
A gentle introduction to

Maximum Entropy Models

and their friends

Mark Johnson
Brown University

November 2007

1 /32

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Summary

2 /32

Optimality theory analyses

• Markedness constraints
◮ ONSET: Violated each time a syllable begins without an onset
◮ PEAK: Violated each time a syllable doesn’t have a peak V
◮ NOCODA: Violated each time a syllable has a non-empty coda
◮

⋆COMPLEX: Violated each time a syllable has a complex onset
or coda

• Faithfulness constraints
◮ FAITHV: Violated each time a V is inserted or deleted
◮ FAITHC: Violated each time a C is inserted or deleted

/Pilk-hin/ PEAK ⋆COMPLEX FAITHC FAITHV NOCODAPil.khin ⋆! **Pil.k.hin ⋆! **
☞ Pi.lik.hin * **Pik.hin *! **

3 /32

Optimal surface forms with strict domination

• OT constraints are functions f from (underlying form, surface
form) pairs to non-negative integers

◮ Example: FAITHC(/Pilkhin/, [Pik.hin]) = 1
• If f = (f1, . . . , fm) is a vector of constraints and x = (u, v) is a
pair of an underlying form u and a surface form v, then
f (x) = (f1(x), . . . , fm(x))

◮ Ex: if f = (PEAK, ⋆COMPLEX, FAITHC, FAITHV, NOCODA),
then f (/Pilkhin/, [Pik.hin]) = (0, 0, 1, 0, 2)

• If C is a (possibly infinite) set of (underlying form,candidate
surface forms) pairs then:

x ∈ C is optimal in C ⇔ ∀c ∈ C, f (x) ≤ f (c)

where ≤ is the standard (lexicographic) on vectors
• Generally all of the pairs in C have the same underlying form
• Note: the linguistic properties of a constraint f don’t matter
once we know f (c) for each c ∈ C.

4 /32

Optimality with linear constraint weights

• Each constraint fk has a corresponding weight wk
◮ Ex: If f = (PEAK, ⋆COMPLEX, FAITHC, FAITHV, NOCODA),
then w = (−2,−2,−2,−1, 0)

• The score sw(x) for an (underlying, surface form) pair x is:

sw(x) = w · f (x) =
m

∑
j=1

wj f j(x)

◮ Ex: f (/Pilkhin/, [Pik.hin]) = (0, 0, 1, 0, 2), so
sw(/Pilkhin/, [Pik.hin]) = −2

◮ Called “linear” because the score is a linear function of the
constraint values

• The optimal candidate is the one with the highest score

Opt(C) = argmax
x∈C

sw(x)

• Again, all that matters are w and f (c) for c ∈ C

5 /32

Constraint weight learning example

• All we need to know about the (underlying form,surface
form) candidates x are their constraint vectors f (x)

Winner xi Losers Ci \ {xi}
(0, 0, 0, 1, 2) (0, 1, 0, 0, 2) (1, 0, 0, 0, 2) (0, 0, 1, 0, 2)
(0, 0, 0, 0, 2) (0, 0, 0, 2, 0) (1, 0, 0, 0, 1)

· · · · · ·

• The weight vector w = (−2,−2,−2,−1, 0) correctly classifies
this data

• Supervised learning problem: given data, find a weight vector
w that correctly classifies every example in data

6 /32

Supervised learning of constraint weights

• The training data is a vector D of pairs (Ci, xi) where
◮ Ci is a (possibly infinite) set of candidates
◮ xi ∈ Ci is the correct realization from Ci

(can be generalized to permit multiple winners)

• Given data D and a constraint vector f , find a weight vector w
that makes each xi optimal for Ci

• “Supervised” because underlying form is given in D
◮ Unsupervised problem: underlying form is not given in D
(blind source separation, clustering)

• The weight vector w may not exist.
◮ If w exists then D is linearly separable

• We may want w to correctly generalize to examples not in D

• We may want w to be robust to noise or errors in D

⇒ Probabilistic models of learning

7 /32

Aside: The OT supervised learning problem

is often trivial

• There are typically tens of thousands of different underlying
forms in a language

• But all the learner sees are the vectors f (c)

• Many OT-inspired problems present very few different f (x)
vectors . . .

• so the correct surface forms can be identified by memorizing
the f (x) vectors for all winners x

⇒ generalization is often not necessary to identify optimal surface
forms

◮ too many f (x) vectors to memorize if f contained all
universally possible constraints?

