A gentle introduction to
Maximum Entropy Models
and their friends

Mark Johnson
Brown University

November 2007

Outline

What problems can MaxEnt solve?

2/32

Optimality theory analyses

o Markedness constraints
» ONSET: Violated each time a syllable begins without an onset
» PEAK: Violated each time a syllable doesn’t have a peak V
» NOCODA: Violated each time a syllable has a non-empty coda
» *COMPLEX: Violated each time a syllable has a complex onset

or coda

e Faithfulness constraints

» FAITHV: Violated each time a V is inserted or deleted
» FAITHC: Violated each time a C is inserted or deleted

/ ?ilk-hin/

PEAK

*COMPLEX

FAITHC

FAITHV

NoCopa

?il. khin

*|

*3%

?il.k.hin

*|

*%

O ?ilikhin

3%

?ik.hin

*|

*%

©w
&)

Optimal surface forms with strict domination

e OT constraints are functions f from (underlying form, surface
form) pairs to non-negative integers
» Example: FAITHC(/?ilkhin/, [?ik.hin]) =1
o If f=(f1,...,fm) is a vector of constraints and x = (u,v) is a
pair of an underlying form u and a surface form v, then
F(3) = (A (), -0 fnlx))
» Ex:if f = (PEAK, *COMPLEX, FAITHC, FAITHV, NOCODA),
then £(/?ilkhin/, [?ik.hin]) = (0,0,1,0,2)
e If Cis a (possibly infinite) set of (underlying form,candidate
surface forms) pairs then:

x € CisoptimalinC & VeeC, f(x) < f(c)

where < is the standard (lexicographic) on vectors
e Generally all of the pairs in C have the same underlying form
¢ Note: the linguistic properties of a constraint f don’t matter
once we know f(c) for each ¢ € C.

Optimality with linear constraint weights

e Each constraint f has a corresponding weight wy
» Ex: If f = (PEAK, *COMPLEX, FAITHC, FAITHV, NOCODA),
thenw = (—-2,-2,-2,-1,0)
e The score sy (x) for an (underlying, su1;£ace form) pair x is:

sw(x) = w-f(x) = gwjfj(x)
j=

» Ex: f(/?ilkhin/, [?ik.hin]) = (0,0,1,0,2), so
sw(/?ilkhin/, [?ik.hin]) = —2

» Called “linear” because the score is a linear function of the
constraint values

e The optimal candidate is the one with the highest score

Opt(C) = argmax sg(x)

xeC

e Again, all that matters are w and f(c) forc € C

Constraint weight learning example

e All we need to know about the (underlying form,surface
form) candidates x are their constraint vectors f(x)
Winner x; | Losers C; \ {x;}
(0,0,0,1,2) | (0,1,0,0,2) (1,0,0,0,2) (0,0,1,0,2)
(0,0,0,0,2) | (0,0,0,2,0) (1,0,0,0,1)

e The weight vector w = (—2, -2, —2, —1,0) correctly classifies
this data

e Supervised learning problem: given data, find a weight vector
w that correctly classifies every example in data

Supervised learning of constraint weights

e The training data is a vector D of pairs (C;, x;) where
» C;is a (possibly infinite) set of candidates
» x; € C;is the correct realization from C;

(can be generalized to permit multiple winners)
e Given data D and a constraint vector f, find a weight vector w
that makes each x; optimal for C;
“Supervised” because underlying form is given in D

» Unsupervised problem: underlying form is not given in D
(blind source separation, clustering)

The weight vector w may not exist.
» If w exists then D is linearly separable

e We may want w to correctly generalize to examples not in D
e We may want w to be robust to noise or errors in D
= Probabilistic models of learning

©w
&)

Aside: The OT supervised learning problem
is often trivial

e There are typically tens of thousands of different underlying
forms in a language

e But all the learner sees are the vectors f(c)

e Many OT-inspired problems present very few different f(x)
vectors ...

e so the correct surface forms can be identified by memorizing
the f(x) vectors for all winners x

= generalization is often not necessary to identify optimal surface
forms
» too many f(x) vectors to memorize if f contained all
universally possible constraints?
» maybe the supervised learning problem is unrealistically easy,
and we should be working on unsupervised learning?

