Probabilistic Grammars and their Applications

Stuart Geman and Mark Johnson
Brown University

January 13, 2001

Abstract

Formal grammars are widely used in speech recognition, language
translation, and language understanding systems. Grammars rich
enough to accommodate natural language generate multiple interpre-
tations of typical sentences. These ambiguities are a fundamental
challenge to practical application. Grammars can be equipped with
probability distributions, and the various parameters of these distri-
butions can be estimated from data (e.g. acoustic representations of
spoken words, or a corpus of hand-parsed sentences). The resulting
probabilistic grammars help to interpret spoken or written language
unambiguously. We review the main classes of probabilistic grammars,
and point to some active areas of research.

1 Introduction

Natural language processing is the use of computers for processing natural
language text or speech. Machine translation (the automatic translation of
text or speech from one language to another) began with the very earliest
computers (Kay et al., 1994). Natural language interfaces permit computers
to interact with humans using natural language, e.g., to query databases.
Coupled with speech recognition and speech synthesis, these capabilities will
become more important with the growing popularity of portable computers
that lack keyboards and large display screens. Other applications include
spell and grammar checking and document summarization. Applications
outside of natural language include compilers, which translate source code
into lower-level machine code, and computer vision (Fu, 1974, 1982).

Most natural language processing systems are based on formal grammars.
The development and study of formal grammars is known as computational
linguistics. A grammar is a description of a language; usually it identifies
the sentences of the language and provides descriptions of them, e.g., by
defining the phrases of a sentence, their inter-relationships, and perhaps also
aspects of their meanings. Parsing is the process of recovering a sentence’s
description from its words, while generation is the process of translating a
meaning or some other part of a sentence’s description into a grammatical
or well-formed sentence. Parsing and generation are major research topics
in their own right. Evidently, human use of language involves some kind
of parsing and generation process, as do many natural language processing
applications. For example, a machine translation program may parse an
input language sentence into a (partial) representation of its meaning, and
then generate an output language sentence from that representation.

Modern computational linguistics began with Chomsky (1957), and was
initially dominated by the study of his “transformational” grammars. These
grammars involved two levels of analyses, a “deep structure” meant to cap-
ture more-or-less simply the meaning of a sentence, and a “surface structure”
which reflects the actual way in which the sentence was constructed. The
deep structure might be a clause in the active voice, “Sandy saw Sam,”
whereas the surface structure might involve the more complex passive voice,
“Sam was seen by Sandy.”

Transformational grammars are computationally complex, and in the
1980s several linguists came to the conclusion that much simpler kinds of
grammars could describe most syntactic phenomena, developing General-
ized Phrase-Structure Grammars (Gazdar et al., 1985) and Unification-based
Grammars (Kaplan and Bresnan, 1982; Pollard and Sag, 1987; Shieber, 1986).
These grammars generate surface structures directly; there is no separate
deep structure and therefore no transformations. These kinds of grammars
can provide very detailed syntactic and semantic analyses of sentences, but
even today there are no comprehensive grammars of this kind that fully ac-
commodate English or any other natural language.

Natural language processing using hand-crafted grammars suffers from
two major drawbacks. First, the syntactic coverage offered by any available
grammar is incomplete, reflecting both our lack of understanding of even
relatively frequently occuring syntactic constructions and the organizational
difficulty of manually constructing any artifact as complex as a grammar of
a natural language. Second, such grammars almost always permit a large

number of spurious ambiguities, i.e., parses which are permitted by the rules
of syntax but have unusual or unlikely semantic interpretations. For example,
in the sentence I saw the boat with the telescope, the prepositional phrase with
the telescope is most easily interpreted as the instrument used in seeing, while
in [saw the policeman with the rifle, the prepositional phrase usually receives
a different interpretation in which the policeman has the rifle. Note that the
corresponding alternative interpretation is marginally accessible for each of
these sentences: in the first sentence one can imagine that the telescope is
on the boat, and in the second, that the rifle (say, with a viewing scope) was
used to view the policeman.

