A gentle introduction to Maximum Entropy Models and their friends

Mark Johnson Brown University

November 2007

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Optimality theory analyses

- Markedness constraints
 - ONSET: Violated each time a syllable begins without an onset
 - ▶ PEAK: Violated each time a syllable doesn't have a peak V
 - ► NoCoda: Violated each time a syllable has a non-empty coda
 - ► *COMPLEX: Violated each time a syllable has a complex onset or coda
- Faithfulness constraints
 - ► FAITHV: Violated each time a V is inserted or deleted
 - ▶ FAITHC: Violated each time a C is inserted or deleted

/?ilk-hin/	Peak	*COMPLEX	FAITHC	FAITHV	NoCoda
?il.khin		*!			**
?il.k.hin	*!		-		**
☞ ?i.lik.hin				*	**
?ik.hin			*!		**

Optimal surface forms with strict domination

- OT constraints are functions f from (underlying form, surface form) pairs to non-negative integers
 - Example: FAITHC(/?ilkhin/, [?ik.hin]) = 1
- If $f = (f_1, ..., f_m)$ is a *vector of constraints* and x = (u, v) is a pair of an underlying form u and a surface form v, then $f(x) = (f_1(x), ..., f_m(x))$
 - ► Ex: if $f = (PEAK, ^COMPLEX, FAITHC, FAITHV, NOCODA)$, then f(/?ilkhin/, [?ik.hin]) = (0,0,1,0,2)
- If *C* is a (possibly infinite) set of (underlying form, candidate surface forms) pairs then:

$$x \in C$$
 is optimal in $C \Leftrightarrow \forall c \in C, f(x) \leq f(c)$

where \leq is the standard (lexicographic) on vectors

- Generally all of the pairs in *C* have the same underlying form
- **Note:** the linguistic properties of a constraint f *don't matter* once we know f(c) for each $c \in C$.

Optimality with linear constraint weights

- Each constraint f_k has a corresponding weight w_k
 - Ex: If f = (PEAK, *COMPLEX, FAITHC, FAITHV, NOCODA), then w = (-2, -2, -2, -1, 0)
- The *score* $s_w(x)$ for an (underlying, surface form) pair x is:

$$s_{\boldsymbol{w}}(x) = \boldsymbol{w} \cdot \boldsymbol{f}(x) = \sum_{j=1}^{m} w_{j} f_{j}(x)$$

- ► Ex: f(/?ilkhin/, [?ik.hin]) = (0,0,1,0,2), so $s_w(/?ilkhin/, [?ik.hin]) = -2$
- Called "linear" because the score is a linear function of the constraint values
- The *optimal candidate* is the one with the highest score

$$Opt(C) = \underset{x \in C}{\operatorname{argmax}} s_{w}(x)$$

• Again, all that matters are w and f(c) for $c \in C$

Constraint weight learning example

• All we need to know about the (underlying form, surface form) candidates x are their constraint vectors f(x)

Winner x_i	Losers $C_i \setminus \{x_i\}$					
	(0,1,0,0,2)		(0,0,1,0,2)			
(0,0,0,0,2)	(0,0,0,2,0)	(1,0,0,0,1)				
• • •	• • •					

- The weight vector $\mathbf{w} = (-2, -2, -2, -1, 0)$ correctly classifies this data
- Supervised learning problem: given data, find a weight vector w that correctly classifies every example in data

Supervised learning of constraint weights

- The training data is a vector D of pairs (C_i, x_i) where
 - $ightharpoonup C_i$ is a (possibly infinite) set of candidates
 - $x_i \in C_i$ is the correct realization from C_i (can be generalized to permit multiple winners)
- Given data D and a constraint vector f, find a weight vector w that makes each x_i optimal for C_i
- "Supervised" because underlying form is given in *D*
 - ► Unsupervised problem: underlying form is not given in *D* (*blind source separation, clustering*)
- The weight vector *w* may not exist.
 - ► If *w* exists then *D* is *linearly separable*
- We may want w to correctly generalize to examples not in D
- We may want w to be robust to noise or errors in D
- *⇒* Probabilistic models of learning

Aside: The OT supervised learning problem is often trivial

- There are typically tens of thousands of different underlying forms in a language
- But all the learner sees are the vectors f(c)
- Many OT-inspired problems present very few different f(x) vectors ...
- so the correct surface forms can be identified by *memorizing* the f(x) vectors for all winners x
- *⇒ generalization is often not necessary to identify optimal surface forms*
 - too many f(x) vectors to memorize if f contained all universally possible constraints?
 - maybe the supervised learning problem is unrealistically easy, and we should be working on unsupervised learning?