The probabilistic setting

e View training data D as a random sample from a (possibly
much larger) “true” distribution P(x|C) over (C, x) triples

e Try to pick w so we do well on average over all (C, x)

e Support Vector Machines set w to maximize P(Opt(C) = x), i.e.,
the probability that the optimal candidate is in fact correct

» Although SVMs try to maximize the probability that the
optimal candidate is correct, SVMs are not probabilistic models

o Maximum Entropy models set w to approximate P(x|C) as

closely as possible with an exponential model, or equivalently

o find the probability distribution P(x|C) with maximum entropy
such that Eg[f;|C] = Ep|[f;|C]

Outline

What are Maximum Entropy models?

10 /32

Terminology, or Snow’s “Two worlds”

Warning: Linguists and statisticians use same words to mean
different things!

o feature

» Inlinguistics, e.g., “voiced” is a function from phones to +, —
» In statistics, what linguists call constraints (a function from
candidates/outcomes to real numbers)

e constraint

» In linguistics, what the statisticians call “features”
» In statistics, a property that the estimated model P must have

e outcome

» In statistics, the set of objects we're defining a probability
distribution over (the set of all candidate surface forms)

(¥

Why are they Maximum Entropy models?

e Goal: learn a probability distribution P as close as possible to
distribution P that generated training data D.

e But what does “as close as possible” mean?

» Require P to have sane distribution of features as D

» Assize of data |D| — oo, feature distribution in D will
approach feature distribution in P

» so distribution of features in P will approach distribution of
features in P

o But there are many P that have same feature distributions as
D. Which one should we choose?

» The entropy measures the amount of information in a distribution
» Higher entropy = less information
» Choose the P with maximum entropy that whose feature
distributions agree with D
— P has the least extraneous information possible

0
&)

2/3

Maximum Entropy models

e A conditional Maximum Entropy model Py, consists of a vector
of features f and a vector of feature weights w.

e The probability Py, (x|C) of an outcome x € C is:

—

Py (x[C) = exp (sw(x))

1
Zo(C) =), exp (sw(x))

e Zw(C) is a normalization constant called the partition function

Feature dependence = MaxEnt models

e Many probabilistic models assume that features are
independently distributed (e.g., Hidden Markov Models,
Probabilistic Context-Free Grammars)

= Estimating feature weights is simple (relative frequency)
e But features in most linguistic theories interact in complex
ways
» Long-distance and local dependencies in syntax
» Many markedness and faithfulness constraints interact to
determine a single syllable’s shape
= These features are not independently distributed
e MaxEnt models can handle these feature interactions

e Estimating feature weights of MaxEnt models is more
complicated

» generally requires numerical optimization

A rose by any other name ...

¢ Like most other good ideas, Maximum Entropy models have
been invented many times . ..

» In statistical mechanics (physics) as the Gibbs and Boltzmann
distributions

» In probability theory, as Maximum Entropy models, log-linear
models, Markov Random Fields and exponential families

» In statistics, as logistic regression

» In neural networks, as Boltzmann machines

©w
&)

A brief history of MaxEnt models in
Linguistics

e Logistic regression used in socio-linguistics to model
“variable rules” (Sedergren and Sankoff 1974)

e Hinton and Sejnowski (1986) and Smolensky (1986) introduce
the Boltzmann machine for neural networks

e Berger, Dell Pietra and Della Pietra (1996) propose Maximum
Entropy Models for language models with non-independent
features

e Abney (1997) proposes MaxEnt models for probabilistic
syntactic grammars with non-independent features

¢ (Johnson, Geman, Canon, Chi and Riezler (1999) propose
conditional estimation of regularized MaxEnt models)

