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What problems can MaxEnt solve?

2/32



Optimality theory analyses

o Markedness constraints
» ONSET: Violated each time a syllable begins without an onset
» PEAK: Violated each time a syllable doesn’t have a peak V
» NOCODA: Violated each time a syllable has a non-empty coda
» *COMPLEX: Violated each time a syllable has a complex onset

or coda

e Faithfulness constraints

» FAITHV: Violated each time a V is inserted or deleted
» FAITHC: Violated each time a C is inserted or deleted
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Optimal surface forms with strict domination

e OT constraints are functions f from (underlying form, surface
form) pairs to non-negative integers
» Example: FAITHC(/?ilkhin/, [?ik.hin]) =1
o If f=(f1,...,fm) is a vector of constraints and x = (u,v) is a
pair of an underlying form u and a surface form v, then
F(3) = (A (), -0 fnlx))
» Ex:if f = (PEAK, *COMPLEX, FAITHC, FAITHV, NOCODA),
then £(/?ilkhin/, [?ik.hin]) = (0,0,1,0,2)
e If Cis a (possibly infinite) set of (underlying form,candidate
surface forms) pairs then:

x € CisoptimalinC & VeeC, f(x) < f(c)

where < is the standard (lexicographic) on vectors
e Generally all of the pairs in C have the same underlying form
¢ Note: the linguistic properties of a constraint f don’t matter
once we know f(c) for each ¢ € C.



Optimality with linear constraint weights

e Each constraint f has a corresponding weight wy
» Ex: If f = (PEAK, *COMPLEX, FAITHC, FAITHV, NOCODA),
thenw = (—-2,-2,-2,-1,0)
e The score sy (x) for an (underlying, su1;£ace form) pair x is:

sw(x) = w-f(x) = gwjfj(x)
j=

» Ex: f(/?ilkhin/, [?ik.hin]) = (0,0,1,0,2), so
sw(/?ilkhin/, [?ik.hin]) = —2

» Called “linear” because the score is a linear function of the
constraint values

e The optimal candidate is the one with the highest score

Opt(C) = argmax sg(x)

xeC

e Again, all that matters are w and f(c) forc € C



Constraint weight learning example

e All we need to know about the (underlying form,surface
form) candidates x are their constraint vectors f(x)
Winner x; | Losers C; \ {x;}
(0,0,0,1,2) | (0,1,0,0,2) (1,0,0,0,2) (0,0,1,0,2)
(0,0,0,0,2) | (0,0,0,2,0) (1,0,0,0,1)

e The weight vector w = (—2, -2, —2, —1,0) correctly classifies
this data

e Supervised learning problem: given data, find a weight vector
w that correctly classifies every example in data



Supervised learning of constraint weights

e The training data is a vector D of pairs (C;, x;) where
» C;is a (possibly infinite) set of candidates
» x; € C;is the correct realization from C;

(can be generalized to permit multiple winners)
e Given data D and a constraint vector f, find a weight vector w
that makes each x; optimal for C;
“Supervised” because underlying form is given in D

» Unsupervised problem: underlying form is not given in D
(blind source separation, clustering)

The weight vector w may not exist.
» If w exists then D is linearly separable

e We may want w to correctly generalize to examples not in D
e We may want w to be robust to noise or errors in D
= Probabilistic models of learning
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Aside: The OT supervised learning problem
is often trivial

e There are typically tens of thousands of different underlying
forms in a language

e But all the learner sees are the vectors f(c)

e Many OT-inspired problems present very few different f(x)
vectors ...

e so the correct surface forms can be identified by memorizing
the f(x) vectors for all winners x

= generalization is often not necessary to identify optimal surface
forms
» too many f(x) vectors to memorize if f contained all
universally possible constraints?
» maybe the supervised learning problem is unrealistically easy,
and we should be working on unsupervised learning?



The probabilistic setting

e View training data D as a random sample from a (possibly
much larger) “true” distribution P(x|C) over (C, x) triples

e Try to pick w so we do well on average over all (C, x)

e Support Vector Machines set w to maximize P(Opt(C) = x), i.e.,
the probability that the optimal candidate is in fact correct

» Although SVMs try to maximize the probability that the
optimal candidate is correct, SVMs are not probabilistic models

o Maximum Entropy models set w to approximate P(x|C) as

closely as possible with an exponential model, or equivalently

o find the probability distribution P(x|C) with maximum entropy
such that Eg[f;|C] = Ep|[f;|C]
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What are Maximum Entropy models?
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Terminology, or Snow’s “Two worlds”

Warning: Linguists and statisticians use same words to mean
different things!

o feature

» Inlinguistics, e.g., “voiced” is a function from phones to +, —
» In statistics, what linguists call constraints (a function from
candidates/outcomes to real numbers)

e constraint

» In linguistics, what the statisticians call “features”
» In statistics, a property that the estimated model P must have

e outcome

» In statistics, the set of objects we're defining a probability
distribution over (the set of all candidate surface forms)

(¥



Why are they Maximum Entropy models?

e Goal: learn a probability distribution P as close as possible to
distribution P that generated training data D.

e But what does “as close as possible” mean?