In effect, there is a dilemma of coverage. A grammar rich enough to ac-
commodate natural language, including rare and sometimes even “ungram-
matical” constructions, fails to distinguish natural from unnatural interpre-
tations. But a grammar sufficiently restricted so as to exclude what is un-
natural fails to accommodate the scope of real language. These observations
lead, in the 1980’s, to a growing interest in stochastic approaches to natu-
ral language, particularly to speech. Stochastic grammars became the basis
of speech recognition systems by out-performing the best of the systems
based on deterministic hand-crafted grammars. Largely inspired by these
successes, computational linguists began applying stochastic approaches to
other natural language processing applications. Usually, the architecture of
such a stochastic model is specified manually, while the model’s parameters
are estimated from a training corpus, i.e., a large representative sample of
sentences.

As explained in the body of this entry, stochastic approaches replace the
binary distinctions (grammatical versus ungrammatical) of non-stochastic
approaches with probability distributions. This provides a way of dealing
with the two drawbacks of non-stochastic approaches. Ill-formed alterna-
tives can be characterized as extremely low probability rather than ruled
out as impossible, so even ungrammatical strings can be provided with an
interpretation. Similarly, a stochastic model of possible interpretations of a
sentence provides a method for distinguishing more plausible interpretations
from less plausible ones.

The next section, §2, introduces formally various classes of grammars and
languages. Probabilistic grammars are introduced in §3, along with the basic
issues of parametric representation, inference, and computation.

2 Grammars and languages

The formal framework, whether used in a transformational grammar, a gener-
alized phrase-structure grammar, or a more traditionally styled context-free
grammar, is due to Chomsky (1957) and his co-workers. This section presents
a brief introduction to this framework. But for a thorough (and very read-
able) presentation we highly recommend the book by Hopcroft and Ullman
(1979).

The concept and notation of a formal grammar is perhaps best introduced
by an example:

Example 1: Define a grammar, G1, by G1 = (11, N1, S, R1), where T1 = {grows,
rice, wheat} is a set of words (a “lexicon”), N1 = {S,NP, VP} is a set of symbols
representing grammatically meaningful strings of words, such as clauses or parts of
speech (e.g. S for “Sentence,” NP for “Noun Phrase,” VP for “Verb Phrase”), and
R; = {S — NP VP,NP — rice, NP — wheat, VP — grows} is a collection of rules
for rewriting, or instantiating, the symbols in Nj. Informally, the nonterminal S
rewrites to sentences or clauses, NP rewrites to noun phrases and VP rewrites to
verb phrases. The language, Lg,, generated by G1 is the set of strings of words
that are reachable from S through the rewrite rules in R;. In this example, Lg,
= {rice grows, wheat grows}, derived by S = NP VP = rice VP = rice grows,
and S = NP VP = wheat VP = wheat grows.

More generally, if T is a finite set of symbols, let T™ be the set of all
strings (i.e., finite sequences) of symbols of T, including the empty string,
and let TF be the set of all nonempty strings of symbols of T. A language
is a subset of T*. A rewrite grammar G is a quadruple G = (T, N, S, R),
where T and N are disjoint finite sets of symbols (called the terminal and
non-terminal symbols respectively), S € N is a distinguished non-terminal
called the start or sentence symbol, and R is a finite set of productions. A
production is a pair («,3) where « € N* and 8 € (N UT)*; productions
are usually written a — (. Productions of the form a — €, where € is the
empty string, are called epsilon productions. This entry restricts attention to
grammars without epsilon productions, i.e., 3 € (N UT)*, as this simplifies
the mathematics considerably.

A rewrite grammar G defines a rewriting relation =g C (N UT)* X
(N UT)* over pairs of strings consisting of terminals and nonterminals as
follows: Ay = favy iff A - o € R and 8,7 € (N UT)* (the subscript
G is dropped when clear from the context). The reflexive, transitive closure
of = is denoted =*. Thus =* is the rewriting relation using arbitrary

finite sequences of productions. (It is called “reflexive” because the identity
rewrite, @ = «, is included). The language generated by G, denoted L, is
the set of all strings w € T such that S =* w.

Rewrite grammars are traditionally classified by the shapes of their pro-
ductions. G = (T, N, S, R) is a context-sensitive grammar iff for all produc-
tions a« — [€ R, |a] < |, i.e., the right-hand side of each production is
not shorter than its left-hand side. G is a context-free grammar iff |a| = 1,
i.e., the left-hand side of each production consists of a single non-terminal.
G is a left-linear grammar iff G is context-free and § (the right-hand side
of the production) is either of the form Aw or of the form w where A € N
and w € T*; in a right-linear grammar 3 always is of the form wA or w. A
right or left-linear grammar is called a regular grammar. Gy, in Example 1,
is context sensitive and context free.