Outline

Learning Maximum Entropy models from data

17 / 32

Finding the MaxEnt model by maximizing
likelihood

e Can prove that the MaxEnt model P for features f and data
D = ((Cy,x1),...,(Cy,xn)) is:

1 1 U
P@(X’C) - Z@(C) exp(s@(x)) = mexp];wjfj(x)
where @ maximizes the likelihood Lp (w) of the data D

n
w = argmaxLp(w) = argmaxHPw(xi]Ci)

w w i=1

Le., choose w to make the winners x; as likely as possible
compared to losers C; \ {x;}

Finding the feature weights w

e Standard method: use a gradient-based numerical optimizer to
minimize the negative log likelihood —log Lp(w)
(Limited memory variable metric optimizers seem to be best)
n
—logLlp(w) = Z —log Puw(xi | Ci)
i=1
n m
=) (108 Zw(Ci) — ijfj(xi))
j=1

i=1

0o — l(z)gLD(w) _ i (Ew[fj|Ci] — fi(xi)) , where:
wj =1
EulfilC] = L filx)Pulx)

e Le, find feature weights @ that make the model’s distribution of
features over C; equal distribution of features in winners x;

19 /32

Finding the optimal feature weights w

Numerically optimizing likelihood involves calculating
—log Lp(w) and its derivatives
Need to calculate Z,,(C;) and Eq,[f;|C;], which are sums over
C;, the set of candidates for example i
If C; can be infinite:
» depending on f and C, might be possible to explicitly calculate
Z4(C;) and E, [f]'|Ci], or
» may be able to approximate Z,(C;) and Ey|[f;|C;], especially if
P, (x|C) is concentrated on few x.
Aside: using MaxEnt for unsupervised learning requires Zy,
and E | f]], but these are typically hard to compute
If feature weights w; should be negative (e.g., OT constraint
violations can only “hurt” a candidate), then replace
optimizer with a numerical optimizer/constraint solver
(e.g., TAO package from Argonne labs)

Outline

Regularization and Bayesian priors

21/32

Why regularize?

MaxEnt selects w so that winners are as likely as possible

Might not want to do this with noisy training data

Pseudo-maximal or minimal features cause numerical problems
» A feature f] is pseudo-minimal iff foralli =1,...,nand x’ € C;,
fi(x;) < f(x') (i.e., fij(x;) is the minimum value f; has in C;)
» If f; is pseudo-minimal, then @; = —oo

Example: Features 1, 2 and 3 are pseudo-minimal below:
Winner x; | Losers C; \ {x;}
(0,0,0,1,2) | (0, ,2) (1,0,0,0,2) (0,0,1,0,2)
(0,0,0,0,2) | (0, ,0) (1,0,0,0,1)

1,0,0
0,0,2

so we can make (some of) the losers have arbitrarily low
probability by setting the corresponding feature weights as
negative as possible

Regularization, or “keep it simple”

e Slavishly optimizing likelihood leads to over-fitting or
numerical problems

= Regularize or smooth, i.e., try to find a “good” w that is “not
too complex”

e Minimize the penalized negative log likelihood
Sk
@ = argmin —logLp(w)+a) |wl
w j=1

where & > 0 is a parameter (often set by cross-validation on
held-out training data) controlling amount of regularization

Aside: Regularizers as Bayesian priors

¢ Bayes inversion formula
P(w|D) « P(D|w) P(w)
N, e’ N——
posterior likelihood prior
or in terms of log probabilities:
—logP(w|D) = —logP(D|w) —logP(w) + ¢

—log lilzrelihood - log?)rior

= The regularized estimate is also the Bayesian maximum
a posteriori (MAP) estimate with prior

P(w) o exp (—oc]w]-]k>
=1

J

e When k = 2 this is a Gaussian prior

24 /32

Understanding the effects of the priors

=

The log penalty term for a Gaussian prior (k = 2)is a}; w]2
so its derivative 2aw; — 0 as w; — 0

Effect of Gaussian prior decreases as w; is small

Gaussian prior prefers all w; to be small but not necessarily
zero

The log penalty term for a 1-norm prior (k = 1) is a }; |wj|
so its derivative asign(w;) is « or —a unless w; = 0

Effect of 1-norm prior is constant no matter how small w; is
1-norm prior prefers most w; to be zero (sparse solutions)

My personal view: If most features in your problem are
irrelevant, prefer a sparse feature vector.

