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Linear models for parse rescoring

• Charniak ℓ-best parser supplies parses C = (x1, . . . , xℓ) for each sentence

◮ We typically use around ℓ = 50 parses per sentence

• A feature f is a function that maps a parse x to real number f (x)

◮ f = (f1, . . . , fm) is vector of features
◮ f(x) = (f1(x), . . . , fm(x)) is a vector of feature values

• A feature weight vector is a real-valued vector w = (w1, . . . , wm) that
associates each feature fj with a weight wj

• The score sw(x) of a parse x is:

sw(x) = w · f(x) =

m∑

j=1

wj fj(x)

• The optimal parse x̂ ∈ C is the one with the highest score:

x̂ = argmax
x∈C

sw(x)

• Our goal: choose f and w to make x̂ as accurate a parse as possible
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What can features be?

• A feature can be any real-valued function of the parse

• By convention, f0(x) is the log probability of parse from Charniak’s parser

• Examples of useful features:

◮ The number of times the tree fragment (S (NP (DT) (NN)) (VP (VB)))

occurs in the parse tree
◮ The number of NPs in the parse tree beginning with a DT and ending with

an NNS and followed by a punctuation symbol ,
◮ The number of nodes on the right-most branch of the parse tree
◮ The number of VPs with less than 5 non-punctuation words between their

right edge and the end of the sentence

• We typically have m ≈ 1, 000, 000 features

• I don’t know how to identify the most useful features (if you can think of a
good way, let me know!)
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Supervised learning of feature weights

• All we know about the parses x are:

◮ their feature vectors f(x), and
◮ how accurate each parse x ∈ C is, so we can identify the best parse x⋆ ∈ C

• Choose feature weights w so that best parse x⋆ is optimal parse x̂

Best: x⋆
Rest: C \ {x⋆}

(0, 0, 0, 1, 2) (0, 1, 0, 0, 2) (1, 0, 0, 0, 2) (0, 0, 1, 0, 2)
(0, 0, 0, 0, 2) (0, 0, 0, 2, 0) (1, 0, 0, 0, 1)

· · · · · ·

• The weight vector w = (−2,−2,−2,−1, 0) correctly classifies this data

• Supervised learning problem: given features and the ℓ-best parses for n
sentences, find w such that x̂ = x⋆ as often as possible

• A variety of methods can be used to do this, including:

◮ MaxEnt, which maximizes likelihood of P(x⋆|C ) under a log-linear model
◮ Boosting, which maximizes an approximate margin between x⋆ and x̂
◮ Perceptron, which is a fast on-line learning algorithm
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Why are they Maximum Entropy models?

• Goal: learn a probability distribution P̂ as close as possible to distribution P
that generated training data D.

• But what does “as close as possible” mean?

◮ Require P̂ to have same distribution of features as D
◮ As size of data |D| → ∞, feature distribution in D will approach feature

distribution in P
◮ so distribution of features in P̂ will approach distribution of features in P

• But there are many P̂ that have same feature distributions as D. Which one
should we choose?

◮ The entropy measures the amount of information in a distribution
◮ Higher entropy ⇒ less information
◮ Choose the P̂ with maximum entropy that whose feature distributions

agree with D
⇒P̂ has the least extraneous information possible
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Maximum Entropy models

• A conditional Maximum Entropy model Pw consists of a vector of features f

and a vector of feature weights w.

• The probability Pw(x |C ) of an outcome x ∈ C is:

Pw(x |C ) =
1

Zw(C )
exp ( sw(x) )

=
1

Zw(C )
exp




m∑

j=1

wj fj(x)



 , where:

Zw(C ) =
∑

x′∈C

exp ( sw(x
′) )

• Zw(C ) is a normalization constant called the partition function
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Feature dependence ⇒ MaxEnt models

• Many probabilistic models assume that features are independently distributed
(e.g., Hidden Markov Models, Probabilistic Context-Free Grammars)

⇒ Estimating feature weights is simple (relative frequency)

• But features in most linguistic theories interact in complex ways

◮ Long-distance and local dependencies in syntax
◮ Many markedness and faithfulness constraints interact to determine a

single syllable’s shape

⇒ These features are not independently distributed

• MaxEnt models can handle these feature interactions

• Estimating feature weights of MaxEnt models is more complicated

◮ generally requires numerical optimization
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A rose by any other name . . .

• Like most other good ideas, Maximum Entropy models have been invented
many times . . .

