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Talk outline

Graphical models

Maximum likelihood and maximum conditional likelihood

estimation
Naive Bayes and Maximum Entropy Models
Hidden Markov Models

Conditional Random Fields



Classification with structured labels

Classification: predicting label y given features x

y*(x) = arg max P(ylx)

Naive Bayes and Maxent models: label y is atomic, x can be

structured (e.g., set of features)

HMDMs and CRF's are extensions of Naive Bayes and Maxent

models where y is structured too

HMDMs and CRF's model dependencies between components y;
of label y

Example: Part of speech tagging: x is a sequence of words, y is
corresponding sequence of parts of speech (e.g., noun, verb,
etc.)



Why graphical models?

Graphical models depict factorizations of probability

distributions

Statistical and computational properties depend on the

tactorization

— complexity of dynamic programming is size of a certain cut
in the graphical model

Two different (but related) graphical representations

— Bayes nets (directed graphs; products of conditionals)

— Markov Random Fields (undirected graphs; products of

arbitrary terms)

Each random variable X; is represented by a node
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Bayes nets (directed graph)

e Factorize joint P(Xy,...,Xy) into product of conditionals
P(X1,...,Xn) = | [ PXilXpai)
i=1

where Pa(i) C (X5,...,X;_1)
e The Bayes net contains an arc from each j € Pa(i) to i

P(X1,X2,X3,X4) = P(X7)P(X2)P(X3|Xq, X2)P(X4/X3)

X1



Markov Random Field (undirected)

e Factorize P(Xj,...,X,) into product of potentials g.(X.),
where ¢ C (1,...,n) and ¢ € C (a set of tuples of indices)

P(Xy,..., Xn) = %ch(xc)

e [f1j € c €, then an edge connects 1 and j

C = {(1>2>3)> (3>4)}

1
P(X1, X2, X3, X4) = Z g123(Xq, X2, X3) g34(X3, X4)
X1
X3 X4
O——O



A rose by any other name ...

e MRF's have the same general form as Maximum Entropy

models, Exponential models, Log-linear models, Harmony

models, ...

e All of these have the same generic form

P(X) — = gc(Xc)



Potential functions as features

o If X is discrete, we can represent the potentials g.(X.) as a
combination of indicator functions [X. = x.], where X, is the

set of all possible values of X.

gc(Xc) — H (eXC:xC)[XC:XC]]>Where eXC:xC — gc(xc)
Xc EXc
lOg gc(Xc) — Z IIXC — Xc]](l)XC:xc>Where (I)Xczxc — 1Og gC(X'C)
Xc EX.

o View [X. = x.] as a feature which “fires” when the

configuration x. occurs

o {x.—x is the weight associated with feature [X, = x.]



A feature-based reformulation of MRF's

e Reformulating MRF's as features:

P = o TTox

] _
— z H (eXc:xc)IIXC_XC]]>Where eXc:XC — gC(XC)

ceC ,xc EX,

1
— _ exp Z [[XC p— XC]](I)XC =X ) Where d)XC —Xc — log gC(XC)

/
ceC X eXe

exp [X123 = 000] oo + X125 = 001 oot + - . .
[X34 = 001 dpoo + [X34 = O01]po1 + ...

9



Bayes nets and MRFs

e MRFs are more general than Bayes nets

e [ts easy to find the MRF representation of a Bayes net

P(X1, X2, X3, X4) = P(XHP(XZ)P(Xs\Xth) P(X4]X3)

S  \\ 4

g123(Xq, X2, X3) g34(X3, X4)

o Moralization, i.e, “marry the parents”

X1 X1

O\ X3 X4 X3 X4

O—O O—O
O/
2

X
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Conditionalization in MRF's

e Conditionalization is fixzing the value of some variables

e To get a MRF representation of the conditional distribution,

delete nodes whose values are fized and arcs connected to them

1
P( X1, X5, X4/ X3 = — X1, X X
(X1, X2, X4/ X5 =V) 7 P(Xs=v) g123(X1, X2,Vv) g34(v, X4)
1 / /
— 7' g12(Xq, X2) g4(X4)
X1 X1
X3 =V X4 X4
e O O
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Classification

Given value of X, predict value of Y

Given a probabilistic model P(Y|X), predict:

vy (x) = arg max P(ylx)

In general we must learn P(Y|X) from data
D= ((X1>y1)> I (XTUUTL))

Restrict attention to a parametric model class Pg parameterized

by parameter vector 0

— learning is estimating 0 from D
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ML and CML Estimation

e Maximum likelihood estimation (MLE) picks the 8 that makes
the data D = (x,y) as likely as possible

6 = arg max Po(x,y)

e Conditional maximum likelihood estimation (CMLE) picks the
0 that maximizes conditional likelihood of the data D = (x,y)

D»

— arg max Po(y|x)

e P(X,Y) =P(X)P(Y|X), so CMLE ignores P(X)
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MLE and CMLE example

X, Ye{0,1},0 € [0,1], Po(X=1) =0, Pg(Y =X|X) =6
Choose X by flipping a coin with weight 0, then set Y to same
value as X if flipping same coin again comes out 1.

