Edit Detection and Parsing for Transcribed Speech

Eugene Charniak and Mark Johnson
Brown Laboratory for Linguistic Information Processing (BLLIP)

Abstract

We present a simple architecture for parsing
transcribed speech in which an edited-word de-
tector first removes such words from the sen-
tence string, and then a standard statistical
parser trained on transcribed speech parses the
remaining words. The edit detector achieves a
misclassification rate on edited words of 2.2%.
(The NULL-model (which marks everything as
not edited) has an error rate of 5.9%.) To evalu-
ate our parsing results we introduce a new eval-
uation metric, the purpose of which is to make
evaluation of a parse tree relatively indifferent
to the exact tree position of EDITED nodes. By
this metric the parser achieves 85.3% precision
and 86.5% recall.

1 Introduction

While there has been significant effort ex-
pended on the parsing of written text, pars-
ing speech has received very little attention.
The comparative neglect of speech (or tran-
scribed speech) is understandable as parsing
transcribed speech presents several problems
absent in regular text: “um”s and “ah”s (or
more formally, filled pauses), frequent use of
parentheticals (e.g., “you know”), ungrammat-
ical constructions, and speech repairs (e.g., “
Why didn’t he, why didn’t she stay home?”).
In this paper we present and evaluate a simple
two-pass architecture for handling the problems
of parsing transcribed speech. The first pass
tries to identify which of the words in the string
are edited (“why didn’t he,” in the above exam-
ple). These words are removed from the string
given to the second pass, an already existing sta-
tistical parser trained on a transcribed speech
corpus. (In particular, all of the research in this
paper was performed on the parsed “Switch-
board” corpus as provided by the Linguistic

Data Consortium).

This architecture is based upon a fundamen-
tal assumption; the semantic and pragmatic
content of an utterance is based solely on the
unedited words in the word sequence. This
assumption is not completely true, corrected
Freudian slips would be a counter example.
However, it seems so close to true as to make
worrying about the lost content seem perverse,
particularly given our limited ability at extract-
ing semantic content in the best of circum-
stances.

In order to evaluate the parser’s output we
compare it with the gold standard parse trees.
For this purpose a very simple third pass is
added to the architecture; the hypothesized
edited words are inserted into the parser output
(see Section 3 for details). To the degree that
our fundamental assumption holds, a “real” ap-
plication would ignore this last step.

This architecture has several things to recom-
mend it. First it allows us to treat the editing
problem as a pre-process, keeping the parser un-
changed. Second, the major clues for detecting
edited words in transcribed speech seem to be
relatively shallow phenomena, such as repeated
word and part-of-speech sequences. The kind of
information that a parser would add, e.g., what
is the node dominating the EDITED node, seems
much less critical.

Note that of the major problems associated
with transcribed speech, we chose to deal with
only one of them, speech repairs, in a special
fashion. Our reasoning here is based upon what
one might and might not expect from a second-
pass statistical parser. For example, ungram-
maticality in some sense is relative, so if the
training corpus contains the same kind of un-
grammatical examples as the testing corpus,
one would not expect ungrammaticality itself

to be a show stopper. Furthermore, the best
statistical parsers [3,6] do not use grammatical
rules, but rather define probability distributions
over all possible rules.

Similarly, parentheticals and filled pauses al-
ready exist in the newspaper text these parsers
currently handle, albeit at a much lower rate.
Thus there is no particular reason to believe
that these constructions should have a major
impact.! This leaves speech repairs as the one
major phenomena not present in the text that
would seem to pose a major problem for our
parser. It is for that reason we have chosen to
handle it separately.

The organization of this paper follows the
architecture we have just described. Section
2 describes the first pass. We present therein
a boosting model for learning to detect edited
nodes (Sections 2.1 — 2.2), and an evaluation of
the model as a stand-along edit detector (Sec-
tion 2.3). Section 3 describes the parser. As the
parser is that already reported in [3] this section
simply describes the parsing metrics used (Sec-
tion 3.1), the details of the experimental setup
(Section 3.2), and the results (Section 3.3).

