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Statistical revolution in computational linguistics

I Speech recognition

I Syntactic parsing

I Machine translation

Year

Parse
Accuracy

2006200420022000199819961994

0.92
0.91
0.9

0.89
0.88
0.87
0.86
0.85
0.84



Statistical models in computational linguistics

I Supervised learning: structure to be learned is visible

I speech transcripts, treebank, proposition bank,
translation pairs

I more information than available to a child
I annotation requires (linguistic) knowledge

I a more practical method of making information available
to a computer than writing a grammar by hand

I Unsupervised learning: structure to be learned is hidden

I alien radio, alien TV



Chomsky’s “Three Questions”

I What constitutes knowledge of language?

I grammar (universal, language specific)

I How is knowledge of language acquired?

I language acquisition

I How is knowledge of language put to use?

I psycholinguistics

(last two questions are about inference)



The centrality of inference

I “poverty of the stimulus”

⇒ innate knowledge of language (universal grammar)
⇒ intricate grammar with rich deductive structure



The centrality of inference

I “poverty of the stimulus”

⇒ innate knowledge of language (universal grammar)
⇒ intricate grammar with rich deductive structure

I Statistics is the theory of optimal inference in the
presence of uncertainty

I We can define probability distributions over structured
objects

⇒ no inherent contradiction between statistical inference
and linguistic structure

I probabilistic models are declarative
I probabilistic models can be systematically combined

P(X ,Y ) = P(X )P(Y |X )



Questions that statistical models might answer

I What information is required to learn language?

I How useful are different kinds of information to language
learners?

I Bayesian inference can utilize prior knowledge
I Prior can encode “soft” markedness preferences and

“hard” universal constraints

I Are there synergies between different information
sources?

I Does knowledge of phonology or morphology make word
segmentation easier?

I May provide hints about human language acquisition
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Probabilistic Context-Free Grammars

1.0 S → NP VP 1.0 VP → V
0.75 NP → George 0.25 NP → Al
0.6 V → barks 0.4 V → snores

P




S

NP VP

George V

barks


 = 0.45 P
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Estimating PCFGs from visible data

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1
NP → rice 2 2/3
NP → corn 1 1/3
VP → grows 3 1

Rel freq is maximum likelihood estimator

(selects rule probabilities that
maximize probability of trees)
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Estimating PCFGs from hidden data

I Training data consists of strings w alone

I Maximum likelihood selects rule probabilities that
maximize the marginal probability of the strings w

I Expectation maximization is a way of building hidden
data estimators out of visible data estimators

I parse trees of iteration i are training data for rule
probabilities at iteration i + 1

I Each iteration is guaranteed not to decrease P(w) (but
can get trapped in local minima)

I This can be done without enumerating the parses



Example: The EM algorithm with a toy PCFG

Initial rule probs
rule prob
· · · · · ·
VP → V 0.2
VP → V NP 0.2
VP → NP V 0.2
VP → V NP NP 0.2
VP → NP NP V 0.2
· · · · · ·
Det → the 0.1
N → the 0.1
V → the 0.1

“English” input
the dog bites
the dog bites a man
a man gives the dog a bone
· · ·

“pseudo-Japanese” input
the dog bites
the dog a man bites
a man the dog a bone gives
· · ·



Probability of “English”

Iteration

Geometric
average

sentence

probability

543210

1

0.1

0.01

0.001

1e-04

1e-05

1e-06



Rule probabilities from “English”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0



Probability of “Japanese”

Iteration

Geometric
average

sentence

probability

543210

1

0.1

0.01

0.001

1e-04

1e-05

1e-06



Rule probabilities from “Japanese”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0



Learning in statistical paradigm

I The likelihood is a differentiable function of rule
probabilities
⇒ learning can involve small, incremental updates

I Learning structure (rules) is hard, but . . .