Given data D = ((x1,y1),..., (X, Yn)),

> i Ixi = 1]+ [xi = il
n
Z? [xi =yl

n

H —

D »

CMLE ignores P(X), so less efficient if model correctly relates
P(Y|X) and P(X)

But if model incorrectly relates P(Y|X) and P(X), MLE

converges to wrong 0

— e.g., if x4 are chosen by some different process entirely



Complexity of decoding and estimation

e Finding y*(x) = arg max,, P(y|x) is equally hard for Bayes nets

and MRF's with similar architectures
e A Bayes net is a product of independent conditional
probabilities
= MLE is relative frequency (easy to compute)
— no closed form for CMLE if conditioning variables have
parents
e A MRF is a product of arbitrary potential functions g
— estimation involves learning values of each g takes

— partition function Z changes as we adjust ¢

= usually no closed form for MLE and CMLE
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Multiple features and Naive Bayes

e Predict label Y from features Xy,..., X
P(YX1,..., Xm) W] [P, X, ..., X)

):

=

W] [Py

j=1
Y

o/ N\

O O

e Naive Bayes estimate is MLE 6 = arg maxg P(x1,...,%Xn,Y)
— Trivial to compute (relative frequency)
— May be poor if Xj aren’t really conditionally independent
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Multiple features and MaxEnt

e Predict label Y from features Xy,..., X\

P(YIXy,.., Xm) o< ] [g5(X5,Y)
j=1

Y
O
X] / \Xm
O O

e MaxEnt estimate is CMLE 6 = arg maxg P(ylx1,...,Xm)
— Makes no assumptions about P(X)

— Difficult to compute (iterative numerical optimization)
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Sequence labeling

Predict labels Yy, ..., Y, given features Xi,..., X\n

Example: Parts of speech

Y = DT JJ NN VBS JJR
X = the big dog barks loudly

Example: Named entities

Y = [NP NP NP] — -
X = the big dog barks loudly

Example: Xy,..., X, are image regions, each Xj is labeled Y;
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Hidden Markov Models

(HP i1 Y5—1)P )Y)> P(Yy, stop)

Ii T

e Usually assume time invariance or stationarity
i.e., P(Y;]Y;—1) and P(X;]Y;) do not depend on j

e HMDMs are Naive Bayes models with compound labels Y

e Estimator is MLE 8 = arg maxg Po(x,y)
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Conditional Random Fields

=1

Yo Y; Y2 Y Y1
. I I I .
X1 X2 Xm

e lime tnvariance or stationarity, i.e., f and g don’t depend on j

e CRF's are MaxEnt models with compound labels Y

e Estimator is CMLE 6 — arg maxg Pg(yl|x)
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Decoding and Estimation

e HMMs and CRF's have same complexity of decoding i.e.,
computing y*(x) = arg max, P(y|x)

— dynamic programming algorithm (Viterbi algorithm)
e Estimating a HMM from labeled data (x,y) is trivial
— HMDMs are Bayes nets = MLE is relative frequency

e Estimating a CRF from labeled data (x,y) is difficult
— Usually no closed form for partition function Z(x)

— Use iterative numerical optimization procedures (e.g.,
Conjugate Gradient, Limited Memory Variable Metric) to

maximize Pg(y|x)
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When are CRFs better than HMMs?

When HMM independence assumptions are wrong, i.e., there
are dependences between X; not described in model
Yo Y, Y2 Y Ymgd

. I I I .
XIS = Ko

HMM uses MLE = models joint P(X,Y) = P(X)P(Y|X)

CRF uses CMLE = models conditional distribution P(Y|X)
Because CRF uses CMLE, it makes no assumptions about P(X)
If P(X) isn’t modeled well by HMM, don’t use HMM!
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Overlapping features

e Sometimes label Y; depends on Xj_; and Xjy; as well as X;

1
P(Y[X) = 70x) (H f(Xj>Y5>Yj1)9(XJ‘>Y5>Y5+1))
=1
Yo Y; Y2 Y Yo
W y
)(1 )(2 Xm

e Most people think this would be difficult to do in a HMM
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Summary

HMMs and CRF's both associate a sequence of labels (Yq, ..., Ym)
to items (X1,..., Xm)

HMDMSs are Bayes nets and estimated by MLE

CRF's are MRF's and estimated by CMLE

HMMs assume that Xj are conditionally independent

CRF's do not assume that the X; are conditionally independent
The Viterbi algorithm computes y*(x) for both HMMs and CRF's
HMDMs are trivial to estimate

CRF's are difficult to estimate

It i1s easier to add new features to a CRF
There is no EM version of CRF
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HMM with longer range dependencies

Yo Y; \&
® N
N
X X2

Ym Ym+ 1
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