◮ In statistical mechanics (physics) as the Gibbs and Boltzmann distributions
◮ In probability theory, as Maximum Entropy models, log-linear models,

Markov Random Fields and exponential families
◮ In statistics, as logistic regression
◮ In neural networks, as Boltzmann machines
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A brief history of MaxEnt models in Computational

Linguistics

• Logistic regression used in socio-linguistics to model “variable rules” (Sedergren
and Sankoff 1974)

• Hinton and Sejnowski (1986) and Smolensky (1986) introduce the Boltzmann
machine for neural networks

• Berger, Dell Pietra and Della Pietra (1996) propose Maximum Entropy Models
for language models with non-independent features

• Abney (1997) proposes MaxEnt models for probabilistic syntactic grammars
with non-independent features

• (Johnson, Geman, Canon, Chi and Riezler (1999) propose conditional
estimation of regularized MaxEnt models)
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Finding the MaxEnt model by maximizing likelihood

• Can prove that the MaxEnt model Pbw for features f and data
D = ((C1, x1), . . . , (Cn, xn)) is:

Pbw(x |C ) =
1

Zbw(C )
exp( sbw(x) ) =

1

Zbw(C )
exp

m∑

j=1

ŵj fj(x)

where ŵ maximizes the likelihood LD(w) of the data D

ŵ = argmax
w

LD(w) = argmax
w

n∏

i=1

Pw(xi |Ci )

I.e., choose ŵ to make the winners xi as likely as possible compared to losers
Ci \ {xi}
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Finding the feature weights ŵ

• Standard method: use a gradient-based numerical optimizer to minimize the
negative log likelihood − logLD(w)
(Limited memory variable metric optimizers seem to be best)

− logLD(w) =
n∑

i=1

− log Pw(xi |Ci )

=
n∑

i=1



log Zw(Ci ) −
m∑

j=1

wj fj (xi )





∂ − log LD(w)

∂wj

=
n∑

j=1

(Ew[fj |Ci ] − fj (xi )) , where:

Ew[fj |Ci ] =
∑

x′∈Ci

fj(x
′) Pw(x ′)

• I.e., find feature weights ŵ that make the model’s distribution of features over
Ci equal distribution of features in winners xi
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Finding the optimal feature weights ŵ

• Numerically optimizing likelihood involves calculating − log LD(w) and its
derivatives

• Need to calculate Zw(Ci ) and Ew[fj |Ci ], which are sums over Ci , the set of
candidates for example i

• If Ci can be infinite:

◮ depending on f and C , might be possible to explicitly calculate Zw(Ci ) and
Ew[fj |Ci ], or

◮ may be able to approximate Zw(Ci ) and Ew[fj |Ci ], especially if Pw(x |C ) is
concentrated on few x .

• Aside: using MaxEnt for unsupervised learning requires Zw and Ew[fj ], but
these are typically hard to compute

• If feature weights wj should be negative (e.g., OT constraint violations can only
“hurt” a candidate), then replace optimizer with a numerical
optimizer/constraint solver
(e.g., Tao package from Argonne labs)
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Why regularize?

• MaxEnt selects ŵ so that winners are as likely as possible

• Might not want to do this with noisy training data

• Pseudo-maximal or minimal features cause numerical problems

◮ A feature fj is pseudo-minimal iff for all i = 1, . . . , n and x ′ ∈ Ci ,
fj(xi ) ≤ f (x ′) (i.e., fj(xi ) is the minimum value fj has in Ci )

◮ If fj is pseudo-minimal, then ŵj = −∞

• Example: Features 1, 2 and 3 are pseudo-minimal below:

Winner xi Losers Ci \ {xi}
(0, 0, 0, 1, 2) (0, 1, 0, 0, 2) (1, 0, 0, 0, 2) (0, 0, 1, 0, 2)
(0, 0, 0, 0, 2) (0, 0, 0, 2, 0) (1, 0, 0, 0, 1)

· · · · · ·

so we can make (some of) the losers have arbitrarily low probability by setting
the corresponding feature weights as negative as possible
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Regularization, or “keep it simple”

• Slavishly optimizing likelihood leads to over-fitting or numerical problems

⇒ Regularize or smooth, i.e., try to find a “good” ŵ that is “not too complex”

• Minimize the penalized negative log likelihood

ŵ = argmin
w

− logLD(w) + α

m∑

j=1

|wj |
k

where α ≥ 0 is a parameter (often set by cross-validation on held-out training
data) controlling amount of regularization
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Aside: Regularizers as Bayesian priors

• Bayes inversion formula

P(w |D)︸ ︷︷ ︸
posterior

∝ P(D |w)︸ ︷︷ ︸
likelihood

P(w)︸ ︷︷ ︸
prior

or in terms of log probabilities:

− log P(w |D) = − log P(D |w)︸ ︷︷ ︸
– log likelihood

− log P(w)︸ ︷︷ ︸
– log prior

+ c

⇒ The regularized estimate ŵ is also the Bayesian maximum a posteriori (MAP)
estimate with prior