» Require P to have sane distribution of features as D

» Assize of data |D| — oo, feature distribution in D will
approach feature distribution in P

» so distribution of features in P will approach distribution of
features in P

o But there are many P that have same feature distributions as
D. Which one should we choose?

» The entropy measures the amount of information in a distribution
» Higher entropy = less information
» Choose the P with maximum entropy that whose feature
distributions agree with D
— P has the least extraneous information possible

0
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Maximum Entropy models

e A conditional Maximum Entropy model Py, consists of a vector
of features f and a vector of feature weights w.

e The probability Py, (x|C) of an outcome x € C is:

—

Py (x[C) = exp (sw(x))

1
Zo(C) = ), exp (sw(x))

e Zw(C) is a normalization constant called the partition function



Feature dependence = MaxEnt models

e Many probabilistic models assume that features are
independently distributed (e.g., Hidden Markov Models,
Probabilistic Context-Free Grammars)

= Estimating feature weights is simple (relative frequency)
e But features in most linguistic theories interact in complex
ways
» Long-distance and local dependencies in syntax
» Many markedness and faithfulness constraints interact to
determine a single syllable’s shape
= These features are not independently distributed
e MaxEnt models can handle these feature interactions

e Estimating feature weights of MaxEnt models is more
complicated

» generally requires numerical optimization



A rose by any other name ...

¢ Like most other good ideas, Maximum Entropy models have
been invented many times . ..

» In statistical mechanics (physics) as the Gibbs and Boltzmann
distributions

» In probability theory, as Maximum Entropy models, log-linear
models, Markov Random Fields and exponential families

» In statistics, as logistic regression

» In neural networks, as Boltzmann machines
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A brief history of MaxEnt models in
Linguistics

e Logistic regression used in socio-linguistics to model
“variable rules” (Sedergren and Sankoff 1974)

e Hinton and Sejnowski (1986) and Smolensky (1986) introduce
the Boltzmann machine for neural networks

e Berger, Dell Pietra and Della Pietra (1996) propose Maximum
Entropy Models for language models with non-independent
features

e Abney (1997) proposes MaxEnt models for probabilistic
syntactic grammars with non-independent features

¢ (Johnson, Geman, Canon, Chi and Riezler (1999) propose
conditional estimation of regularized MaxEnt models)



Outline

Learning Maximum Entropy models from data
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Finding the MaxEnt model by maximizing
likelihood

e Can prove that the MaxEnt model P for features f and data
D = ((Cy,x1),...,(Cy,xn)) is:

1 1 U
P@(X’C) - Z@(C) exp(s@(x)) = mexp];wjfj(x)
where @ maximizes the likelihood Lp (w) of the data D

n
w = argmaxLp(w) = argmaxHPw(xi]Ci)

w w i=1

Le., choose w to make the winners x; as likely as possible
compared to losers C; \ {x;}



Finding the feature weights w

e Standard method: use a gradient-based numerical optimizer to
minimize the negative log likelihood —log Lp(w)
(Limited memory variable metric optimizers seem to be best)
n
—logLlp(w) = Z —log Puw(xi | Ci)
i=1
n m
=) (108 Zw(Ci) — ijfj(xi))
j=1

i=1

0o — l(z)gLD(w) _ i (Ew[fj|Ci] — fi(xi)) , where:
wj =1
EulfilC] = L filx)Pulx)

e Le, find feature weights @ that make the model’s distribution of
features over C; equal distribution of features in winners x;
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Finding the optimal feature weights w

Numerically optimizing likelihood involves calculating
—log Lp(w) and its derivatives
Need to calculate Z,,(C;) and Eq,[f;|C;], which are sums over
C;, the set of candidates for example i
If C; can be infinite:
» depending on f and C, might be possible to explicitly calculate
Z4(C;) and E, [f]'|Ci], or
» may be able to approximate Z,(C;) and Ey|[f;|C;], especially if
P, (x|C) is concentrated on few x.
Aside: using MaxEnt for unsupervised learning requires Zy,
and E | f]], but these are typically hard to compute
If feature weights w; should be negative (e.g., OT constraint
violations can only “hurt” a candidate), then replace
optimizer with a numerical optimizer/constraint solver
(e.g., TAO package from Argonne labs)
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Regularization and Bayesian priors
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Why regularize?

