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Abstract

Collocation is a linguistic phenomenon
that is difficult to define and harder to
explain; it has been largely overlooked
in the field of computational linguistics
due to its difficulty. Although standard
techniques exist for finding collocations,
they tend to be rather noisy and suf-
fer from sparse data problems. In this
paper, we demonstrate that by utilising
parsed input to concentrate on one very
specific type of collocation—in this case,
verbs with particles, a subset of the so-
called “multi-word” verbs—and applying
an algorithm to promote those colloca-
tions in which we have more confidence,
the problems with statistically learning
collocations can be overcome.

1 Introduction

1.1 Collocations

A collocation, in the most general sense, is just
some number of words that tend to occur to-
gether often; a native speaker would probably say
that they fit together well. There is some dis-
agreement in the literature as to what exactly
should be defined as a collocation—in particu-
lar, whether totally opaque constructions count.
Manning and Schütze (1999) explicitly consider
idioms to be a kind of collocation; Cruse (1986)
sets up a contrast between the semantically
opaque idiom and the semantically transparent
collocation.

In any case, it is agreed that the two main nec-
essary qualities of collocations are as follows:

• They are not fully compositional. At the very
least, they carry extra connotation, or one or
more of the constituent words has a restricted
∗This research was funded in part by NSF grants

LIS-SBR-9720368 and IGERT-9870676.

or modified definition when within the collo-
cation.

• They are not easily modifiable. While many
collocations can have synonyms substituted
in, or modifiers added in the middle, and still
“make sense”, native speakers will find such
a construction to be understandable but odd.

Multi-word verbs comprise a domain that defi-
nitely meets both these criteria.

1.2 Multi-word verbs

For this paper, we will essentially use the defi-
nition of multi-word verbs given in (Quirk et al.,
1985). Quirk defines a multi-word verb (MWV) as
“a unit which behaves to some extent either lexi-
cally or syntactically as a single verb”1, as distinct
from those MWV-like constructions that are freely
variable (i.e. fully compositional). They are com-
prised of one verb and one or more other words,
which may be of any class: “rely on”, “take care
of”, “see fit”. This work restricts itself to MWVs
comprised of a verb and some number of particles,
which may be either prepositions or adverbs.2

1.3 Idiomaticity vs. Compositionality

An idiom is generally considered to be a phrase
that is mostly or entirely opaque, whose mean-
ing is not simply a composition of the meanings
of its constituent parts. Cruse (1986) formalises
two necessary properties of idioms: that they be
lexically complex, and that they comprise indivis-
ible semantic units. Multi-word verbs span the

1Some examples of this behaviour include passive
forms (“Alex can be relied on”, “the hoped-for do-
nation”) and question formation (“What was Chris
poring over?” rather than *“Where was Chris por-
ing?”). None of these behaviours are characteristic of
all MWVs, or only of MWVs, but they do give the
flavour of the task.

2Note that this definition subsumes that used in
the Treebank literature (Bies et al., 1995), wherein the
word ‘particle’ refers only to the standalone adverbs,
such as ‘out’ and ‘together’.



continuum between the nearly transparent com-
positional phrase and the fully opaque idiom. It
is often difficult to classify them exactly, due to
the small number of particles available to con-
trast with, and the even smaller number of par-
ticles that fit the pragmatics of a given situation.
Nonetheless, it should be fairly clear that some
MWVs can be further broken down into semantic
units, as demonstrated by synonym and related-
word substitutability:

agree on vs.

agree
disagree
expound

lecture







on
about
regarding
concerning

(1)
while for others the obvious synonyms and related
particles don’t work as well:

rely on vs. *rely




over
in
about

(2)

However, even these MWVs can exhibit some
amount of divisibility within highly constrained
environments:

rely on vs.

rely
count

depend
hinge




{
on
upon (3)

There are two available views of this sort of
highly constrained alternation: on the one hand,
we could argue that the particles participating in
these MWVs (in the case of example (3), ‘on’ and
‘upon’) have many distinct senses, each of which
(or at least most of which) strongly select for
a few specific verbs (in this case, ‘rely’, ‘count’,
etc.). On the other hand, we could also argue
that this seemingly semi-productive alternation is
pure coincidence—or at best historically related—
and that synchronically these constructions are id-
iomatic. The resolution of this point is not within
the scope of this paper.

2 Method

2.1 Input and preprocessing

Any statistical work on collocation clearly needs
to have copious amounts of input in order to be of
any use. In the past, that has forced the use of raw
text input—at best, tagged input—as there did
not exist any more fully annotated corpora of suf-
ficient size. However, 30 million words of parsed
Wall Street Journal text make the BLLIP’99 cor-
pus (Charniak et al., 1999) large enough to make

lexical information gathering a somewhat reason-
able endeavour.