◮ maybe the supervised learning problem is unrealistically easy,
and we should be working on unsupervised learning?

8 /32

The probabilistic setting

• View training data D as a random sample from a (possibly
much larger) “true” distribution P(x|C) over (C, x) triples

• Try to pick w so we do well on average over all (C, x)

• Support Vector Machines setw to maximize P(Opt(C) = x), i.e.,
the probability that the optimal candidate is in fact correct

◮ Although SVMs try to maximize the probability that the
optimal candidate is correct, SVMs are not probabilistic models

• Maximum Entropy models set w to approximate P(x|C) as
closely as possible with an exponential model, or equivalently

• find the probability distribution P̂(x|C) with maximum entropy
such that EP̂[f j|C] = EP[f j|C]

9 /32

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Summary

10 /32

Terminology, or Snow’s “Two worlds”

Warning: Linguists and statisticians use same words to mean
different things!

• feature
◮ In linguistics, e.g., “voiced” is a function from phones to +,−
◮ In statistics, what linguists call constraints (a function from
candidates/outcomes to real numbers)

• constraint
◮ In linguistics, what the statisticians call “features”
◮ In statistics, a property that the estimated model P̂ must have

• outcome
◮ In statistics, the set of objects we’re defining a probability
distribution over (the set of all candidate surface forms)

11 /32

Why are theyMaximum Entropymodels?

• Goal: learn a probability distribution P̂ as close as possible to
distribution P that generated training data D.

• But what does “as close as possible” mean?

◮ Require P̂ to have same distribution of features as D
◮ As size of data |D| → ∞, feature distribution in D will
approach feature distribution in P

◮ so distribution of features in P̂ will approach distribution of
features in P

• But there are many P̂ that have same feature distributions as
D. Which one should we choose?

◮ The entropy measures the amount of information in a distribution
◮ Higher entropy⇒ less information
◮ Choose the P̂ with maximum entropy that whose feature
distributions agree with D
⇒P̂ has the least extraneous information possible

12 /32

Maximum Entropy models

• A conditional Maximum Entropy model Pw consists of a vector
of features f and a vector of feature weights w.

• The probability Pw(x|C) of an outcome x ∈ C is:

Pw(x|C) =
1

Zw(C)
exp (sw(x))

=
1

Zw(C)
exp

(
m

∑
j=1

wj f j(x)

)

, where:

Zw(C) = ∑
x′∈C

exp
(
sw(x′)

)

• Zw(C) is a normalization constant called the partition function

13 /32

Feature dependence⇒MaxEnt models

• Many probabilistic models assume that features are
independently distributed (e.g., Hidden Markov Models,
Probabilistic Context-Free Grammars)

⇒ Estimating feature weights is simple (relative frequency)

• But features in most linguistic theories interact in complex
ways

◮ Long-distance and local dependencies in syntax
◮ Many markedness and faithfulness constraints interact to
determine a single syllable’s shape

⇒ These features are not independently distributed

• MaxEnt models can handle these feature interactions

• Estimating feature weights of MaxEnt models is more
complicated

◮ generally requires numerical optimization

14 /32

A rose by any other name . . .

• Like most other good ideas, Maximum Entropy models have
been invented many times . . .

◮ In statistical mechanics (physics) as the Gibbs and Boltzmann
distributions

◮ In probability theory, asMaximum Entropy models, log-linear
models,Markov Random Fields and exponential families

◮ In statistics, as logistic regression
◮ In neural networks, as Boltzmann machines

15 /32

A brief history of MaxEnt models in

Linguistics

• Logistic regression used in socio-linguistics to model
“variable rules” (Sedergren and Sankoff 1974)

• Hinton and Sejnowski (1986) and Smolensky (1986) introduce
the Boltzmann machine for neural networks

• Berger, Dell Pietra and Della Pietra (1996) propose Maximum
Entropy Models for language models with non-independent
features

• Abney (1997) proposes MaxEnt models for probabilistic
syntactic grammars with non-independent features

• (Johnson, Geman, Canon, Chi and Riezler (1999) propose
conditional estimation of regularized MaxEnt models)

16 /32

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Summary

17 /32

Finding the MaxEnt model by maximizing

likelihood

• Can prove that the MaxEnt model Pŵ for features f and data
D = ((C1, x1), . . . , (Cn, xn)) is:

Pŵ(x |C) =
1

Zŵ(C)
exp(sŵ(x)) =

1

Zŵ(C)
exp

m

∑
j=1

ŵj f j(x)

where ŵ maximizes the likelihood LD(w) of the data D

ŵ = argmax
w

LD(w) = argmax
w

n

∏
i=1

Pw(xi |Ci)

I.e., choose ŵ to make the winners xi as likely as possible
compared to losers Ci \ {xi}

18 /32

Finding the feature weights ŵ

• Standard method: use a gradient-based numerical optimizer to
minimize the negative log likelihood − log LD(w)
(Limited memory variable metric optimizers seem to be best)

− log LD(w) =
n

∑
i=1

− log Pw(xi |Ci)

=
n

∑
i=1

(
logZw(Ci)−

m

∑
j=1

wj f j(xi)

)

∂ − log LD(w)

∂wj
=

n

∑
j=1

(
Ew[f j|Ci]− f j(xi)

)
, where:

Ew[f j|Ci] = ∑
x′∈Ci

f j(x
′)Pw(x′)

• I.e., find feature weights ŵ that make the model’s distribution of
features over Ci equal distribution of features in winners xi

19 /32

Finding the optimal feature weights ŵ

• Numerically optimizing likelihood involves calculating
− log LD(w) and its derivatives

• Need to calculate Zw(Ci) and Ew[f j|Ci], which are sums over
Ci, the set of candidates for example i

• If Ci can be infinite:
◮ depending on f and C, might be possible to explicitly calculate
Zw(Ci) and Ew[f j|Ci], or

◮ may be able to approximate Zw(Ci) and Ew[f j|Ci], especially if
Pw(x|C) is concentrated on few x.

• Aside: using MaxEnt for unsupervised learning requires Zw
and Ew[f j], but these are typically hard to compute

• If feature weights wj should be negative (e.g., OT constraint
violations can only “hurt” a candidate), then replace
optimizer with a numerical optimizer/constraint solver
(e.g., TAO package from Argonne labs)

20 /32

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Summary

21 /32

Why regularize?

• MaxEnt selects ŵ so that winners are as likely as possible

• Might not want to do this with noisy training data

• Pseudo-maximal or minimal features cause numerical problems
◮ A feature f j is pseudo-minimal iff for all i = 1, . . . , n and x

′ ∈ Ci,
f j(xi) ≤ f (x

′) (i.e., f j(xi) is the minimum value f j has in Ci)
◮ If f j is pseudo-minimal, then ŵj = −∞

• Example: Features 1, 2 and 3 are pseudo-minimal below:

Winner xi Losers Ci \ {xi}
(0, 0, 0, 1, 2) (0, 1, 0, 0, 2) (1, 0, 0, 0, 2) (0, 0, 1, 0, 2)
(0, 0, 0, 0, 2) (0, 0, 0, 2, 0) (1, 0, 0, 0, 1)

· · · · · ·

so we can make (some of) the losers have arbitrarily low
probability by setting the corresponding feature weights as
negative as possible

22 /32

Regularization, or “keep it simple”

• Slavishly optimizing likelihood leads to over-fitting or
numerical problems

⇒ Regularize or smooth, i.e., try to find a “good” ŵ that is “not
too complex”

• Minimize the penalized negative log likelihood

ŵ = argmin
w

− log LD(w) + α

m

∑
j=1

|wj|
k

where α ≥ 0 is a parameter (often set by cross-validation on
held-out training data) controlling amount of regularization

23 /32

Aside: Regularizers as Bayesian priors

• Bayes inversion formula

P(w |D)︸ ︷︷ ︸
posterior

∝ P(D |w)︸ ︷︷ ︸
likelihood

P(w)︸ ︷︷ ︸
prior

or in terms of log probabilities:

− log P(w |D) = − log P(D |w)︸ ︷︷ ︸
– log likelihood

− log P(w)︸ ︷︷ ︸
– log prior

+ c

⇒ The regularized estimate ŵ is also the Bayesian maximum
a posteriori (MAP) estimate with prior

P(w) ∝ exp

(
−α

m

∑
j=1

|wj|
k

)

• When k = 2 this is a Gaussian prior
24 /32

Understanding the effects of the priors

• The log penalty term for a Gaussian prior (k = 2) is α ∑j w
2
j

so its derivative 2αwj → 0 as wj → 0
• Effect of Gaussian prior decreases as wj is small

⇒ Gaussian prior prefers all wj to be small but not necessarily
zero

• The log penalty term for a 1-norm prior (k = 1) is α ∑j |wj|

so its derivative αsign(wj) is α or −α unless wj = 0
• Effect of 1-norm prior is constant no matter how small wj is

⇒ 1-norm prior prefers most wj to be zero (sparse solutions)

• My personal view: If most features in your problem are
irrelevant, prefer a sparse feature vector.
But if most features are noisy and weakly correlated with the
solution, prefer a dense feature vector (averaging is the
solution to noise).