2 Identifying EDITED words

The Switchboard corpus annotates disfluencies
such as restarts and repairs. These include rep-
etitions and substitutions, shown italicized in
(1a) and (1b) respectively.

(1) a. I really, 1 really like pizza.

b. Why didn’t he, why didn’t she stay
home?

Restarts and repairs are indicated by disfluency
tags ‘[’, ‘“+’ and ‘]’ in the disfluency POS-tagged
Switchboard corpus, and by EDITED nodes in
the tree-tagged corpus. This section describes
a procedure for automatically identifying words
corrected by a restart or repair, i.e., which are
dominated by an EDITED node in the tree-
tagged corpus.

This method treats the problem of identify-
ing EDITED nodes as a word token classification
problem, where each word token is classified ei-
ther as edited or not. The classifier applies to

'Tndeed, [12] suggests that filled pauses tend to indi-
cate clause boundaries, and thus may be a help in pars-
ing.

words only; punctuation inherits the classifica-
tion of the preceeding word. A linear classifier
trained by a greedy Boosting algorithm [11] is
used to predict whether a word token is edited.
Our Boosting classifier is directly based on the
greedy Boosting algorithm described by Collins
[4] which contains important implementation
details that are not repeated here. We chose
Collins’ algorithm because it offers good perfor-
mance and scales to hundreds of thousands of
possible feature combinations.

2.1 Boosting estimates of linear
classifiers

This section describes the kinds of linear clas-
sifiers that the Boosting algorithm infers. Ab-
stractly, we regard each word token as an event
characterized by a finite tuple of random vari-
ables

(Y7 X17 s JX’I'TL)

Y is the the conditioned variable and ranges
over {—1,+1}, with ¥ = +1 indicating that
the word is not edited. X1,...,X,, are the con-
ditioning variables; each X; ranges over a finite
set A;. For example, X; is the orthographic
form of the word and X} is the set of all words
observed in the training section of the corpus.
Our classifiers use m = 18 conditioning vari-
ables. The following subsection describes the
conditioning variables in more detail; they in-
clude variables indicating the POS tag of the
preceding word, the tag of the following word,
whether or not the word token appears in a
“rough copy” as explained below, etc.

The goal of the classifier is to predict the
value of Y given values for Xi,...,X,,. The
classifier makes its predictions based on the oc-
curence of combinations of conditioning vari-
able/value pairs called features. A feature F
is a set of variable-value pairs (X;,z;), with
z; € &j. Our classifier is defined in terms of
a finite number n of features Fi,...,F,, where
n &~ 10° in our classifiers.? Each feature F; de-

Tt turns out that many pairs of features are exten-
sionally equivalent, i.e., take the same values on each
word token in our training data. We developed a method
for quickly identifying such extensionally equivalent fea-
ture pairs based on hashing XORed random bitmaps,
and deleted all but one of each set of extensionally equiv-
alent features (we kept a feature with the smallest num-
ber of conditioning variables).

fines an associated random boolean variable

R= I

(Xj,x5)EF;

(Xj=z;),

where (X=uz) takes the value 1 if X = z and 0
otherwise. That is, F; = 1 iff X; = z; for all
<X s LL‘j> e F.

Our classifier estimates a feature weight «; for
each feature F;, which is used to define the pre-
diction variable Z.

n

Z =Y oF;.

i=1

The prediction made by the classifier is
sign(Z) = Z/|Z|, i.e., —1 or +1 depending on
the sign of Z.

Intuitively, our goal is to adjust the vector
of feature weights @ = (a1, ..., @) to minimize
the expected misclassification rate E[(sign(Z) #
Y)]. This function is difficult to minimize,
so our Boosting classifier minimizes the ex-
pected Boost loss Elexp(—Y Z)]. As Singer and
Schapire [11] point out, the misclassification
rate is bounded above by the Boost loss, so a
low value for the Boost loss implies a low mis-
classification rate.