I Parameter estimation can approximate rule learning
I start with “superset” grammar
I estimate rule probabilities
I discard low probability rules

I Parameters can be associated with other things besides
rules (e.g., HeadInitial, HeadFinal)



Applying EM to real data

I ATIS treebank consists of 1,300 hand-constructed parse
trees

I ignore the words (in this experiment)

I about 1,000 PCFG rules are needed to build these trees

S

VP

VB

Show
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PRP
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PDT
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DT

the

JJ

nonstop

NNS
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PP

PP
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PP
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to
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.



Experiments with EM

1. Extract productions from trees and estimate probabilities
probabilities from trees to produce PCFG.

2. Initialize EM with the treebank grammar and MLE
probabilities

3. Apply EM (to strings alone) to re-estimate production
probabilities.

4. At each iteration:
I Measure the likelihood of the training data and the

quality of the parses produced by each grammar.
I Test on training data (so poor performance is not due to

overlearning).



Log likelihood of training strings

Iteration

log P

20151050

-14000

-14200

-14400

-14600

-14800

-15000

-15200

-15400

-15600

-15800

-16000



Quality of ML parses

Recall
Precision

Iteration

Parse
Accuracy

20151050

1

0.95

0.9

0.85

0.8

0.75

0.7



Why does it work so poorly?

I Wrong data: grammar is a transduction between form
and meaning ⇒ learn from form/meaning pairs

I exactly what contextual information is available to a
language learner?

I Wrong model: PCFGs are poor models of syntax

I Wrong objective function: Maximum likelihood makes the
sentences as likely as possible, but syntax isn’t intended
to predict sentences (Klein and Manning)

I How can information about the marginal distribution of
strings P(w) provide information about the conditional
distribution of parses t given strings P(t|w)?

I need additional linking assumptions about the
relationship between parses and strings

I . . . but no one really knows!
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Factoring the language learning problem

I Factor the language learning problem into linguistically
simpler components

I Focus on components that might be less dependent on
context and semantics (e.g., word segmentation,
phonology)

I Identify relevant information sources (including prior
knowledge, e.g., UG) by comparing models

I Combine components to produce more ambitious learners

I PCFG-like grammars are a natural way to formulate many
of these components

Joint work with Sharon Goldwater and Tom Griffiths



Word Segmentation

Data = t h e d o g b a r k s

Utterance

Word

t h e

Utterance

Word

d o g

Utterance

Word

b a r k s

Utterance → Word Utterance
Utterance → Word
Word → w w ∈ Σ?

I Algorithms for word segmentation from this information
already exists (e.g., Elman, Brent)

I Likely that children perform some word segmentation
before they know the meanings of words



Concatenative morphology

Data = t a l k i n g

Verb

Stem

t a l k

Suffix

i n g

Verb → Stem Suffix
Stem → w w ∈ Σ?

Suffix → w w ∈ Σ?

I Morphological alternation provides primary evidence for
phonological generalizations (“trucks” /s/ vs. “cars” /z/)

I Morphemes may also provide clues for word segmentation

I Algorithms for doing this already exist (e.g., Goldsmith)



PCFG components can be integrated

Utterance

WordsN

N

StemN

d o g

SuffixN

s

WordsV

V

StemV

b a r k

SuffixV

Utterance → WordsS S ∈ S
WordsS → S WordsT T ∈ S
S → StemS SuffixS

StemS → t t ∈ Σ?

SuffixS → f f ∈ Σ?



Problems with maximum likelihood estimation

I Maximum likelihood picks model that best fits the data

I Saturated models exactly mimic the training data
⇒ highest likelihood

I Need a different estimation framework
Utterance

Word

t h e d o g b a r k s
Verb

Stem

t a l k i n g

Suffix



Bayesian estimation

P(Hypothesis|Data)︸ ︷︷ ︸
Posterior

∝ P(Data|Hypothesis)︸ ︷︷ ︸
Likelihood

P(Hypothesis)︸ ︷︷ ︸
Prior

I Priors can be sensitive to linguistic structure (e.g., a word
should contain a vowel)

I Priors can encode linguistic universals and markedness
preferences (e.g., complex clusters appear at word onsets)

I Priors can prefer sparse solutions

I The choice of the prior is as much a linguistic issue as the
design of the grammar!