It is straight-forward to show that the classes of languages generated by
these classes of grammars stand in strict equality or subset relationships.
Specifically, the class of languages generated by right-linear grammars is the
same as the class generated by left-linear grammars; this class is called the
reqular languages, and is a strict subset of the class of languages generated
by context-free grammars, which is a strict subset of the class of languages
generated by context-sensitive grammars, which in turn is a strict subset of
the class of languages generated by rewrite grammars.

It turns out that context-sensitive grammars (where a production rewrites
more than one nonterminal) have not had many applications in natural
language processing, so from here on we will concentrate on context-free
grammars, where all productions take the form A — 3, where A € N and
ge(NUT)*.

An appealing property of grammars with productions in this form is that
they induce tree structures on the strings that they generate. And, as Section
3 shows, this is the basis for bringing in probability distributions and the
theory of inference. We say that the context-free grammar G = (T, N, S, R)
generates the labelled, ordered tree v iff the root node of v is labelled S,
and for each node n in 1), either n has no children and its label is a member
of T (i.e., it is labelled with a terminal) or else there is a production A —
B € R where the label of n is A and the left-to-right sequence of labels of
n’s immediate children is §. It is straight forward to show that w is in Lg iff
G generates a tree 1) whose yield (i.e., the left-to-right sequence of terminal
symbols labelling 1’s leaf nodes) is w; 1 is called a parse tree of w (with
respect to G). In what follows, we define W¢ to be the set of parse trees

generated by G, and)(-) to be the function that maps trees to their yields.

Example 1 (continued): The grammar G; defined above generates the follow-
ing two trees, 1 and 9.

S S
P = /\ o = /\
NP VP NP VP
| | | |
rice grows wheat grows

In this example, Y(¢1) = rice grows and Y(¢2) = wheat grows.

A string of terminals w is called ambiguous iff w has two or more parse trees.
Linguistically, each parse tree of an ambiguous string usually corresponds to
a distinct interpretation.

Example 2: Consider Gy = (13, N2, S, R2), where To = {I,saw, the, man, with,
telescope}, No = {S,NP,N,Det, VP, V,PP,P} and Ry = {S — NPVP,NP —
I, NP — Det N, Det — the, N — NPP, N — man, N — telescope, VP — VNP, VP —
VP PP,PP — PNP,V — saw,P — with}. Informally, N rewrites to nouns, Det
to determiners, V to verbs, P to prepositions and PP to prepositional phrases. It
is easy to check that the two trees)3 and 14 with the yields Y(v3) = Y(¢y) =
I saw the man with the telescope are both generated by Gg. Linguistically, these
two parse trees represent two different syntactic analyses of the sentence. The
first analysis corresponds to the interpretation where the seeing is by means of a
telescope, while the second corresponds to the interpretation where the man has
a telescope.

S
/\
NP VP
/\
VP PP
TN T~
A\ NP P NP
/\ /\
Det N Det N
| | | |

I saw the man with the telescope

NP VP
/\
\% NP
/\
NP PP
/\ /\
Det N P NP
/\
Det N
| |

I saw the man with the telescope

3 Probability and statistics

Obviously broad coverage is desirable—mnatural language is rich and diverse,
and not easily held to a small set of rules. But it is hard to achieve broad
coverage without massive ambiguity (a sentence may have tens of thousands
of parses), and this of course complicates applications like language interpre-
tation, language translation, and speech recognition. This is the dilemma
of coverage that we referred to earlier, and it sets up a compelling role for
probabilistic and statistical methods.

We briefly review the main probabilistic grammars and their associated
theories of inference. We begin in §3.1 with probabilistic regular grammars,
also known as hidden Markov models (HMM), which are the foundation of
modern speech recognition systems—see Jelinek (1997) for a survey, and see
Factor analysis and latent structure: hidden Markov models, neural networks,
and mixtures of experts in this encyclopedia.

In §3.2 we discuss probabilistic context-free grammars, which turn out to
be essentially the same thing as branching processes. Finally, in §3.3, we take
a more general approach to placing probabilities on grammars, which leads to
Gibbs distributions, a role for Besag’s pseudolikelihood method (Besag, 1974,
1975), various computational issues, and, all in all, an active area of research
in computational linguistics.