The probabilistic setting

- View training data D as a *random sample* from a (possibly much larger) "true" distribution P(x|C) over (C,x) triples
- Try to pick w so we do well on average over all (C, x)
- Support Vector Machines set w to maximize P(Opt(C) = x), i.e., the probability that the optimal candidate is in fact correct
 - Although SVMs try to maximize the probability that the optimal candidate is correct, SVMs are not probabilistic models
- *Maximum Entropy models* set w to approximate P(x|C) as closely as possible with an exponential model, *or equivalently*
- find the probability distribution $\widehat{P}(x|C)$ with *maximum entropy* such that $E_{\widehat{P}}[f_j|C] = E_P[f_j|C]$

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Terminology, or Snow's "Two worlds"

Warning: Linguists and statisticians use same words to mean different things!

- feature
 - ▶ In linguistics, e.g., "voiced" is a function from phones to +, -
 - ► In statistics, what linguists call constraints (a function from candidates/outcomes to real numbers)
- constraint
 - ▶ In linguistics, what the statisticians call "features"
 - ▶ In statistics, a property that the estimated model \hat{P} must have
- outcome
 - In statistics, the set of objects we're defining a probability distribution over (the set of all candidate surface forms)

Why are they *Maximum Entropy* models?

- Goal: learn a probability distribution \widehat{P} as close as possible to distribution P that generated training data D.
- But what does "as close as possible" mean?
 - ► Require \hat{P} to have *same distribution of features* as D
 - ▶ As size of data $|D| \rightarrow \infty$, feature distribution in D will approach feature distribution in P
 - so distribution of features in P will approach distribution of features in P
- But there are many \widehat{P} that have same feature distributions as D. Which one should we choose?
 - ► The *entropy* measures the *amount of information* in a distribution
 - ► Higher entropy \Rightarrow less information
 - ► Choose the P with *maximum entropy* that whose feature distributions agree with *D*
 - $\Rightarrow \widehat{P}$ has the least extraneous information possible

Maximum Entropy models

- A conditional Maximum Entropy model P_w consists of a vector of features f and a vector of feature weights w.
- The probability $P_w(x|C)$ of an outcome $x \in C$ is:

$$P_{w}(x|C) = \frac{1}{Z_{w}(C)} \exp(s_{w}(x))$$

$$= \frac{1}{Z_{w}(C)} \exp\left(\sum_{j=1}^{m} w_{j} f_{j}(x)\right), \text{ where:}$$

$$Z_{w}(C) = \sum_{x' \in C} \exp(s_{w}(x'))$$

• $Z_w(C)$ is a normalization constant called the *partition function*

Feature dependence \Rightarrow MaxEnt models

- Many probabilistic models assume that features are independently distributed (e.g., Hidden Markov Models, Probabilistic Context-Free Grammars)
- ⇒ Estimating feature weights is simple (relative frequency)
 - But features in most linguistic theories interact in complex ways
 - Long-distance and local dependencies in syntax
 - Many markedness and faithfulness constraints interact to determine a single syllable's shape
- \Rightarrow These features are not independently distributed
 - MaxEnt models can handle these feature interactions
 - Estimating feature weights of MaxEnt models is more complicated
 - generally requires numerical optimization

A rose by any other name ...

- Like most other good ideas, Maximum Entropy models have been invented many times ...
 - ► In statistical mechanics (physics) as the *Gibbs* and *Boltzmann* distributions
 - ► In probability theory, as *Maximum Entropy models*, *log-linear models*, *Markov Random Fields* and *exponential families*
 - ▶ In statistics, as *logistic regression*
 - ► In neural networks, as *Boltzmann machines*

A brief history of MaxEnt models in Linguistics

- Logistic regression used in socio-linguistics to model "variable rules" (Sedergren and Sankoff 1974)
- Hinton and Sejnowski (1986) and Smolensky (1986) introduce the Boltzmann machine for neural networks
- Berger, Dell Pietra and Della Pietra (1996) propose Maximum Entropy Models for language models with non-independent features
- Abney (1997) proposes MaxEnt models for *probabilistic* syntactic grammars with non-independent features
- (Johnson, Geman, Canon, Chi and Riezler (1999) propose conditional estimation of regularized MaxEnt models)

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Finding the MaxEnt model by maximizing likelihood

• Can prove that the MaxEnt model $P_{\widehat{w}}$ for features f and data $D = ((C_1, x_1), \dots, (C_n, x_n))$ is:

$$P_{\widehat{w}}(x \mid C) = \frac{1}{Z_{\widehat{w}}(C)} \exp(s_{\widehat{w}}(x)) = \frac{1}{Z_{\widehat{w}}(C)} \exp\sum_{j=1}^{m} \widehat{w}_{j} f_{j}(x)$$

where \hat{w} maximizes the likelihood $L_D(w)$ of the data D

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmax}} L_D(\boldsymbol{w}) = \underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{i=1}^n P_{\boldsymbol{w}}(x_i \mid C_i)$$