Morphological segmentation experiment

I Trained on orthographic verbs from U Penn. Wall Street
Journal treebank

I Dirichlet prior prefers sparse solutions (sparser solutions
as α → 0)

I Gibbs Sampler used to sample from posterior distribution
of parses

I reanalyses each word based on a grammar estimated
from the parses of the other words



Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5

α = 10−10
α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed
including including including including

add add add add
adds adds adds add s

added added add ed added
adding adding add ing add ing

continue continue continue continue
continues continues continue s continue s
continued continued continu ed continu ed
continuing continuing continu ing continu ing

report report report report
reports report s report s report s

reported reported reported reported
reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed
transporting transport ing transport ing transport ing

downsize downsiz e downsiz e downsiz e
downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted



Log posterior of models on token data

Posterior
True suffixes
Null suffixes

Dirichlet prior parameter α

logPα

11e-101e-20

-800000

-1e+06

-1.2e+06

I Correct solution is nowhere near as likely as posterior

⇒ model is wrong!



Independence assumption in PCFG model

Verb

Stem

t a l k

Suffix

i n g

P(Word) = P(Stem)P(Suffix)

I Model expects relative frequency of each suffix to be the

same for all stems



Relative frequencies of inflected verb forms



Types and tokens

I A word type is a distinct word shape

I A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the” 2, “cat” 2, “chased” 1, “other” 1

Types = “the” 1, “cat” 1, “chased” 1, “other” 1

I Using word types instead of word tokens effectively
normalizes for frequency variations



Posterior samples from WSJ verb types
α = 0.1 α = 10−5

α = 10−10
α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted



Summary so far

I Unsupervised learning is difficult on real data!

I There’s a lot to learn from simple problems
I need models that require all stems in same class to have

same suffixes but permit suffix frequencies to vary with
the stem

I Related problems arise in other linguistic domains as well
I Many verbs share the same subcategorization frames,

but subcategorization frame frequencies depend on head
verb.

I Hopefully we can combine these simple learners to study
their interaction in more complex domains
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Psalter Mappa Mundi (1225?)



Portolan chart circa 1424



Portolan chart circa 1424 (center)



Waldseemüller 1507, after Ptolemy



Battista Agnese portolan chart circa 1550



Mercator 1569



... back to computational linguistics

I Be wary of analogies from the history of science!
I we only remember the successes

I May wind up learning something very different to what
you hoped

I Cartography and geography benefited from both the
academic and Portolan traditions

I Geography turned out to be about brute empirical facts
I but geology and plate tectonics

I Mathematics (geometry and trigonometry) turned out to
be essential

I Even wrong ideas can be very important
I the cosmographic tradition survives in celestial

navigation
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Conclusion

I Statistical methods have both engineering and scientific
applications

I Inference plays a central role in linguistic theory

I Uncertain information ⇒ statistical inference

I The statistical component of a model may require as
much linguistic insight as the structural component

I Factoring the learning problem into linguistically simpler
pieces may be a good way to proceed

I Who knows what the future will bring?



Thank you

“I ask you to look both ways. For the road to a knowledge of

the stars leads through the atom; and important knowledge of

the atom has been reached through the stars.”

— Sir Arthur Eddington

“Everything should be made as simple as possible, but not one

bit simpler.”

— Albert Einstein

“Something unknown is doing we don’t know what.”

— Sir Arthur Eddington

“You can observe a lot just by watching.”