3.1 Regular grammars

We will focus on right-linear grammars, but the treatment of left-linear gram-
mars is more or less identical. It is convenient to work with a normal form:
all rules are either of the form A — bB or A — b, where A,B € N and
b € T. It is easy to show that every right-linear grammar has an equivalent
normal form in the sense that the two grammars produce the same language.
Essentially nothing is lost.

3.1.1 Probabilities

The grammar GG can be made into a probabilistic grammar by assigning to
each nonterminal A € N a probability distribution p over productions of the
form A — a € R: for every A € N

Z p(A—a)=1 (1)

ag(NUT)*
s.t. (A—a)ER

Recall that Wq is the set of parse trees generated by G (see §2). If G is
linear, then ¢ € W is characterized by a sequence of productions, starting
from S. It is, then, straightforward to use p to define a probability P on Wg:
just take P(1)) (for ¢ € U¢) to be the product of the associated production
probabilities.

Example 3: Consider the right-linear grammar Gs = (13, N3, S, R3), with T3 =
{a,b}, N3 = {S, A} and the productions (R3) and production probabilities (p):

S—aS p=.80
S—DbS p=.01
S—bA p=.19
A—DbA p=.90
A—Db p=.10

The language is the set of strings ending with a sequence of at least two b’s.
The grammar is ambiguous: in general, a sequence of terminal states does not
uniquely identify a sequence of productions. The sentence aabbbb has three parses
(determined by the placement of the production S — bA), but the most likely
parse, by far, is S — aS, S — aS, S — bA, A - bA, A - bA, A - b (P =
.8-.8-.19-.9-.1), which has a posterior probability of nearly .99. The corresponding
parse tree is shown below.

/\S
a
/\S
a
/\
b A
/\
b A
/\
b A

3.1.2 Inference

The problem is to estimate (see Estimation: point and interval) the transi-
tion probabilities, p(-), either from parsed data (examples from W) or just
from sentences (examples from L¢g). Consider first the case of parsed data
(“supervised learning”), and let 11,19, ..., 19, € ¥ be a sequence taken iid
according to P. If f(A — a;) is the counting function, counting the num-
ber of times transition A — a € R occurs in 1, then the likelihood function
(see Likelihood) is

= L(p; 1,5 n) = H [T p(A— bB)fA—ews) (2)

i=1 A—a€R

The maximum likelihood estimate is, sensibly, the relative frequency estima-

tor:
1 f(A — %‘) (3)
=128 st. amper S (A — Bii)

The problem of estimating p from sentences (“unsupervised learning”)
is more interesting, and more important for applications. Recall that)(v)
is the yield of 1, i.e. the sequence of terminals in . Given a sentence
w € TT, let U, be the set of parses which yield w: ¥,, ={¢ € ¥: V() =
w}. Imagine a sequence 1y, ..., 1,, iid according to P, for which only the
corresponding yields, w; = Y(¢;) 1 < ¢ < n, are observed. The likelihood
function is

L:L(p;wla'--a H Z H A—)a F(A—auiy) (4)

i=1PEW,y, A—>a€R

PpA—a)=

9

As is usual with hidden data, there is an EM-type iteration for climbing the
likelihood surface—see Baum (1972) and Dempster et al. (1977):

?:1 Ef)t [f(A — Qg w)’w € \Pwi]
ZA—>[3€R 2?21 Eﬁt [f(A - ﬁ? WW S \I,wi]

Needless to say, nothing can be done with this unless we can actually eval-
uate, in a computationally feasible way, expressions like E3[f(A — a;¢)|y €
U,]. This is one of several closely related computational problems that are
part of the mechanics of working with regular grammars.

(5)

Prr1(A —a) =

3.1.3 Computation

A sentence w € T is parsed by finding a sequence of productions A — bB €
R which yield w. Depending on the grammar, this corresponds more or less
to an interpretation of w. Often, there are many parses and we say that w
is ambiguous. In such cases, if there is a probability p on R then there is a
probability P on ¥, and a reasonably compelling choice of parse is the most
likely parse:

arg max P(1)) (6)

YeTy

This is the mazimum a posteriori (MAP) estimate of ¢—obviously it mini-
mizes the probability of error under the distribution P. (Of course, in those
cases in which (6) is small, P does little to make w unambiguous.)