25 /32

Case study: MaxEnt in syntactic parsing

• MaxEnt model used to pick correct parse from 50 parses
produced by Charniak parser

◮ Ci is set of 50 parses from Charniak parser, xi is best parse in Ci
◮ Charniak parser’s accuracy ≈ 0.898 (picking tree it likes best)
◮ Oracle accuracy is ≈ 0.968
◮ EM-like method for dealing with ties (training data Ci contains
several equally good “best parses” for a sentence i)

• MaxEnt model uses 1,219,273 features, encoding a wide
variety of syntactic information

◮ including the Charniak model’s log probability of the tree
◮ trained on parse trees for 36,000 sentences
◮ prior weight α set by cross-validation (don’t need to be accurate)

• Gaussian prior results in all feature weights non-zero
• L1 prior results in ≈ 25, 000 non-zero feature weights
• Accuracy with both Gaussian and L1 priors ≈ 0.916
(Andrew and Gao, ICML 2007)

26 /32

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Summary

27 /32

Stochastic gradient ascent

• MaxEnt: choose ŵ to maximize log likelihood
• If w 6= ŵ and δ is sufficiently small, then

logLD

(
w+ δ

∂ log LD(w)

∂w

)
> log LD(w)

i.e., small steps in direction of derivative increase likelihood

∂ log LD(w)

∂wj
=

n

∑
j=1

(
f j(xi)− Ew[f j |Ci]

)
, where:

Ew[f j|Ci] = ∑
x′∈Ci

f j(x
′)Pw(x′)

• Gradient ascent optimizes the log likelihood in this manner.
◮ It is usually not an efficient optimization method

• Stochastic gradient ascent updates immediately in direction of
contribution of training example i to derivative

◮ It is a simple and sometimes very efficient method
28 /32

Perceptron updates as a MaxEnt approx

• Perceptron learning rule: Let x⋆i be the model’s current
prediction of the optimal candidate in Ci

x⋆i = argmax
x′∈Ci

sw(x′)

If x⋆i 6= xi, where xi is the correct candidate in Ci, then
increment the current weights w with:

δ (f (xi) − f (x
⋆

i))

• MaxEnt stochastic gradient ascent update:

δ
∂ log LD(w)

∂w
= δ (f (xi)− Ew[f |Ci])

If Pw(x |Ci) is peaked around x
⋆

i , then Ew[f |Ci] ≈ f (x
⋆

i)
⇒ The Perceptron rule approximates the MaxEnt stochastic
gradient ascent update

29 /32

Regularization as weight decay

• When we approximate regularized MaxEnt as either
Stochastic Gradient Ascent or the Perceptron update,
regularization corresponds to weight decay (a popular smoothing
method for neural networks)

• Contribution of Gaussian prior to log likelihood is −α ∑j w
2
j

so derivative of regularizer is −2αwj
⇒ weights decay proportionally to their current value each iteration

• Contribution of 1-norm prior to log likelihood is −α ∑j |wj|

so derivative of regularizer is −α sign(wj)

⇒ non-zero weights decay by a constant amount each iteration

30 /32

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Summary

31 /32

Summary

• Phonological problems, once expressed in Optimality Theory,
can often also be viewed as statistical problems

• Because the OT features (OT constraints) aren’t independent,
MaxEnt (and SVMs?) are natural ways of modeling these
problems

• MaxEnt (and SVM) models are particularly suited to
supervised learning problems (which may not be realistic in
phonology)

• Regularization controls over-learning, and by choosing an
appropriate prior we can prefer sparse solutions (a.k.a. feature
selection)

• MaxEnt is closely related to other popular learning algorithms
such as Stochastic Gradient Ascent and the Perceptron

32 /32

	What problems can MaxEnt solve?
	What are Maximum Entropy models?
	Learning Maximum Entropy models from data
	Regularization and Bayesian priors
	Relationship to stochastic gradient ascent and Perceptron
	Summary