— Yogi Berra



Log posterior of models on type data

Optimal suffixes
True suffixes
Null suffixes

Dirichlet prior parameter α

logPα

11e-101e-20

0

-200000

-400000

I Correct solution is close to optimal for α = 10−3



Morpheme frequencies provide useful information

Yarowsky and Wicentowski (2000) “Minimally supervised

Morphological Analysis by Multimodal Alignment”



Suffix frequency depends on stem

Word

V

t a l k SuffixVtalk

i n g

Word → S S ∈ S
S → t SuffixS ,t t ∈ Σ?

SuffixS ,t → f f ∈ Σ?

I Suffix distributions SuffixS ,t → f depend on the stem t

I Prior constrains suffix distributions SuffixS ,t → f for
stems t in the same class to be similar

I Model is saturated and not context-free



Dirichlet priors and sparse solutions

I The expansions of a nonterminal in a PCFG are
distributed according to a multinomial

I Dirichlet priors are a standard prior over multinomial
distributions

P(p1, . . . , pn) ∝

n∏

i=1

pα−1
i α > 0

α = 2.0
α = 1.0
α = 0.5
α = 0.1

Binomial probability p

Pα(p)

10.80.60.40.20

3

2

1

0



Estimation procedures

I Dirichlet prior prefers sparse solutions ⇒ MAP grammar
may be undefined even though MAP parses are defined

I Markov Chain Monte Carlo techniques can sample from
the posterior distribution over grammars and parses

I Gibbs sampling:

1. Construct a corpus of (word,tree) pairs by randomly
assigning trees to each word in the data

2. Repeat:

2.1 Pick a word w and its tree from the corpus at random
2.2 Estimate a grammar from the trees assigned to the

other words in the corpus
2.3 Parse w with this grammar, producing a distribution

over trees
2.4 Select a tree t from this distribution, and add (w , t) to

the corpus
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Maximum likelihood estimation from visible data

Correct parses
for training data sentences

All possible parses for
all possible sentences

I Standard maximum likelihood estimation makes the
treebank trees t and strings w as likely as possible
relative to all other possible trees and strings

ĝ = arg max
g

= Pg(w , t) = arg max
g

Pg (t|w) Pg(w)



Maximum likelihood estimation from hidden data

for training data sentences
All possible parses

for training data sentences
Correct parses

All possible parses for
all possible sentences

I Maximum likelihood estimation maximizes the probability
of the words w of the training data, relative to all other
possible word strings

ĝ = arg max
g

Pg(w) = arg max
g

∑

t

Pg (t, w)



Conditional MLE from visible data

Correct parses
for training data sentences

All possible parses
for training data sentences

All possible parses for
all possible sentences

I Conditional MLE maximizes the conditional probability

Pg (t|w) of the training trees t relative to the training
words w

I learns nothing from the distribution Pg (w) of words



Language as a transduction from form to meaning

Language

Representations
Phonological

Semantic

Cognition
A.I.

representations S

W

I Grammar generates a phonological form w from a
semantic representation s

P(w , s) = Pg (w |s)︸ ︷︷ ︸
“language′′

Pc(s)︸ ︷︷ ︸
“cognition′′



Interpretation is finding the most likely meaning s?

w

S

W

s?(w)

s?(w) = arg max
s∈S

P(s|w) = arg max
s∈S

Pg(w |s)Pc(s)



Maximum likelihood estimate ĝ from visible data

w

sS

W

I Training data consists of phonology/semantic pairs (w , s)

I Maximum likelihood estimate of grammar ĝ makes (w , s)
as likely as possible relative to all other possible pairs
(w ′, s ′), w ′ ∈ W, s ′ ∈ S

ĝ = arg max
g

P(w , s) = arg max
g

P(w |s)



MLE ĝ from hidden data

w

sS

W

I Training data consists of phonological strings w alone
I MLE makes w as likely as possible relative to other strings

ĝ = arg max
g

P(w) = arg max
g

∑

s∈S

Pg (w |s)Pc(s)

⇒ It may be possible to learn g from strings alone
I The cognitive model Pc can in principle be learnt the

same way
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