P(w) ∝ exp



−α

m∑

j=1

|wj |
k





• When k = 2 this is a Gaussian prior
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Understanding the effects of the priors

• The log penalty term for a Gaussian prior (k = 2) is α
∑

j w 2
j

so its derivative 2αwj → 0 as wj → 0

• Effect of Gaussian prior decreases as wj is small

⇒ Gaussian prior prefers all wj to be small but not necessarily zero

• The log penalty term for a 1-norm prior (k = 1) is α
∑

j |wj |
so its derivative αsign(wj) is α or −α unless wj = 0

• Effect of 1-norm prior is constant no matter how small wj is

⇒ 1-norm prior prefers most wj to be zero (sparse solutions)

• My personal view: If most features in your problem are irrelevant, prefer a
sparse feature vector.
But if most features are noisy and weakly correlated with the solution, prefer a
dense feature vector (averaging is the solution to noise).
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MaxEnt in syntactic parsing

• MaxEnt model used to pick correct parse from 50 parses produced by Charniak
parser

◮ Ci is set of 50 parses from Charniak parser, xi is best parse in Ci

◮ Charniak parser’s accuracy ≈ 0.898 (picking tree it likes best)
◮ Oracle accuracy is ≈ 0.968
◮ EM-like method for dealing with ties (training data Ci contains several

equally good “best parses” for a sentence i)

• MaxEnt model uses 1,219,273 features, encoding a wide variety of syntactic
information

◮ including the Charniak model’s log probability of the tree
◮ trained on parse trees for 36,000 sentences
◮ prior weight α set by cross-validation (don’t need to be accurate)

• Gaussian prior results in all feature weights non-zero

• L1 prior results in ≈ 25, 000 non-zero feature weights

• Accuracy with both Gaussian and L1 priors ≈ 0.916
(Andrew and Gao, ICML 2007)
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Stochastic gradient ascent

• MaxEnt: choose ŵ to maximize log likelihood

• If w 6= ŵ and δ is sufficiently small, then

log LD

(
w + δ

∂ log LD(w)

∂w

)
> log LD(w)

i.e., small steps in direction of derivative increase likelihood

∂ log LD(w)

∂ wj

=

n∑

j=1

(fj (xi ) − Ew[fj |Ci ]) , where:

Ew[fj |Ci ] =
∑

x′∈Ci

fj (x
′) Pw(x ′)

• Gradient ascent optimizes the log likelihood in this manner.
◮ It is usually not an efficient optimization method

• Stochastic gradient ascent updates immediately in direction of contribution of
training example i to derivative

◮ It is a simple and sometimes very efficient method
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Perceptron updates as a MaxEnt approx

• Perceptron learning rule: Let x⋆

i be the model’s current prediction of the
optimal candidate in Ci

x⋆

i = argmax
x′∈Ci

sw(x
′)

If x⋆

i 6= xi , where xi is the correct candidate in Ci , then increment the current
weights w with:

δ (f(xi ) − f(x⋆

i ))

• MaxEnt stochastic gradient ascent update:

δ
∂ log LD(w)

∂ w
= δ (f(xi ) − Ew[f |Ci ])

If Pw(x |Ci ) is peaked around x⋆

i , then Ew[f |Ci ] ≈ f(x⋆

i )

⇒ The Perceptron rule approximates the MaxEnt stochastic gradient ascent
update
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Regularization as weight decay

• When we approximate regularized MaxEnt as either Stochastic Gradient Ascent
or the Perceptron update, regularization corresponds to weight decay (a popular
smoothing method for neural networks)

• Contribution of Gaussian prior to log likelihood is −α
∑

j w 2
j

so derivative of regularizer is −2αwj

⇒ weights decay proportionally to their current value each iteration

• Contribution of 1-norm prior to log likelihood is −α
∑

j |wj |
so derivative of regularizer is −α sign(wj)

⇒ non-zero weights decay by a constant amount each iteration
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Overview of the parse rescorer

models/$FNN/
features

Input sentence

parseIt

ℓ-best parses
for input sentence

best-parses

best parse for
input sentence

Cross-validating
ℓ-best parser

ℓ-best parsed PTB

extract-features

train, dev, test

weight estimator
cvlm, gavper

Penn treebank

models/$FNN/

$ENN-weights

Training time Run time

features/$FNN/

27 / 37



Pruning useless features with two-pass feature extraction

• There are too many features to store every feature for every parse

• The job of a feature is to distinguish the best parse from the rest of the parses

⇒ Only keep features whose value on the best parse differs from their value on at
least one other parse in at least 5 sentences

◮ A feature is pseudo-constant iff its value is the same for all parses of each
sentence

⇒ Two passes over training data in feature extraction:

◮ first pass counts how often each feature distinguishes the best from the
rest, and only keeps useful features

◮ second pass prints out how often each useful feature appears in each parse
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Features are implemented by feature classes

• Groups of related features (e.g., all tree fragments up to a certain size) are
implemented by the same feature class

• A feature class is a C++ class that implements a group of features. It must:

◮ define the virtual function identifier, which returns a unique identifying
string for this feature class, e.g., TreeFrag

◮ define the type Feature, which are the features belonging to this feature
class

◮ define the function parse featurecount, which maps each parse to the
feature values for each feature in the feature class.