__Our classifier estimates the Boost loss as
Eilexp(—Y Z)], where E;[-] is the expectation
on the empirical training corpus distribution.
The feature weights are adjusted iteratively; one
weight is changed per iteration. The feature
whose weight is to be changed is selected greed-
ily to minimize the Boost loss using the algo-
rithm described in [4]. Training continues for
25,000 iterations. After each iteration the mis-
classification rate on the development corpus
Eq[(sign(Z) # Y)] is estimated, where E,4[-] is
the expectation on empirical development cor-
pus distribution. While each iteration lowers
the Boost loss on the training corpus, a graph
of the misclassification rate on the development
corpus versus iteration number is a noisy U-
shaped curve, rising at later iterations due to
overlearning. The value of & returned by the
estimator is the one which minimizes the mis-
classficiation rate on the development corpus;
typically the minimum is obtained after about
12,000 iterations, and the feature weight vec-
tor & contains around 8,000 non-zero feature
weights (since some weights are adjusted more

than once).?

2.2 Conditioning variables and features

This subsection describes the conditioning vari-
ables used in the EDITED classifier. Many of the
variables are defined in terms of what we call
a rough copy. Intuitively, a rough copy iden-
tifies repeated sequences of words that might
be restarts or repairs. Punctuation is ignored
for the purposes of defining a rough copy, al-
though conditioning variables indicate whether
the rough copy includes punctuation. A rough
copy in a tagged string of words is a substring
of the form «aj(yas, where:

1. a1 (the source) and ag (the copy) both be-
gin with non-punctuation,

2. the strings of non-punctuation POS tags of
a1 and as are identical,

3. B (the free final) consists of zero or more
sequences of a free final word (see below)
followed by optional punctuation, and

4. v (the interregnum) consists of sequences of
an interregnum string (see below) followed
by optional punctuation.

The set of free-final words includes all partial
words (i.e., ending in a hyphen) and a small set
of conjunctions, adverbs and miscellanea, such
as and, or, actually, so, etc. The set of interreg-
num strings consists of a small set of expressions
such as uh, you know, I guess, I mean, etc. We
search for rough copies in each sentence start-
ing from left to right, searching for longer copies
first. After we find a rough copy, we restart
searching for additional rough copies following
the free final string of the previous copy. We
say that a word token is in a rough copy iff it
appears in either the source or the free final.4
(2) presents an example of a rough copy.

3We used a smoothing parameter € as described in
[4], which we estimate by using a line-minimization rou-
tine to minimize the classifier’s minimum misclassifica-
tion rate on the development corpus.

*In fact our definition of rough copy is more complex.
For example, if a word token appears in an interregnum
and the word immediately following the interregnum also
appears in a (different) rough copy, then we say that the
interregnum word token appears in a rough copy. This
permits us to approximate the Switchboard annotation
convention of annotating interregna as EDITED if they
appear in iterated edits.

(2) I thought I cou-, I mean, I
~ N —
o B v o

Table 1 lists the conditioning variables used
in our classifier. In that table, subscript inte-
gers refer to the relative position of word to-
kens relative to the current word; e.g. 71j is
the POS tag of the following word. The sub-
script f refers to the tag of the first word of the
free final match. If a variable is not defined for
a particular word it is given the special value
‘NULL’; e.g., if a word is not in a rough copy
then variables such as N, N, N;, N;, N, and
T} all take the value NULL. Flags are boolean-
valued variables, while numeric-valued variables
are bounded to a value between 0 and 4 (as well
as NULL, if appropriate). The three variables
C;, Cy and T; are intended to help the classifier
capture very short restarts or repairs that may
not involve a rough copy. The flags C; and C;
indicate whether the orthographic form and/or
tag of the next word (ignoring punctuation) are
the same as those of the current word. 7; has
a non-NULL value only if the current word is
followed by an interregnum string; in that case
T; is the POS tag of the word following that
interregnum.