From this parsed data, we tallied every verb-
particle frame: for every verb in the corpus (any
word whose part-of-speech tag started with VB;
this includes gerunds (VBG, “-ing” verbs), pas-
sives (VBN), and so on), we recorded it along with
the heads of any siblings labelled PRT (“particle”
in the Penn Treebank sense; what this paper refers
to as an “adverbial particle”) or PP (“preposi-
tional phrase”). A given instance of a verb could
have zero particle siblings, or in extreme cases as
many as five or six. To further alleviate the ever-
present sparse data problem, we then stemmed the
verbs using a relatively näıve algorithm (Porter,
1980), augmented with knowledge of about eighty
common irregular verb forms.

2.2 Mutual information

One of the more popular statistical methods for
ranking collocations is mutual information, as de-
scribed by Church and Hanks (1989) among oth-
ers. However, like most of the other lexical sta-
tistical methods, it is quite sensitive to sparse
data problems, tending to promote low-frequency
items. One attempt at combatting this ten-
dency was given by Dunning (1993); more re-
cently, Johnson (2001) has proposed a “confidence
interval estimator” that is fairly successful.

There are, however, at least two problems with
it in this domain. First of all, it doesn’t take into
account multi-word verbs of length greater than
two. At best, it could count such constructions as
a separate 2-word verb for each involved particle—
“live up” and “live to” for “live up to”—but then
each dilutes the relative probability of the other.

The second problem is how exactly to account
for verbs that occur without any particle siblings.
If we do not count them at all, the most promi-
nent verb-particle pairs tend to include verbs that
occur with or without a particle (but when they
do appear with a particle, it is generally the same
one). The clearest collocations, however, generally
are those verbs which hardly ever occur without
a given particle; thus, ideally, we should factor in
the “no particle” occurrences of verbs.

We have developed a generalisation of the work
in Johnson (2001) to generate confidence intervals
for n-grams. This algorithm, like the old one, dis-
counts the probability of low-frequency items; in
addition, though, it estimates the likelihood of see-
ing given n-grams while discounting those n-grams
that are only likely due to their component parts.



2.3 Log-linear models of n-way
interaction

This section describes the statistics we used as
measures of association to find the strongly asso-
ciated verb-particle tuples. In fact, the techniques
are general, in that they provide a measure of how
strongly an n-tuple of binary variables are associ-
ated, and it is not important that these variables
represent the occurrences of particular words.

We propose two different measures of associa-
tion µ and µ1, which we call the “all subtuples”
and “unigram subtuples” measures below. As we
explain below, they seem to identify very different
kinds of collocations, so both are useful in certain
circumstances. These measures are estimates of λ
and λ1 respectively, which are particular param-
eters of certain log-linear models. In cases where
the counts are small the estimates of λ and λ1

may be noisy, and so high values from small count
data should be discounted in some way when be-
ing compared with values from large count data.
We do this by also estimating the asymptotic stan-
dard error σ and σ1 of λ and λ1 respectively, and
set µ = λ − 3.29σ and µ1 = λ1 − 3.29σ1. This
corresponds to setting the measures µ and µ1 to
the lower bound of a 0.001 confidence interval for
λ and λ1 respectively, which is a systematic way
of trading recall for precision in the face of noisy
data (Johnson, 2001).

Now we turn to the estimation of λ, λ1, σ and
σ1. Let X1, . . . , Xn be random variables, where
each Xi ranges over the i component of the tu-
ples. In our application, X1 ranges over verbs and
each Xi, 2 ≤ i ≤ n, ranges over particles and
a distinguished null symbol ‘2’ which is used to
“fill” the value of Xi, i > j + 1 when the verb ap-
pears with only j following prepositions or par-
ticles. For example, if n = 3, then the verb
phrase write it off would correspond to the tuple
X1 = write, X2 = off , X3 = 2.

Suppose we wish to measure the association of
the tuple X1 = x1 ∧ . . . ∧ Xn = xn. The mea-
sures we propose are defined in terms of the num-
ber of times the possible conjunctions of equalities
and inequalities of variables occur in the train-
ing data. We represent each possible combina-
tion of these equalities and inequalities with an
n-bit integer b, 0 ≤ b < 2n as follows: the con-
junction of equalities and inequalities represented
by b contains the equality Xi = xi iff the ith bit
of b is 1, and it contains the inequality Xi 6= xi

iff the ith bit of b is 0. Thus b = 0 represents
the conjunction X1 6= x1 ∧ . . . Xn 6= xn and
b = 2n − 1 represents X1 = x1 ∧ . . . ∧ Xn = xn.
Continuing with the example above, b = 3 repre-

sents the conjunction of equalities and inequalities
X1 = write ∧X2 = off ∧X3 6= 2.