• Features can be any kind of object that:

◮ can be written to a single line with <<, and read back in with >>
◮ can be hashed with hash<Feature>()
◮ if you use (vectors of) the predefined symbols or trees, this is automatically

done for you by templates
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How feature classes communicate with the program

• The FeatureClassPtrs object is a vector of pointers to the feature classes
used by the feature extractor. Its constructor usually calls function that pushes
the feature classes to be used

inline void FeatureClassPtrs::features_connll() {

push_back(new NLogP());

push_back(new Rule());

push_back(new Rule(0, 1));

push_back(new Rule(0, 0, true));

push_back(new Rule(0, 0, false, true));

...

• The feature class is called with a parse and feature count map feat count

◮ A feature count map is a “smart” map object that (appears to) map
features to non-negative integers

• If a feature f has value v in the parse, then the feature class should set

feat count[f ] = v

Since the value of many features is the number of times the feature appears in
the parse tree, it can be easier to increment the feature ++feat count[f ]
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Types of feature classes

• A parse consists of a parse tree together with other information, e.g., Charniak
parser probability, etc.

• Features are functions from parses to real numbers, but most features count
how often specific configurations occur in the parse tree. The tree-walking code
needed to do this is already encapsulated in a NodeFeatureClass.

• Feature classes inheriting directly from FeatureClass (e.g., BinnedLogCondP)
define

template <typename FeatClass, typename Feat_Count> void

parse_featurecount(FeatClass& fc, const sp_parse_type& parse,

Feat_Count& feat_count)

• Feature classes inheriting from NodeFeatureClass (e.g., SubjVerbAgr) define

template <typename FeatClass, typename Feat_Count>

void node_featurecount(FeatClass& fc, const sptree* node,

Feat_Count& feat_count)
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Example feature class: SubjVerbAgr

• Goal: add a feature that will (roughly) capture subject-verb agreement
• Penn POS tags distinguish singular and plural nouns and verbs
• Idea: create a feature consisting of the subject NP’s head’s POS and the VP’s

head’s POS.
• Good (NP head POS, VP head POS) combinations will have positive weights,

bad combinations will have negative weights (we hope)
S

NP

NNP

Rolls-Royce

NNP

Inc.

VP

VBD

said

SBAR

S

NP

PRP

it

VP

VBZ

expects

S

NP

PRP$

its

NNP

U.S.

NNS

sales

VP

TO

to

VP

VB

remain

ADJP

JJ

steady

.

.
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SubjVerbAgr feature class

class SubjVerbAgr : public NodeFeatureClass {
public:

// Feature is vector of symbols

typedef std::vector<symbol> Feature;

template <typename FeatClass, typename Feat_Count>

void node_featurecount(FeatClass& fc, const sptree* node,

Feat_Count& feat_count);

virtual const char * identifier() const {
return "SubjVerbAgr";

}

// Macro defines functions that every feature class needs

SPFEATURES_COMMON_DEFINITIONS;

};
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SubjVerbAgr feature class feature counting

template <typename FeatClass, typename Feat_Count>

void SubjVerbAgr::node_featurecount(FeatClass& fc, const sptree* node,

Feat_Count& feat_count) {
if ((node->label.cat != S() && node->label.cat != SINV())

|| node->label.syntactic_lexhead == NULL)

return;

const sptree* subject = NULL; // subject is last NP before VP

for (const sptree* child = node->child; child != NULL;

child = child->next)

if (child->label.cat == NP())

subject = child;

else if (child->label.cat == VP())

break;

if (subject == NULL || subject->label.semantic_lexhead == NULL)

return;

Feature f;

f.push_back(subject->label.semantic_lexhead->label.cat);

f.push_back(node->label.syntactic_lexhead->label.cat);

++feat_count[f];

}
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The representation of trees

• A tree includes a label and a pointer to next and child trees

NP

NNS VBZ

cats bite

VP

S S

NP VP

NNS VBZ

cats bite

• The label is a template class argument to the tree node class

• A node’s label must include a category cat field, but it may include other
fields as well

• The labels of sptrees include pointers to syntactic and semantic lexical head
nodes, string positions of left and right edges of this node, etc.
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