What is the probability of w? How are its parses computed? How is
the most likely parse computed? These computational issues turn out to be
more-or-less the same as the issue of computing E5[f(A — a;¢)[¢p € U,
that came up in our discussion of inference. The basic structure and cost
of the computational algorithm is the same for each of the four problems—
compute the probability of w, compute the set of parses, compute the best
parse, compute Ej. In particular, there is a simple dynamic programming
solution to each of these problems, and in each case the complexity is of the
order n-|R|, where n is the length of w, and | R| is the number of productions
in G—see Jelinek (1997), Geman and Johnson (2000). The existence of a
dynamic programming principle for regular grammars is a primary reason
for their central role in state-of-the-art speech recognition systems.

10

3.2 Context-free grammars

Despite the successes of regular grammars in speech recognition, the problems
of language understanding and translation are generally better addressed with
the more structured and more powerful context-free grammars. Following our
development of probabilistic regular grammars in the previous section, we will
address here the inter-related issues of fitting context-free grammars with
probability distributions, estimating the parameters of these distributions,
and computing various functionals of these distributions.

The context-free grammars G = (T, N, S, R) have rules of the form A —
a,a € (NUT)™T, as discussed previously in §2. There is again a normal form,
known as the Chomsky normal form, which is particularly convenient when
developing probabilistic versions. Specifically, one can always find a context-
free grammar G’, with all productions of the form A — BC or A — a,
A, B,C,e N, a € T, which produces the same language as GG: L = Lg.
Henceforth, we will assume that context-free grammars are in the Chomsky
normal form.

3.2.1 Probabilities

The goal is to put a probability distribution on the set of parse trees generated
by a context-free grammar in Chomsky normal form. Ideally, the distribution
will have a convenient parametric form, that allows for efficient inference and
computation.

Recall from §2 that context-free grammars generate labeled, ordered trees.
Given sets of nonterminals N and terminals 7', let U be the set of finite trees
with:

(a) root node labeled S;
(b) leaf nodes labeled with elements of T';
(c) interior nodes labeled with elements of N;

(d) every nonterminal (interior) node having either two children labeled with
nonterminals or one child labeled with a terminal.

Every ¢ € ¥ defines a sentence w € TT: read the labels off of the terminal
nodes of ¢ from left to right. Consistent with the notation of §3.1, we write
V() = w. Conversely, every sentence w € T defines a subset of ¥, which

11

we denote by U, consisting of all ¢ with yield w (Y(¢) = w). A context-
free grammar G defines a subset of U, W, whose collection of yields is
the language, L, of G. We seek a probability distribution P on ¥ which
concentrates on V.

The time-honored approach to probabilistic context-free grammars is
through the production probabilities p : R — [0, 1], with

Y, pA—a)=1 (7)
aEN2UT
s.t. (A—a)ER

Following the development in §3.1, we introduce a counting function f(A —
a; 1)), which counts the number of instances of the rule A — « in the tree
¥, i.e. the number of nonterminal nodes A whose daughter nodes define,
left-to-right, the string a. Through f, p induces a probability P on V:

PW)= I p(A—a)/cze? (8)

(A—a)ER

It is clear enough that P concentrates on V¢, and we shall see shortly that
this parameterization, in terms of products of probabilities p, is particularly
workable and convenient. The pair, G and P, is known as a probabilistic
context-free grammar, or PCFG for short. (Notice the connection to branch-
ing processes—Harris (1963): Starting at S, use R, and the associated prob-
abilities p(-), to expand nodes into daughter nodes until all leaf nodes are
labeled with terminals—i.e., with elements of 7'.)

3.2.2 Inference

As with probabilistic regular grammars, the production probabilities of a
context-free grammar, which amount to a parameterization of the distribu-
tion P on Vg, can be estimated from examples. In one scenario, we have
access to a sequence 1, ..., 1, from ¥g under P. This is “supervised learn-
ing,” in the sense that sentences come equipped with parses. More practical is
the problem of “unsupervised learning,” wherein we observe only the yields,
y(¢1>7 ce ,y(wn>

In either case, the treatment of maximum likelihood estimation is essen-
tially identical to the treatment for regular grammars. In particular, the
likelihood for fully observed data is again (2), and the maximum likelihood

12

estimator is again the relative frequency estimator (3). And, in the unsuper-
vised case, the likelihood is again (4) and this leads to the same EM-type
iteration given in (5).