As described above, the classifier’s features
are sets of variable-value pairs. Given a tuple of
variables, we generate a feature for each tuple
of values that the variable tuple assumes in the
training data. In order to keep the feature set
managable, the tuples of variables we consider
are restricted in various ways. The most impor-
tant of these are constraints of the form ‘if X
is included among feature’s variables, then so
is Xp’. For example, we require that if a fea-
ture contains P;; then it also contains P; for
1 > 0, and we impose a similiar constraint on

POS tags.

2.3 Empirical evaluation

For the purposes of this research the Switch-
board corpus, as distributed by the Linguistic
Data Consortium, was divided into four sections
(or sub-corpora). The training sub corpus con-
sists of all files in the directories 2 and 3 of the
parsed/merged Switchboard Corpus. Directory
4 is split into three approximately equal size sec-
tions. (Note that the files are not consecutively
numbered.) The first of these (files sw4004.mrg
to sw4153.mrg) is the testing corpus. All edit

would finish tletewticn and parsing results reported herein

are from this sub corpus. The files sw4154.mrg
to sw4483.mrg are reserved for future use. The
files sw4519.mrg to sw4936.mrg are the devel-
opment corpus. In the complete corpus three
parse trees were sufficiently ill formed in that
our tree-reader failed to read them. These trees
received trivial modifications to allow them to
be read, e.g., adding the missing extra set of
parentheses around the complete tree.

We trained our classifier on the parsed data
files in the training and development sections,
and evaluated the classifer on the test section.
Section 3 evaluates the parser’s output in con-
junction with this classifier; this section focusses
on the classifier’s performance at the individual
word token level. In our complete application,
the classifier uses a bitag tagger to assign each
word a POS tag. Like all such taggers, our tag-
ger has a non-neglible error rate, and these tag-
ging could conceivably affect the performance of
the classifier. To determine if this is the case,
we report classifier performance when trained
both on “Gold Tags” (the tags assigned by the
human annotators of the Switchboard corpus)
and on “Machine Tags” (the tags assigned by
our bitag tagger). We compare these results to
a baseline “null” classifier, which never identi-
fies a word as EDITED. Our basic measure of
performance is the word misclassification rate
(see subsection 2.1). However, we also report
precision and recall scores for EDITED words
alone. These results show that our classifier
makes approximately only 1/3 of the misclas-
sification errors made by the null classifier, and
that using the POS tags produced by the bitag
tagger does not have much effect on the classi-
fier’s performance.

3 Parsing Transcribed Speech

We now turn to the second pass of our two-pass
architecture, using an “off the shelf” statisti-
cal parser to parse the transcribed speech after
having removed the words identified as edited
by the first pass. We first define the evaluation
metric we use and then describe the results of
our experiments.

3.1 Parsing Metrics

In this section we describe the metric we use
to grade the parser output. As a first desider-
ata we want a metric that is a logical extension

Wo Orthographic word
Py, P, P, Py Partial word flags
Tfl,T(),Tl,TQ,Tf POS tags

Number of words in common in source and copy
Number of words in source that do not appear in copy
Number of words in interregnum

Number of words to right edge of source

Followed by identical tag flag

Followed by identical word flag

Np,

Ny

N;i

N, Number of words to left edge of source
N,

Cy

Cu

T;

Post-interregnum tag flag

Table 1: Conditioning variables used in the EDITED classifier.