But if most features are noisy and weakly correlated with the
solution, prefer a dense feature vector (averaging is the
solution to noise).

Case study: MaxEnt in syntactic parsing

e MaxEnt model used to pick correct parse from 50 parses
produced by Charniak parser
» C;is set of 50 parses from Charniak parser, x; is best parse in C;
» Charniak parser’s accuracy ~ 0.898 (picking tree it likes best)
» Oracle accuracy is ~ 0.968
» EM-like method for dealing with ties (training data C; contains
several equally good “best parses” for a sentence i)
e MaxEnt model uses 1,219,273 features, encoding a wide
variety of syntactic information
» including the Charniak model’s log probability of the tree
» trained on parse trees for 36,000 sentences
» prior weight a set by cross-validation (don’t need to be accurate)
e Gaussian prior results in all feature weights non-zero
e L1 prior results in ~ 25,000 non-zero feature weights
e Accuracy with both Gaussian and L1 priors ~ 0.916
(Andrew and Gao, ICML 2007)

Outline

Relationship to stochastic gradient ascent and Perceptron

27 /32

Stochastic gradient ascent

e MaxEnt: choose @ to maximize log likelihood
o If w # w and ¢ is sufficiently small, then

logLp (w—i—éalo%u?(w)) > logLp(w)

i.e., small steps in direction of derivative increase likelihood

dloglp(w) _ Z<f1(xl)_ wlfj | Ci]) , where:

x'eC;
o Gradient ascent optimizes the log likelihood in this manner.
» Itis usually not an efficient optimization method
e Stochastic gradient ascent updates immediately in direction of
contribution of training example i to derivative
» Itis a simple and sometimes very efficient method

Perceptron updates as a MaxEnt approx

e Perceptron learning rule: Let x7 be the model’s current
prediction of the optimal candidate in C;
xI = argmax sg(x')
x'eC;
If x* # x;, where x; is the correct candidate in C;, then
increment the current weights w with:

6 (f(xi) = f(x))
e MaxEnt stochastic gradient ascent update:

aloga;;ﬂw) = 5(f(xi) — Bulf|C)

If Py (x| C;) is peaked around x7, then E,, [f | ;| =~ f(x7)
= The Perceptron rule approximates the MaxEnt stochastic

gradient ascent update

o

Regularization as weight decay

e When we approximate regularized MaxEnt as either
Stochastic Gradient Ascent or the Perceptron update,
reqularization corresponds to weight decay (a popular smoothing
method for neural networks)

e Contribution of Gaussian prior to log likelihood is —a'}; w]2
so derivative of regularizer is —2aw;
= weights decay proportionally to their current value each iteration

o Contribution of 1-norm prior to log likelihood is —a }_; [w;]
so derivative of regularizer is —a sign(w;)
= non-zero weights decay by a constant amount each iteration

30/32

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data
Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Summary

31/32

Summary

e Phonological problems, once expressed in Optimality Theory,
can often also be viewed as statistical problems

e Because the OT features (OT constraints) aren’t independent,
MaxEnt (and SVMs?) are natural ways of modeling these
problems

e MaxEnt (and SVM) models are particularly suited to
supervised learning problems (which may not be realistic in
phonology)

e Regularization controls over-learning, and by choosing an
appropriate prior we can prefer sparse solutions (a.k.a. feature
selection)

e MaxEnt is closely related to other popular learning algorithms
such as Stochastic Gradient Ascent and the Perceptron

	What problems can MaxEnt solve?
	What are Maximum Entropy models?
	Learning Maximum Entropy models from data
	Regularization and Bayesian priors
	Relationship to stochastic gradient ascent and Perceptron
	Summary