3.2.3 Computation

There are again four basic computations: find the probability of a sentence
we Tt find avy € ¥ (or find all ¢ € ¥) satisfying Y(¢) = w (“parsing”);
find
arg max P(1)

pew S.1.

Y(@)=w
(“maximum a posteriori’ or “optimal” parsing); compute expectations of the
form Ep,[f(A — a;1)[¢p € ¥, that arise in iterative estimation schemes like
(5). The four computations turn out to be more-or-less the same, as was the
case for regular grammars (§3.1.3), and there is again a common dynamic-
programming-like solution—see Lari and Young (1990, 1991), Geman and
Johnson (2000).

3.3 Gibbs distributions

There are many ways to generalize. The coverage of a context-free gram-
mar may be inadequate, and we may hope, therefore, to find a workable
scheme for placing probabilities on context-sensitive grammars, or perhaps
even more general grammars. Or, it may be preferable to maintain the struc-
ture of a context-free grammar, especially because of its dynamic program-
ming principle, and instead generalize the class of probability distributions
away from those induced (parameterized) by production probabilities. But
nothing comes for free. Most efforts to generalize run into nearly intractable
computational problems when it comes time to parse or to estimate param-
eters.

Many computational linguists have experimented with using Gibbs distri-
butions, popular in statistical physics, to go beyond production-based prob-
abilities, while nevertheless preserving the basic context-free structure. Next
we take a brief look at this particular formulation, in order to illustrate the
various challenges that accompany efforts to generalize the more standard
probabilistic grammars.

13

3.3.1 Probabilities

The sample space is V¢, the set of trees generated by a context-free gram-
mar (. Gibbs measures are built from sums of more-or-less simple func-
tions, known as “potentials” in statistical physics, defined on the sample
space. In linguistics, it is more natural to call these features rather than
potentials. Suppose, then, that we have identified M linguistically salient
features fi,..., far, where fi : ¥ — R, through which we will characterize
the fitness or appropriateness of a structure v € Wqg. More specifically, we
will construct a class of probabilities on ¥ which depend on ¢ € Vg only
through f1(¢), ..., fu(¥). Examples of features are the number of times a
particular production occurs, the number of words in the yield, various mea-
sures of subject-verb agreement, and the number of embedded or independent
clauses.
Gibbs distributions have the form

1 M
Py(y) = Z exp{)_ 0:ifi(1)} (9)
i=1
where 6, ...,0,, are parameters, to be adjusted “by hand” or inferred from

data, § = (01 ...,05), and where Z = Z(0) (known as the “partition func-
tion”) normalizes so that Py(W¥) = 1. Evidently, we need to assume or ensure
that 3 yep,, exp{>°1" 0;f;(1)} < oo. For instance, we had better require that
6y < 0if M =1 and f1(¢) = |Y(¢)| (the number of words in a sentence),
unless of course |Uqg| < co.

Relation to Probabilistic Context-Free Grammars. Gibbs distribu-
tions are much more general than probabilistic context-free grammars. In or-

der to recover PCFG’s, consider the special feature set { f(A — a;v)} a—acr:
The Gibbs distribution (9) takes on the form

Pig) = gl Y Oaaf(A—aig)} (10)

A—a€R

Evidently, then, we get the probabilistic context-free grammars by taking
Oa—a = log,p(A — «), where p is a system of production probabilities
consistent with (7), in which case Z = 1. But is (10) more general? Are
there probabilities on V¢ of this form that are not PCFGs? The answer
turns out to be no, as was shown by Chi (1999) and Abney et al. (1999):
Given a probability distribution P on W¢ of the form of (10), there always
exists a system of production probabilities p under which P is a PCFG.

14

3.3.2 Inference

The feature set {fi}i—1,..m can be accommodate arbitrary linguistic at-
tributes and constraints, and the Gibbs model (9), therefore, has great
promise as an accurate measure of linguistic fitness. But the model de-
pends critically on the parameters {6;};—1,. s, and the associated estimation
problem is, unfortunately, very hard. Indeed, the problem of unsupervised
learning appears to be all but intractable.

