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Hidden Markov Models

States (e.g., parts of speech)

Yo Y1 Y2 Y3 Ya
X1 X2 X3 L4

Observations (e.g., words)
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Maximum likelihood estimation

e Given visible data (y,x), how can we estimate 07

e Maximum likelihood principle:

6 = argmax L, ,)(0), where:
0

Ly z)(0) = logPe(y,x) = logP(y,x|0)

e For a HMM, these are simple to calculate:
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ML estimation from hidden data

e Our model defines P(Y, X), but our data only contains values for
X, i.e., the variable Y is hidden

— HMM example: D only contains words @ but not their labels y

e Maximum likelihood principle still applies:

6 — argmax L, (80), where:
0

Lo(f) = logP(x|f) = log » P(y,x|6)

ycy

e But maximizing L,(60) may now be a non-trivial problem!



What does Expectation Maximization do?

e Expectation Maximization (EM) is a mazimum likelihood

estimation procedure for problems with hidden variables

e EM is good for problems where:
— our model P(Y, X|#) involves variables Y and X
— our training data contains x but not y
— maximizing P(x|f) is hard
— maximizing P(y, z|0) is easy

e In HMM example: if training data consists of words x alone, and

does not contain their labels



The EM algorithm

e The EM algorithm:
— Guess an initial model 6

— Fort =1,2,..., compute Q¥ (y) and 6%, where

Q"(y) = Plylz,0"") (E-step)
Y = @ngwx@%zm&s:omwﬁ\ui%z (M-step)

= @Hmbp@x MU QY (y)log P(y, z|6)

yey
= argmax z P(y, i@@@ (v
0
yey
o QW(y) is probability of “pseudo-data” y using model H¢~
e O is the MLE based on pseudo-data (y, ), where each (y, z) is
weighted according to QW (y)



HMM example

e For a HMM, the EM formulae are:

@@XS = P(ylz, %@va
P(y, /0" ")
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EM converges — overview

e Neal and Hinton define a function F'(Q), ) where:
— Q(Y) is a probability distribution over the hidden variables
— @ are the model parameters

AN

argmax max F'(Q,0) = 6,the MLE of 8

0 Q
max F(Q,0) = L,(0),the log likelihood of 6
argmax F'(Q,0) = P(Y|z,0) for all 6
@

e The EM algorithm is an alternating maximization of F

QY = argmax F(Q,0% ) (E-step)
Q

Y = argmax F(Q,0) (M-step)
0



The EM algorithm converges

F(Q,0) = Ey.qllogP(Y,z|0)] + H(Q)
= Ly(0) — KL(QY)|[P(Y|z,0))

H(Q) = entropy of )
L.(0) = logP(x|0) = log likelihood of ¢
KL(Q||P) = KL divergence between () and P
QYY) = P(Y|z,0" ) — argmax F(Q,0%Y) (E-st
Q
gt — mwmwbmx By ow|logP(Y,x]0)] = mmebmx F(QWY,0) (M-s

e The maximum value of F is achieved at § = 6 and

AN

Q(Y) = P(Y|z,8).

e The sequence of I’ values produced by the EM algorithm is
non-decreasing and bounded abwe by L(8).



Generalized EM

e Idea: anything that increases F' gets you closer to 0

e Idea: insert any additional operations you want into the EM
algorithm so long as they don’t decrease F
— Update 6 after each data item has been processed
— Visit some data items more often than others

— Only update some components of # on some iterations
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Incremental EM for factored models

e Data and model both factor: Y = (Y7,...,Y,), X = (X4,..., X,)
P(Y,X[0) = []P(v, Xi0)

e Incremental EM algorithm:
— Initialize 6 and @MSC\L fore=1,...,n
— E-step: Choose some data item 7 to be updated
Qws QM.T: for all 7 #£1
QI (Y:) = P(Yilzi,0""Y)

— M-step:

g = argmax Ey o [log P(Y, 2|0)]
0
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EM using sufficient statistics
e Model parameters 6 estimated from sufficient statistics S:
YV, X)— S —40

e In HMM example, pseudo-counts are sufficient statistics

e EM algorithm with sufficient statistics:

VAR
=
N—r

]

@M\zwax_aéT:v 5] (E-step)

A" = maximum likelihood value for # based on §® (M-step)
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Incremental EM using sufficient statistics

e Incremental EM algorithm with sufficient statistics:

(Y, X)) — Si|— S — 0 S=>8,

— Initialize ) and WMS fore=1,...,n

— E-step: Choose some data item 7 to be updated
~(t—1 . .

D = m% :,oﬁmzuwm@

= By pifas,00-1) 5]

50 = 500 6 - 5

1

9%  — maximum likelihood value for @ based on 5@
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Conclusion

e The Expectation-Maximization algorithm is a general technique
for using supervised maximum likelihood estimators to solve

unsupervised estimation problems

e The E-step and the M-step can be viewed as steps of an

alternating maximization procedure

— The functional F'is bounded above by the log likelihood

— Each E and M step increases F'

= Eventually the EM algorithm converges to a local optimum
(not necessarily a global optimum)

e We can insert any steps we like into the EM algorithm so long as

they do not decrease F

= Incremental versions of the EM algorithm
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