I.e., choose \widehat{w} to make the winners x_i as likely as possible compared to losers $C_i \setminus \{x_i\}$

Finding the feature weights \widehat{w}

• Standard method: use a *gradient-based* numerical optimizer to *minimize the negative log likelihood* $-\log L_D(\boldsymbol{w})$ (Limited memory variable metric optimizers seem to be best)

$$-\log L_D(\boldsymbol{w}) = \sum_{i=1}^n -\log P_{\boldsymbol{w}}(x_i \mid C_i)$$

$$= \sum_{i=1}^n \left(\log Z_{\boldsymbol{w}}(C_i) - \sum_{j=1}^m w_j f_j(x_i) \right)$$

$$\frac{\partial -\log L_D(\boldsymbol{w})}{\partial w_j} = \sum_{j=1}^n \left(\mathbb{E}_{\boldsymbol{w}}[f_j | C_i] - f_j(x_i) \right), \text{ where:}$$

$$\mathbb{E}_{\boldsymbol{w}}[f_j | C_i] = \sum_{x' \in C_i} f_j(x') P_{\boldsymbol{w}}(x')$$

• I.e., find feature weights \hat{w} that make the model's distribution of features over C_i equal distribution of features in winners x_i

Finding the optimal feature weights \widehat{w}

- Numerically optimizing likelihood involves calculating $-\log L_D(w)$ and its derivatives
- Need to calculate $Z_w(C_i)$ and $E_w[f_j|C_i]$, which are sums over C_i , the set of candidates for example i
- If C_i can be infinite:
 - depending on f and C, might be possible to *explicitly calculate* $Z_w(C_i)$ and $E_w[f_i|C_i]$, or
 - ▶ may be able to *approximate* $Z_w(C_i)$ and $E_w[f_j|C_i]$, especially if $P_w(x|C)$ is concentrated on few x.
- Aside: using MaxEnt for unsupervised learning requires Z_w and $E_w[f_i]$, but these are typically hard to compute
- If feature weights w_j should be negative (e.g., OT constraint violations can only "hurt" a candidate), then replace optimizer with a *numerical optimizer/constraint solver* (e.g., TAO package from Argonne labs)

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Why regularize?

- MaxEnt selects \hat{w} so that winners are as likely as possible
- Might not want to do this with *noisy training data*
- Pseudo-maximal or minimal features cause numerical problems
 - ▶ A feature f_j is *pseudo-minimal* iff for all i = 1, ..., n and $x' \in C_i$, $f_j(x_i) \le f(x')$ (i.e., $f_j(x_i)$ is the minimum value f_j has in C_i)
 - ▶ If f_j is pseudo-minimal, then $\widehat{w}_j = -\infty$
- Example: Features 1, 2 and 3 are pseudo-minimal below:

Winner x_i	Losers $C_i \setminus \{x_i\}$					
	(0,1,0,0,2)		(0,0,1,0,2)			
(0,0,0,0,2)	(0,0,0,2,0)	(1,0,0,0,1)				
• • •	• • •					

so we can make (some of) the losers have arbitrarily low probability by setting the corresponding feature weights as negative as possible

Regularization, or "keep it simple"

- Slavishly optimizing likelihood leads to over-fitting or numerical problems
- \Rightarrow Regularize or smooth, i.e., try to find a "good" \widehat{w} that is "not too complex"
 - Minimize the penalized negative log likelihood

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} - \log L_D(\boldsymbol{w}) + \alpha \sum_{j=1}^m |w_j|^k$$

where $\alpha \ge 0$ is a parameter (often set by *cross-validation on held-out training data*) controlling amount of regularization

Aside: Regularizers as Bayesian priors

• Bayes inversion formula

$$\underbrace{P(w \mid D)}_{\text{posterior}} \propto \underbrace{P(D \mid w)}_{\text{likelihood}} \underbrace{P(w)}_{\text{prior}}$$

or in terms of log probabilities:

$$-\log P(w \mid D) = \underbrace{-\log P(D \mid w)}_{-\log \text{ likelihood}} \underbrace{-\log P(w)}_{-\log \text{ prior}} + c$$

 \Rightarrow The regularized estimate \hat{w} is also the Bayesian *maximum a posteriori* (MAP) estimate with prior

$$P(w) \propto \exp\left(-\alpha \sum_{j=1}^{m} |w_j|^k\right)$$

• When k = 2 this is a *Gaussian prior*

Understanding the effects of the priors

- The log penalty term for a *Gaussian prior* (k = 2) is $\alpha \sum_{j} w_{j}^{2}$ so its derivative $2\alpha w_{j} \rightarrow 0$ as $w_{j} \rightarrow 0$
- Effect of Gaussian prior decreases as w_i is small
- \Rightarrow Gaussian prior prefers all w_j to be small but not necessarily zero
 - The log penalty term for a 1-norm prior (k = 1) is $\alpha \sum_j |w_j|$ so its derivative $\alpha \operatorname{sign}(w_j)$ is α or $-\alpha$ unless $w_j = 0$
 - Effect of 1-norm prior is constant no matter how small w_i is
- \Rightarrow 1-norm prior prefers most w_j to be zero (*sparse solutions*)
 - My personal view: If most features in your problem are irrelevant, prefer a sparse feature vector.
 But if most features are noisy and weakly correlated with the solution, prefer a dense feature vector (averaging is the solution to noise).