Let us suppose, then, that we observe 1, 1so,... 1, € Vg (“super-
vised learning”), iid according to FPp. In general, the likelihood function,
[17_, Py(¢);), is more or less impossible to maximize. But if the primary goal
is to select good parses, then perhaps the likelihood function asks for too
much, or even the wrong thing. It might be more relevant to maximize the

likelihood of the observed parses, given the yields Y(v1), ..., Y(¢n):

n

11 Po(vil Y () (11)

i=1

Maximization of (11) is an instance of Besag’s remarkably effective pseudo-
likelihood method (Besag, 1974, 1975), which is commonly used for estimating
parameters of Gibbs distributions. The computations involved are generally
much easier than what is involved in maximizing the ordinary likelihood func-
tion. Take a look at the gradient of the logarithm of (11): the #; component
is proportional to

1 & 1 &

22000 = 5 S BIG@IYW) = Y] (12)
and Ey[f;(1)|Y(¢)] can be computed directly from the set of parses of the
sentence) (1)). (In practice there is often massive ambiguity, and the number
of parses may be too large to feasibly consider. Such cases require some form
of pruning or approximation.)

Thus gradient ascent of the pseudolikelihood function is (at least ap-
proximately) computationally feasible. This is particularly useful since the
Hessian of the logarithm of the pseudolikelihood function is non-positive, and
therefore there are no local maxima. What’s more, under mild conditions

pseudolikelihood estimators (i.e. maximizers of (11)) are consistent (Chi,
1998).

15

References

Abney, Steven, David McAllester, and Fernando Pereira. 1999. Relating
probabilistic grammars and automata. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics, pages 542-549,
San Francisco. Morgan Kaufmann.

Baum, L.E. 1972. An inequality and associated maximization techniques in
statistical estimation of probabilistic functions of Markov processes. In-
equalities, 3:1-8.

Besag, J. 1974. Spatial interaction and the statistical analysis of lattice
systems (with discussion). Journal of the Royal Statistical Society, Series
D, 36:192-236.

Besag, J. 1975. Statistical analysis of non-lattice data. The Statistician, 24:
179-195.

Chi, Zhiyi. 1998. Probability Models for Complex Systems. PhD thesis,
Brown University.

Chi, Zhiyi. 1999. Statistical properties of probabilistic context-free gram-
mars. Computational Linguistics, 25(1):131-160.

Chomsky, Noam. 1957. Syntactic Structures. Mouton, The Hague.

Dempster, A., N. Laird, and D. Rubin. 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39:1-38.

Fu, K. S. 1974. Syntactic Methods in Pattern Recognition. Academic Press.

Fu, K. S. 1982. Syntactic Pattern Recognition and Applications. Prentice-
Hall.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, and Ivan Sag. 1985. Gener-
alized Phrase Structure Grammar. Basil Blackwell, Oxford.

Geman, Stuart and Mark Johnson. 2000. Probability and statistics in compu-
tational linguistics, a brief review. Internal publication, Division of Applied
Mathematics, Brown University.

16

Harris, T. E. 1963. The Theory of Branching Processes. Springer, Berlin.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley.

Jelinek, Frederick. 1997. Statistical Methods for Speech Recognition. The
MIT Press, Cambridge, Massachusetts.

Kaplan, Ronald M. and Joan Bresnan. 1982. Lexical-Functional Grammar:
A formal system for grammatical representation. In Joan Bresnan, editor,
The Mental Representation of Grammatical Relations, chapter 4, pages
173-281. The MIT Press.

Kay, Martin, Jean Mark Gavron, and Peter Norvig. 1994. Verbmobil: a
translation system for face-to-face dialog. CSLI Press, Stanford, California.

Lari, K. and S.J. Young. 1990. The estimation of Stochastic Context-Free
Grammars using the Inside-Outside algorithm. Computer Speech and Lan-
guage, 4(35-56).

Lari, K. and S.J. Young. 1991. Applications of Stochastic Context-Free
Grammars using the Inside-Outside algorithm. Computer Speech and Lan-
gquage, 5:237-257.

Pollard, Carl and Ivan A. Sag. 1987. Information-based Syntaxr and Seman-
tics. Number 13 in CSLI Lecture Notes Series. Chicago University Press,
Chicago.

Shieber, Stuart M. 1986. An Introduction to Unification-based Approaches to
Grammar. CSLI Lecture Notes Series. Chicago University Press, Chicago.

17