Classifer
Null | Gold Tags | Machine Tags
Misclassification rate | 0.059 0.021 0.022
EDITED precision - 0.952 0.944
EDITED recall 0 0.678 0.668

Table 2: Performance of the “null” classifier (which never marks a word as EDITED), and Boosting
classifiers trained on “Gold Tags” and “Machine Tags”.

of that used to grade previous statistical parsing
work. We have taken as our starting point what
we call the “relaxed labeled precision/recall”
metric from previous research (e.g. [6,Charniak
2000 Parsing],). This metric is characterized as
follows:

For a particular test corpus let N be the total
number of non-terminal (and non pre-terminal)
constituents in the gold standard parses. Let
M the the number of such constituents returned
by the parser, and let C' be the number of these
that are correct (as defined below). Then pre-
cision = C'/M, and recall = C/N.

A constituent c is correct if there exists a con-
stituent d in the gold standard such that:

1. label(c) = label(d)®
2. begin(c) =, begin(d)
3. end(c) =, end(d)

In 2 and 3 above we introduce an equivalence

relation =, between string positions. We say
a =, biff

1. a=b, or

2. the word separating a and o' is punctua-
tion, and a' =, b.

®For some reason, starting with [8] the labels ADVP
and PRT are considered to be identical as well

The parsing literature uses =, rather than =
because it is felt that two constituents should
be considered equal if they disagree only in the
placement of, say, a comma (or any other se-
quence of punctuation), where one constituent
includes the punctuation and the other excludes
it.

Our new metric, “relaxed edited labeled pre-
cision/recall” is identical to relaxed labeled
precition/recall except for two modifications.
First, in the gold standard all non-terminal sub-
constituents of an EDITED node are removed
and the terminal constituents are made immedi-
ate children of a single EDITED node. Further-
more, two or more EDITED nodes with no sep-
arating non-edited material between them are
merged into a single EDITED node. We call this
version a “simplified gold standard parse.” All
precision recall measurements are taken with re-
spected to the simplified gold standard.

Second, we replace =, with a new equivalence
relation =.. Assuming without loss of generality
that a < b, then a =, b iff:

1. a=, b, or

2. there is an EDITED node ¢ (in the simpli-
fied gold standard parse) such that a =,
begin(c) and end(c) =, b.%

5We considered, but ultimately rejected, the possi-

E E
the , bagel with

E
uh

, doughnut

1 2 2 4 5

2

2 8

Figure 1: Equivalent string positions as defined by =,

We give a concrete example in Figure 1. The
first row indicates string position (as usual in
parsing work, position indicators are between
words). The second row gives the words of the
sentence. Words that are edited out have an
“E” above them. The third row indicates the
equivalence relation by labeling each string posi-
tion with the smallest such position with which
it is equivalent.

There are two basic ideas behind this defini-
tion. First, we do not care where the EDITED
nodes appear in the tree structure produced by
the parser. Second, we are not interested in the
fine structure of EDITED sections of the string,
just the fact that they are EDITED. That we
do care about which words are EDITED comes
into our figure of merit in two ways. First,
(non-contiguous) EDITED nodes remain, even
thought their sub structure does not, and thus
they are counted in the precision and recall
numbers. Secondly (and probably more impor-
tantly), failure to decide on the correct posi-
tions of edited nodes can cause collateral dam-
age to neighboring constituents by causing them
to start or stop in the wrong place. This is par-
ticularly relevant because according to our defi-
nition, while the positions at the beginning and
ending of an edit node are equivalent, the in-
terior positions are not (unless related by the
punctuation rule). See Figure EQIVFIG.

3.2 Parsing Experiments

The parser described in [3] was trained on the
Switchboard training corpus as specified in sec-
tion 2.1. The input to the training algorithm
was the gold standard parses minus all EDITED
nodes and their children.

We tested on the Switchboard testing sub-
corpus (again as specified in Section 2.1). All

bility of defining =, using the EDITED nodes in the
returned parse rather than the simplified gold standard.
We rejected this because the =, relation would then it-
self be dependent on the parser’s output, a state of af-
fairs that might allow complicated schemes to improve
the parser’s performance as measured by the metric.

parsing results reported herein are from all sen-
tences of length less than or equal to 100 words
and punctuation. When parsing the test corpus
we carried out the following operations:

1. create the simplified gold standard parse
by removing non-terminal children of an
EDITED node and merging consecutive
EDITED nodes.