For a fixed tuple of values x1, . . . , xn let cb be
the number of times the conjunction of equali-
ties and inequalities represented by b is true in
the training data. Continuing with the example,
c3 would be the number of times write was ob-
served followed by off and some other preposition
or particle. (In fact, following the suggestion in
Goodman (1970), we add 1

2 to each cb as a conti-
nuity correction for small counts; this also avoids
overflow problems with zero counts). Further, let
#(b) be the number of bits set to 1 in b. Then the
quantities λ, λ1, σ and σ1 are given by:

λ =
2n−1∑
b=0

(−1)n−#(b) log cb

λ1 = log c2n−1 −
∑

#(b)=1

log cb + (n− 1) log c0

σ =

√√√√2n−1∑
b=0

1
cb

σ1 =

√√√√ 1
c2n−1

+
∑

#(b)=1

1
cb

+
(n− 1)2

c0

These formulae for λ and λ1 are maximum like-
lihood estimators for the n-way interaction terms
in certain saturated log-linear models. Log-linear
models provide a general framework for con-
structing models under various assumptions about
which combinations of variables interact, in this
sense they are like the more well-known ANOVA
models. Unlike ANOVA models, log-linear mod-
els do not assume that the data is normally dis-
tributed; rather, log-linear models fit a multino-
mial or Poisson distribution, which should result
in a better fit to count data (Agresti, 1996).

Both λ and λ1 are the n-way interaction term in
saturated log-linear models for the count data c.
This term is in effect the difference between the log
of the count c2n−1 and the log count that would
be expected given the lower order interactions in
the model.

The parameter λ is the n-way interaction term
in a log-linear model which also contains all lower-
order (i.e., 0, 1, . . . , n − 1 way) interaction terms;
thus we call µ (the lower bound of the confidence
interval for λ) the all subtuples measure. The pa-
rameter λ1 is the n-way interaction term in a log-
linear model which also contains only 0 and 1-
way interaction terms; hence we call µ1 (the lower
bound on the confidence interval for λ1) the uni-
gram subtuples measure.



Ranks Phrasal? Transitive? Opaque? Good collocation?
1–25 55% 65% 38% 3.65
1–100 48% 65% 44% 3.83
1001–1100 26% 55% 29% 3.03
2001–2100 23% 63% 24% 2.74

Table 1: Evaluation of bigram output

For the special case of n = 2, the two measures
are identical: λ = λ1 and σ = σ1. In fact, λ is
just the log odds ratio, and σ is is its asymptotic
standard error (Hollander and Wolfe, 1999). Thus
both of these statistics can be regarded as different
generalisations of the odds ratio for n-way inter-
actions.

For n > 2 the two measures can behave quite
differently. Although this paper is not directly
concerned with general word n-tuples, the differ-
ence between these two measures is perhaps clear-
est with them. The word-tuples which score high-
est on the λ1 measure are typically multi-word
names, such as Drexel Burnham Lambert and Ho
Chi Minh. In our training corpus, the words in
such names only occur in these particular names;
hence the tuple probability much larger than the
product of the unigram word probabilities, and
so the tuple receives a high λ1 score. On the
other hand, the tuple probability is completely
predictable from the word bigram probabilities
(e.g., given X1 = Drexel it is completely pre-
dictable that X2 = Burnham and X3 = Lambert),
so name-like word-triples typically score low on
the λ measure. (Word triples such as little or no,
by and large, let go of, etc., score highly on the λ
measure).

We now briefly sketch the origins of the formu-
lae above. The formulae for λ and σ are from
Goodman (1970). We derived the formulae for λ1

and σ1 from the maximum likelihood equations
for log linear models presented in Agresti (1990).
Because we fit saturated models, the estimated pa-
rameters are always linear combinations of the log
count data. On the other hand, the reader will no-
tice that the parameter estimates are differences
of log counts, and so become progressively more
sensitive to noise in the count data as n increases.
In practice, we find that the number of tuples for
which the lower bound of the confidence interval is
greater than some positive constant drops quickly
as n increases, and quality of the tuples retrieved
also decreases.