MaxEnt selects w so that winners are as likely as possible

Might not want to do this with noisy training data

Pseudo-maximal or minimal features cause numerical problems
» A feature f] is pseudo-minimal iff foralli =1,...,nand x’ € C;,
fi(x;) < f(x') (i.e., fij(x;) is the minimum value f; has in C;)
» If f; is pseudo-minimal, then @; = —oo

Example: Features 1, 2 and 3 are pseudo-minimal below:
Winner x; | Losers C; \ {x;}
(0,0,0,1,2) | (0, ,2) (1,0,0,0,2) (0,0,1,0,2)
(0,0,0,0,2) | (0, ,0) (1,0,0,0,1)

1,0,0
0,0,2

so we can make (some of) the losers have arbitrarily low
probability by setting the corresponding feature weights as
negative as possible



Regularization, or “keep it simple”

e Slavishly optimizing likelihood leads to over-fitting or
numerical problems

= Regularize or smooth, i.e., try to find a “good” w that is “not
too complex”

e Minimize the penalized negative log likelihood
Sk
@ = argmin —logLp(w)+a ) |wl
w j=1

where & > 0 is a parameter (often set by cross-validation on
held-out training data) controlling amount of regularization



Aside: Regularizers as Bayesian priors

¢ Bayes inversion formula
P(w|D) « P(D|w) P(w)
N, e’ N——
posterior likelihood prior
or in terms of log probabilities:
—logP(w|D) = —logP(D|w) —logP(w) + ¢

—log lilzrelihood - log?)rior

= The regularized estimate  is also the Bayesian maximum
a posteriori (MAP) estimate with prior

P(w) o exp (—oc ]w]-]k>
=1

J

e When k = 2 this is a Gaussian prior
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Understanding the effects of the priors

=

The log penalty term for a Gaussian prior (k = 2)is a}; w]2
so its derivative 2aw; — 0 as w; — 0

Effect of Gaussian prior decreases as w; is small

Gaussian prior prefers all w; to be small but not necessarily
zero

The log penalty term for a 1-norm prior (k = 1) is a }; |wj|
so its derivative asign(w;) is « or —a unless w; = 0

Effect of 1-norm prior is constant no matter how small w; is
1-norm prior prefers most w; to be zero (sparse solutions)

My personal view: If most features in your problem are
irrelevant, prefer a sparse feature vector.

But if most features are noisy and weakly correlated with the
solution, prefer a dense feature vector (averaging is the
solution to noise).



Case study: MaxEnt in syntactic parsing

e MaxEnt model used to pick correct parse from 50 parses
produced by Charniak parser
» C;is set of 50 parses from Charniak parser, x; is best parse in C;
» Charniak parser’s accuracy ~ 0.898 (picking tree it likes best)
» Oracle accuracy is ~ 0.968
» EM-like method for dealing with ties (training data C; contains
several equally good “best parses” for a sentence i)
e MaxEnt model uses 1,219,273 features, encoding a wide
variety of syntactic information
» including the Charniak model’s log probability of the tree
» trained on parse trees for 36,000 sentences
» prior weight a set by cross-validation (don’t need to be accurate)
e Gaussian prior results in all feature weights non-zero
e L1 prior results in ~ 25,000 non-zero feature weights
e Accuracy with both Gaussian and L1 priors ~ 0.916
(Andrew and Gao, ICML 2007)
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Relationship to stochastic gradient ascent and Perceptron
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Stochastic gradient ascent

e MaxEnt: choose @ to maximize log likelihood
o If w # w and ¢ is sufficiently small, then

logLp (w—i—éalo%u?(w)) > logLp(w)

i.e., small steps in direction of derivative increase likelihood

dloglp(w) _ Z<f1(xl)_ wlfj | Ci]) , where:

x'eC;
o Gradient ascent optimizes the log likelihood in this manner.
» Itis usually not an efficient optimization method
e Stochastic gradient ascent updates immediately in direction of
contribution of training example i to derivative
» Itis a simple and sometimes very efficient method



Perceptron updates as a MaxEnt approx

e Perceptron learning rule: Let x7 be the model’s current
prediction of the optimal candidate in C;
xI = argmax sg(x')
x'eC;
If x* # x;, where x; is the correct candidate in C;, then
increment the current weights w with:

6 (f(xi) = f(x))
e MaxEnt stochastic gradient ascent update:

aloga;;ﬂw) = 5(f(xi) — Bulf|C)

If Py (x| C;) is peaked around x7, then E,, [f | ;| =~ f(x7)
= The Perceptron rule approximates the MaxEnt stochastic

gradient ascent update

o



Regularization as weight decay

e When we approximate regularized MaxEnt as either
Stochastic Gradient Ascent or the Perceptron update,
reqularization corresponds to weight decay (a popular smoothing
method for neural networks)

e Contribution of Gaussian prior to log likelihood is —a'}; w]2
so derivative of regularizer is —2aw;
= weights decay proportionally to their current value each iteration

o Contribution of 1-norm prior to log likelihood is —a }_; [w;]
so derivative of regularizer is —a sign(w;)
= non-zero weights decay by a constant amount each iteration
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Summary

e Phonological problems, once expressed in Optimality Theory,
can often also be viewed as statistical problems

e Because the OT features (OT constraints) aren’t independent,
MaxEnt (and SVMs?) are natural ways of modeling these
problems

e MaxEnt (and SVM) models are particularly suited to
supervised learning problems (which may not be realistic in
phonology)

e Regularization controls over-learning, and by choosing an
appropriate prior we can prefer sparse solutions (a.k.a. feature
selection)

e MaxEnt is closely related to other popular learning algorithms
such as Stochastic Gradient Ascent and the Perceptron
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