2. remove from the sentence to be fed to the
parser all words marked as edited by an
edit detector (see below).

3. parse the resulting sentence

4. add to the resulting parse EDITED nodes
containing the non-terminal symbols re-
moved in step 2. The nodes are added as
high as possible (though the definition of
equivalence from Section 3.1 should make
the placement of this node largely irrele-
vant).

5. evaluate the parse from step 4 against the
simplified gold standard parse from step 1.

We ran the parser in three experimental sit-
uations, each using a different edit detector in
step 2. In the first of the experiments (labeled
“Gold Edits”) the “edit detector” was simply
the simplified gold standard itself. This was to
see how well the parser would do it if had perfect
information about the edit locations.

In the second experiment (labeled “Gold
Tags”), the edit detector was the one described
in Section 2 trained on the part-of-speech tags
as specified in the gold standard trees. Note
that the parser was not given the gold standard
part-of-speech tags.

In the third experiment (“Machine Tags”)
we used the edit detector based upon the ma-
chine generated tags. It is this result that
we consider the “true” capability of the detec-
tor/parser combination. We were interested in
contrasting the results of this experiment with
that of the second experiment to gauge what im-
provement one could expect from using a more

sophisticated tagger as input to the edit detec-
tor.

The results of the experiments are given in
Table 3 The last line in the figure indicates the
performance of this parser when trained and
tested on Wall Street Journal text.

3.3 Discussion

The general trends of Table 3 are much as one
might expect. Parsing the Switchboard data is
much easer given the correct positions of the
EDITED nodes than without this information.
The difference between the Gold tags and the
Machine tags parses is small, as would be ex-
pected from the relatively small difference in
the performance of the edit detector reported in
Section 2. This suggests that putting significant
effort into an tagger for use by the edit detec-
tor is unlikely to produce much improvement.
Also, as one might expect, parsing conversa-
tional speech is harder than Wall Street Jour-
nal text, even given the gold-standard EDITED
nodes.

Probably the only aspect of the above num-
bers that is likely to raise any comment in the
parsing community is the degree to which preci-
sion numbers are lower than recall. With the ex-
ception of the single pair reported in [3] and re-
peated above, no precision values have ever been
lower than recall vales in the recent statistical-
parsing literature [2,3,5,6,10]. and even this one
exception is only by 0.1%, and not statistically
significant.

We attribute the dominance of recall over pre-
cision primarily to the influence of edit detec-
tor mistakes. First, note that when given the
gold standard edits the difference is quite small
(0.3%). When using the edit detector edits the
difference increases to 1.2%. Our best guess is
that because the edit detector has high preci-
sion, and lower recall, many more words are left
in the sentence to be parsed, and thus one finds
more non-terminal constituents in the machine
parses than in the gold parses. Thus the preci-
sion is lower than the recall.

4 Previous Research

While parsing edited text has been neglected,
there is a significant body of work on finding
edit positions [1,7,9,12]. It is difficult to make
meaningful comparisons between the various re-
search efforts as they differ in (a) the corpora

used for training and testing, (b) the informa-
tion available to the edit detector, and (c) the
evaluation metrics used. For example, [9] uses
a sub-section of the ATIS corpus, takes as in-
put the actual speech signal (and thus has ac-
cess to silence duration, but not to words), and
uses as its evaluation metric the percentage of
time the program identifies the start of the in-
terregnum (see Section 2.2). On the other hand,
[7] uses an internally developed corpus of sen-
tences, works from a transcript enhanced with
information from the speech signal (and thus
uses words), but does use a metric that seems
to be similar to ours. One work that also uses
the transcribed Switchboard corpus that we use
is [12]. However they report no independent
measures of edit detection accuracy, but rather
report the degree to which identifying and re-
moving disfluencies helps with word perplexity.
(Discouragingly, it raised perplexity).