3 Results

The top 25 2-word verbs are reported in Figure 1.
They have been un-stemmed by hand for read-
ability (actual output included “cobbl together”,
“shi away”, and so on), and annotated in italics
where necessary. It is worth noting that although
we only report the top 25 here, the collocations
are almost all “good” for several hundred, and
good collocations continue to appear with great
frequency well into the thousands.

For three-word verbs, there were two different
sets of output: one using the all subtuples mea-
sure and one using the unigram subtuples mea-
sure. The top 25 MWVs from each are reported
here, in Figures 2 and 3, respectively. The three-
word verbs are not quite as prolific as the two-word
verbs, of course, but they do continue well beyond
the 25 we give here.

A comparison of the two methods for ranking
trigrams shows that the unigram subtuples mea-
sure seems to perform much better than the all
subtuples measure, both in quantity of output (all

consist of
fend off
pale beside
ward off
accord to from “according to”
cobble together
shy away
revolve around
fritter away
dispose of
bog down
swallow whole
accuse of
beef up
spun off reported distinct from “spin
latch onto off” due to faulty stemmer
bail out
yield less
single out
scale back
lag behind
squirrel away
perch atop
stave off
shore up

Figure 1: Top 25 2-word verbs



Ranks Phrasal? Transitive? Opaque? Good collocation?
1–25 45%/5% 64% 43% 2.85
1–100 36%/7% 66% 37% 2.48
1001–1100 24%/4% 72% 21% 2.10

Table 2: Evaluation of trigram output: all subtuples

Ranks Phrasal? Transitive? Opaque? Good collocation?
1–25 73%/5% 57% 59% 3.73
1–100 68%/3% 61% 63% 3.77
1001–1100 31%/4% 63% 41% 2.67
2001–2100 29%/1% 59% 35% 2.48

Table 3: Evaluation of trigram output: unigram subtuples

subtuples yielded only about 1400 words, while
unigram subtuples produced many thousands of
collocations before the significance threshold was
reached) and in quality of output (discussed be-
low). The reason for this becomes apparent after a
moment’s thought: if we are looking for verbs that
usually occur with the same two particles, then
each head verb is by itself going to strongly predict
those other two members of the collocation; this
is exactly what the all subtuples measure takes to
indicate unimportance in a trigram, whereas the
unigram subtuples measure disregards the bigram
predictivity when calculating the trigram predic-
tivity. Any MWV that remains on the all subtu-
ples list necessarily has a head verb that occurs

leave over from
rang in from
make up of
accuse by of
face up to
trade among for
miss out on
think of as
sign off on
receive by at
follow through on
bar by from
ask on to
hold on to
reach out to
sit across from
said because in
end with to
include from from
total off from
urge on by
own up to
file for from
look forward to
help along by

Figure 2: Top 25 3-word verbs, all subtuples

with a variety of different particle frames, diluting
our mental image of that MWV as a MWV.

4 Evaluation

We evaluated our results according to the judge-
ments of native speakers of English regarding the
relatedness of each n-gram. To get a sense of how
the quality of the output degrades, we looked not
just at the top hundred, but also at the groups
of a hundred that started after one thousand and
two thousand tuples. To minimise the bias of the
judges, we combined all the n-grams they were to
evaluate into a single file, randomised its order,
and then parcelled out sections for each to con-
sider.

bail out of
spill over into
line up behind
shy away from
spin off into
spun off into duplicate due to faulty stemmer
push ahead with
parcel out among
divvy up among
bog down amid
single out as
consist of of
bog down over
sprung up around
clamp down on
single out for
bog down in
branch out into
fend off by
redeem at plus
crack down on
bog down by
spin off to
square off against
team up with

Figure 3: Top 25 3-word verbs, unigram subtuples



Phrasality Transitivity Opacity Goodness of collocation
2-word verbs 87% 73% 78% 30%; 1.35 avg diff
3-word verbs 80%/90% 70% 72% 32%; 1.08 avg diff

Table 4: Interannotator agreement

We asked our evaluators to judge each item on
four criteria The first three are (relatively) objec-
tive, and used primarily to indicate just what sort
of collocation our algorithm recovers, reported in
percentages of the data group falling in a given
category. The fourth criterion is largely subjec-
tive, to be used as our reportable success rate,
reported as an average of all “goodness” ratings
in the evaluation group. The four criteria are as
follows:

Phrasality. This is the phrasal/prepositional
distinction found in (Quirk et al., 1985): is
the particle an adverb (phrasal) or a prepo-
sition? In 3-word verbs, the two particles are
judged separately.

Transitivity. A multi-word verb is transitive if it
has a direct object (also as defined in (Quirk
et al., 1985); we do not include prepositional
objects in this count).

