bayes Rule, posterior is:

P(6]X) o« P(X|6) P(6)

- (f1) (i)

m
Ni+aj—1
= | IH-J YT so
J
Jj=1

P(@]X) = DIR(N + )

e So if prior is Dirichlet with parameters «,
then posterior is Dirichlet with parameters N + «
= can regard Dirichlet parameters o as “pseudo-counts” from
“pseudo-data”
s g
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“Integrated out” or “collapsed”
Dirichlet-multinomials

0 | a ~ Dir(a)
X; | @ ~ DISCRETE(Q), i=1,...,n

o Integrate out @ to directly calculate probability of X

P(X|a) = / (X.0]0)do = /AP(X|9)P(9|a)d0

_ / (ﬁeﬁ) (ﬁﬁeﬁj a6

Jj=1

Hjn;l M(ey)
Mot o)

\_/

= ( , where C(a) =
s g
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Predictive distribution for Dirichlet-Multinomial

e The predictive distribution is the distribution of observation X1
given observations X = (X1, ..., X,) and prior DIR(cx)

P(Xn+1 =k | X7a) = / P(Xn+1 =k | B) P(B | X7a) do
A

= /QkDIR(0|N+a)d0
A

Ny +
ij:1 Nj + o

MACQUARIE )}
UNIVERSITY

12/25



Example: rolling a die
e Data X =(2,5,4,2,6); prior = DIr((1,1,1,1,1,1))

ar a=(111111) ——
a=(121111) ——
a=(1,21121) ——
37 N a=(1,212.21)
) a=(1,31221)
N U
a=(1,31222 ——
e Ll ( )
1 -
0 Il Il \ J
0 0.2 0.4 0.6 0.8 1

6, (probability of side 2)
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Sampling with Markov Chains
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Inference in complex models
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If the model is simple enough we can calculate the posterior
exactly (conjugate priors)

When the model is more complicated, we can only approximate the
posterior

Variational Bayes calculate the function closest to the posterior
within a class of functions

Sampling algorithms produce samples from the posterior
distribution

» Markov chain Monte Carlo algorithms (MCMC) use a Markov
chain to produce samples
» A Gibbs sampler is a particular MCMC algorithm

Particle filters are a kind of on-line sampling algorithm
(on-line algorithms only make one pass through the data)
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Why sample?
e Setup: Model has variables X, whose value x we observe, and
variables Y, whose value we don't know
» Y includes any parameters we want to estimate, such as @
e Goal: compute the expected value of some function f:

E[f(X=x] = > f(x,y)P(Y=yX=x)

e Suppose we can produce n samples y(t), where
Y® ~ P(Y | X = x). Then we can estimate:

1 n
BIfIX=x] = 3 f(xy)
t=1

e Example: word-tagging. X is vector of words, Y is vector of tags.
Set f(x,y) =1 if y; = Noun, and zero otherwise.
Then E[f|X = x] is prob. that word x; is tagged Noun.
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Markov chains

e A (first-order) Markov chain is a distribution over random variables

SO .. S all ranging over the same state space S, where:
n—1
PO, sM) = P(SO)]P(s"|sM)
t=0

S(t+1) is conditionally independent of SO, ... S(t=1 given S(*)
e A Markov chain in homogeneous or time-invariant iff:

P(St) =550 =5) = P, forallt,s,s

The matrix P is called the transition probability matrix of the
Markov chain

o IFP(S®) =5) =7 (i.e., ¥ is a vector of state probabilities at

time t) then:
() — p(t)
L () _ pt ()
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Ergodicity

A Markov chain with tpm P is ergodic iff there is a positive integer
m s.t. all elements of P™ are positive (i.e., there is an m-step path
between any two states)

Informally, an ergodic Markov chain “forgets” its past states

Theorem: For each homogeneous ergodic Markov chain with tpm
P there is a unique limiting distribution Dp, i.e., as n approaches
infinity, the distribution of S,, converges on Dp

Dp is called the stationary distribution of the Markov chain
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Using a Markov chain for inference of P(Y)

e Set the state space S of the Markov chain to the range of Y
(S may be astronomically large)

e Find a tpm P such that P(Y | X) = Dp
e “Run” the Markov chain, i.e.,

» Pick y(© somehow

» Fort =0,1,...:

— sample y(t*1) from P(Y(+) | Y(O=y(1) X=x),
i.e., from Py«
» After discarding the first burn-in samples, use remaining
samples to calculate statistics

e WARNING: in general the samples y(*) are not independent
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The Gibbs sampler
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The Gibbs sampler

e The Gibbs sampler is useful when:
» Y is multivariate, i.e., Y = (Y1,..., Yy), and
» easy to sample from P(Y;|Y_;)
e The Gibbs sampler for P(Y') is the tpm P =[], PU), where:

pl)  _ { 0 iy #y
y P(Y; = -y_]{|Y_J. = y,j) if y/—j =Y.

o Informally, the Gibbs sampler cycles through each of the variables
Y;, replacing the current value y; with a sample from

PYiIY_j=y))
e There are sequential scan and random scan variants of Gibbs
sampling
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A simple example of Gibbs sampling

. c if|Y1|<5,|Y2|<53nd|Y1—Y2|<1
P, ¥2) = {O otherwise

e The Gibbs sampler for P(Y7, Y2) samples repeatedly from:
P(Y2]Y1) = UNIFORM(max(—5, Ys — 1), min(5, Y1 + 1))
P(Y1]Y2) = UNIFORM(max(—5, Y2 — 1), min(5, Y2 + 1))

Sample run

Y1 Y,

0 0

S 0 -0.119
0.363 -0.119

0.363 0.146

-0.681 0.146

- 0 > -0.681 -1.551
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c fl<Y,Y,<b5or-5<VY,Y,<-1

P, Y2) 0 otherwise

e The Gibbs sampler for P(Y, Y2), initialized at (2,2), samples
repeatedly from:

A non—ergodic{Gibbs sampler

P(Y2|Y1) = UNIFORM(1,5)
P(Yi|Y2) = UNIFORM(1,5)
l.e., never visits the negative values of Y1, Y>

Sample run
Y1 Y,
2 2
2 272

284 272

284 471

263 4.71
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Why does the Gibbs sampler work?

e The Gibbs sampler tpm is P = HJm:1 PU) where PU) replaces Yj
with a sample from P(Y;|Y_; =y ;) to produce y’
e But if y is a sample from P(Y), then so is y’,

since y’ differs from y only by replacing y; with a sample from
PYjIY =y
e Since PU) maps samples from P(Y) to samples from P(Y), so
does P
= P(Y) is a stationary distribution for P

e If P is ergodic, then P(Y) is the unique stationary distribution for
P, i.e., the sampler converges to P(Y)
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Summary

e Dirichlet-multinomial distributions can be handled largely
analytically

e Complex models often don’t have analytic solutions
e Approximate inference can be used on many such models

e Monte Carlo Markov chain methods produce samples from (an
approximation to) the posterior distribution

e Gibbs sampling is an MCMC procedure that resamples each
variable conditioned on the values of the other variables

e If you can sample from the conditional distribution of each hidden
variable in a Bayes net, you can use Gibbs sampling to sample from
the joint posterior distribution
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