5 Conclusion

We have presented a simple architecture for
parsing transcribed speech in which an edited
word detector is first used to remove such words
from the sentence string, and then a statisti-
cal parser trained on edited speech (with the
edited nodes removed) is used to parse the text.
The edit detector reduces the misclassification
rate on edited words from the null-model (mark-
ing everything as not edited) rate of 5.9% to
2.2%. Due to differences in corpora and evalua-
tion metrics, we have not attempted to compare
this result to previous research. We would ex-
pect that it is very competitive.

To evaluate our parsing results we have intro-
duced a new evaluation metric, relaxed edited
labeled precision/recall. The purpose of this
metric is to make evaluation of a parse tree rel-
atively indifferent to the exact tree position of
EDITED nodes, in much the same way that the
previous metric, relax labeled precision/recall,
made it indifferent to the attachment of punc-
tuation. By this metric the parser achieved a
85.3% precision 86.5% and recall.

References

Experiment

| Labeled Precision | Labeled Recall | F-measure

Gold Edits 87.8
Gold Tags 85.4
Machine Eags | 85.3
WSJ 89.5

88.1 88.0
86.6 86.0
86.5 85.9
89.6

Table 3: Results of Switchboard parsing, sentence length < 100

. BEAR, J., DOWDING, J. AND SHRIBERG, E.
Integrating multiple knowledge sources for
detection and correction of repairs in human-
computer dialog. In Proceedings of the 3th
Annual Meeting of the Association for Com-
putational Linguistics. 56—63.

. CHARNIAK, E. Statistical parsing with a
context-free grammar and word statistics.
In Proceedings of the Fourteenth National
Conference on Artificial Intelligence. AAAI
Press/MIT Press, Menlo Park, CA, 1997,
598-603.

. CHARNIAK, E. A maximum-entropy-
inspired parser. In Proceedings of the 2000
Conference of the North American Chap-
ter of the Assocation for Computational
Linguistics. ACL, New Brunswick NJ, 2000.

. CoLrLiNs, M. Discriminative reranking for
natural language parsing . In Proceedings
of the International Conference on Machine
Learning(ICML 2000). 2000 .

. CoLLiNs, M. J. A new statistical parser
based on bigram lexical dependencies. In Pro-
ceedings of the 34th Annual Meeting of the
ACL. 1996.

. CoLLiNs, M. J. Three generative lexicalised
models for statistical parsing. In Proceedings
of the 35th Annual Meeting of the ACL. 1997,
16-23.

. HEEMAN, P. A. AND ALLEN, J. F. Into-
national boundaries, speech repairs and dis-
course markers: modeling spoken dialog. In
35th Annual Meeting of the Association for
Computational Linguistics and 17th Interna-
tional Conference on Computational Linguis-
tics. 1997, 254-261.

. MAGERMAN, D. M. Statistical decision-tree
models for parsing. In Proceedings of the 33rd
Annual Meeting of the Association for Com-
putational Linguistics. 1995, 276-283.

9.

10.

11.

12.

NAKATANI, C. H. AND HIRSCHBERG, J. A
corpus-based study of repair cues in sponta-
neous speech. Journal of the Acoustical Soci-
ety of America 953 (1994), 1603-1616.

RATNAPARKHI, A. Learning to parse natu-

ral language with maximum entropy models.
Machine Learning 341/2/3 (1999), 151-176.

SINGER, Y. AND SCHAPIRE, R. E. Im-
proved boosting algorithms using confidence-
based predictions. In Proceedings of the
Eleventh Annual Conference on Computa-
tional Learning Theory. 1998, 80-91.

STOLCKE, A. AND SHRIBERG, E. Auto-
matic linguistic segmantation of conversa-
tional speech. In Proceedings of the 4th In-
ternational Conference on Spoken Language
Processing (ICSLP-96). 1996.