Case study: MaxEnt in syntactic parsing

- MaxEnt model used to *pick correct parse from 50 parses* produced by Charniak parser
 - ▶ C_i is set of 50 parses from Charniak parser, x_i is best parse in C_i
 - ► Charniak parser's accuracy \approx 0.898 (picking tree it likes best)
 - ▶ Oracle accuracy is ≈ 0.968
 - ► EM-like method for dealing with ties (training data C_i contains several equally good "best parses" for a sentence i)
- MaxEnt model uses 1,219,273 features, encoding a wide variety of syntactic information
 - ► including the Charniak model's *log probability* of the tree
 - trained on parse trees for 36,000 sentences
 - prior weight α set by *cross-validation* (don't need to be accurate)
- Gaussian prior results in all feature weights non-zero
- L1 prior results in \approx 25,000 non-zero feature weights
- Accuracy with both Gaussian and L1 priors ≈ 0.916 (Andrew and Gao, *ICML* 2007)

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

Stochastic gradient ascent

- MaxEnt: choose \hat{w} to maximize log likelihood
- If $w \neq \hat{w}$ and δ is sufficiently small, then

$$\log L_D \left(w + \delta \frac{\partial \log L_D(w)}{\partial w} \right) > \log L_D(w)$$

i.e., small steps in direction of derivative increase likelihood

$$\frac{\partial \log \mathcal{L}_D(w)}{\partial w_j} = \sum_{j=1}^n \left(f_j(x_i) - \mathcal{E}_w[f_j \mid C_i] \right), \text{ where:}$$

$$\mathcal{E}_w[f_j \mid C_i] = \sum_{x' \in C_i} f_j(x') \, \mathcal{P}_w(x')$$

- Gradient ascent optimizes the log likelihood in this manner.
 - ▶ It is usually *not* an efficient optimization method
- *Stochastic gradient ascent* updates immediately in direction of contribution of training example *i* to derivative
 - It is a simple and sometimes very efficient method

Perceptron updates as a MaxEnt approx

• Perceptron learning rule: Let x_i^* be the model's current prediction of the optimal candidate in C_i

$$x_i^{\star} = \underset{x' \in C_i}{\operatorname{argmax}} s_w(x')$$

If $x_i^* \neq x_i$, where x_i is the correct candidate in C_i , then increment the current weights w with:

$$\delta \left(f(x_i) - f(x_i^{\star}) \right)$$

MaxEnt stochastic gradient ascent update:

$$\delta \frac{\partial \log L_D(w)}{\partial w} = \delta (f(x_i) - E_w[f \mid C_i])$$

If $P_w(x \mid C_i)$ is peaked around x_i^* , then $E_w[f \mid C_i] \approx f(x_i^*)$

⇒ The Perceptron rule approximates the MaxEnt stochastic gradient ascent update

Regularization as weight decay

- When we approximate regularized MaxEnt as either Stochastic Gradient Ascent or the Perceptron update, regularization corresponds to weight decay (a popular smoothing method for neural networks)
- Contribution of *Gaussian prior* to log likelihood is $-\alpha \sum_j w_j^2$ so derivative of regularizer is $-2\alpha w_j$
- \Rightarrow weights decay proportionally to their current value each iteration
 - Contribution of 1-norm prior to log likelihood is $-\alpha \sum_j |w_j|$ so derivative of regularizer is $-\alpha \operatorname{sign}(w_j)$
- ⇒ non-zero weights *decay by a constant amount* each iteration

Outline

What problems can MaxEnt solve?

What are Maximum Entropy models?

Learning Maximum Entropy models from data

Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron

- Phonological problems, once expressed in Optimality Theory, can often also be viewed as statistical problems
- Because the OT features (OT constraints) aren't independent, MaxEnt (and SVMs?) are natural ways of modeling these problems
- MaxEnt (and SVM) models are particularly suited to supervised learning problems (which may not be realistic in phonology)
- Regularization controls over-learning, and by choosing an appropriate prior we can prefer sparse solutions (a.k.a. *feature selection*)
- MaxEnt is closely related to other popular learning algorithms such as Stochastic Gradient Ascent and the Perceptron