Opacity. A tuple is considered “opaque” if its
meaning cannot be guessed from the mean-
ings of its parts.

Relatedness. A purely subjective judgement on
a scale from 1–5, on whether a collocation
really is strongly related or not. A main fo-
cus of the guidelines for this evaluation was
the substitutability of words in a given group-
ing. Strong collocations are those whose con-
stituent words only ever occur together, or
whose meaning would fundamentally change
if a synonym or related word were substituted
in. Medium collocations, when substituted
with other words, generally yield understand-
able expressions that are nevertheless slightly
odd (of which the canonical example is the
collocation “strong tea” and the understand-
able but slightly odd “powerful tea”). Un-
related, non-collocation n-grams, in contrast,
are both transparent and fully substitutable
with synonyms and related words.

Annotators were allowed to skip a tuple if they
did not understand it.

Results of the evaluations are given in Tables 1,
2, and 3. The first row of each table gives the eval-
uation of the top 25—those printed in this paper—
for reference, as well as in blocks of a hundred each

at intervals of a thousand. As would be expected,
the quality of the output is lower after two thou-
sand candidates have been printed, but perhaps
surprisingly, it has not fallen off entirely. The
objective categories behave roughly as expected:
transitivity fluctuates and isn’t correlated with
anything else; worse collocations are less opaque;
and the worst MWVs (that are therefore more
compositional) are more often comprised of prepo-
sitions rather than adverbs.

Many of the tuples were evaluated by multiple
judges. If their judgements differed, they were av-
eraged together; Table 4 gives some statistics on
interannotator agreement. The agreement metric
is the percentage of all doubly-evaluated tuples on
which the judges agreed; for the relatedness judge-
ment, an exact-agreement percentage is given, but
the average difference between judgements is prob-
ably the more useful and interesting statistic.

It is probably worth noting at this point that the
evaluators were all college-educated native speak-
ers of English, but with varying degrees of lin-
guistic training. As such, their relatedness judge-
ments should be fairly trustworthy, but the objec-
tive MWV typology may be slightly suspect; each
was given a set of guidelines and explanations, but
the agreement statistic indicates that there was
considerable disagreement even over the objective
classifications.

5 Future Work

Although we have successfully collected a large
list of multi-word verbs, it has no particular or-
dering or subdivision. One possible extension to
this work would be to compute not just the words
themselves but also the specific type of MWV
they comprise—transitive or intransitive, phrasal
or prepositional. This is nontrivial, as interven-
ing noun phrases can be either direct objects or
adverbial modifiers (like “this evening”), and the
main test for phrasality is done by performing
a transformation on the sentence and using na-
tive speaker judgement as to whether the result is
meaningful.

Another area of work is in dealing more explic-
itly with passive constructions. In the current
work, much of the noise found in the lists comes
from verbs that primarily appear in the passive—



and thus with the preposition ‘by’. Simply putting
‘by’ onto a stoplist would solve the problem, but is
unsatisfactory as it rules out true MWVs involv-
ing ‘by’ (“One can identify the African swallow by
its weight-to-wingspan ratio.”) More importantly,
with actual information about use of the passive,
we can get useful information about transitivity.

A related problem is that of dative construc-
tions involving ‘to’, which also generate a sub-
stantial amount of noise in the list. The stoplist
solution is even worse here, as there are more le-
gitimate MWVs involving ‘to’; in addition, we al-
most certainly want to distinguish constructions
such as “give to”, which can undergo dative shift,
from “donate to”, which cannot.

Another extension we would like to make is to
use some of the additional information available in
the BLLIP corpus. In particular, the function tags
may be of some use in determining whether, for
instance, a given prepositional phrase is adjunct
or not.

An important continuation of the work would
be to extend it to include MWVs with other than
just particles. Examples include “take care of”,
“make mention of”, and “file suit”. Broadening
the scope further, there would seem to be no rea-
son why the techniques presented in this paper
couldn’t be applied to the collocation problem in
general, provided suitable input.

6 Conclusion

This work presents two major contributions. First
of all, it demonstrates that using parsed input can
serve to eliminate a great deal of work in finding
the exact target frames—rather than trying to es-
timate which particles belonged to which verbs, we
were able to simply read that information off the
tree. Narrowing the search space in this fashion
serves to make the searching/ranking algorithm—
any algorithm—more efficacious by eliminating
spurious entries from the very start. Second, it
provides a generalisation and application of the
confidence interval algorithm, which proved ex-
tremely useful in extracting multi-word verbs of
varying lengths, and which should also prove use-
ful in the more general collocation problem.
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