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Linear models for parse rescoring

e Charniak ¢-best parser supplies parses C = (xq, ..., xg) for each sentence
» We typically use around ¢ = 50 parses per sentence

A feature f is a function that maps a parse x to real number f(x)

» f=(f,..., ) is vector of features
» f(x) = (A(x),..., fm(x)) is a vector of feature values
o A feature weight vector is a real-valued vector w = (wy, ..., wp) that

associates each feature f; with a weight w;

The score su(x) of a parse x is:

m

) = wef() = Y wif(x)

Jj=1

The optimal parse % € C is the one with the highest score:

X = argmaxsy(x)
xeC

Our goal: choose f and w to make X as accurate a parse as possible



What can features be?

o A feature can be any real-valued function of the parse
e By convention, fy(x) is the log probability of parse from Charniak’s parser
o Examples of useful features:
» The number of times the tree fragment (S (NP (DT) (NN)) (VP (VB)))
occurs in the parse tree
» The number of NPs in the parse tree beginning with a DT and ending with
an NNS and followed by a punctuation symbol ,
» The number of nodes on the right-most branch of the parse tree
» The number of VPs with less than 5 non-punctuation words between their
right edge and the end of the sentence

e We typically have m ~ 1,000, 000 features

e | don't know how to identify the most useful features (if you can think of a
good way, let me know!)



Supervised learning of feature weights

All we know about the parses x are:

» their feature vectors f(x), and
» how accurate each parse x € C is, so we can identify the best parse x* € C

Choose feature weights w so that best parse x* is optimal parse X
Best: x* | Rest: C\ {x*}
(0,0,0,1,2) | (0,1,0,0,2) (1,0,0,0,2) (0,0,1,0,2)
(0,0,0,0,2) | (0,0,0,2,0) (1,0,0,0,1)

The weight vector w = (=2, —2, —2, —1, 0) correctly classifies this data

Supervised learning problem: given features and the ¢-best parses for n
sentences, find w such that X = x* as often as possible

A variety of methods can be used to do this, including:
» MaxEnt, which maximizes likelihood of P(x*|C) under a log-linear model
» Boosting, which maximizes an approximate margin between x* and %
» Perceptron, which is a fast on-line learning algorithm



Outline

Maximum Entropy models



Why are they Maximum Entropy models?

e Goal: learn a probability distribution P as close as possible to distribution P
that generated training data D.
e But what does “as close as possible” mean?
» Require P to have same distribution of features as D
» As size of data |D| — oo, feature distribution in D will approach feature
distribution in P R
» so distribution of features in P will approach distribution of features in P

e But there are many P that have same feature distributions as D. Which one
should we choose?

» The entropy measures the amount of information in a distribution

» Higher entropy = less information

» Choose the P with maximum entropy that whose feature distributions
agree with D
=-P has the least extraneous information possible

~
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Maximum Entropy models

e A conditional Maximum Entropy model P,, consists of a vector of features f
and a vector of feature weights w.

e The probability Py(x|C) of an outcome x € C is:

PullC) = 5y oP(5d)
1

A

m

= exp w;fi(x) | , where:
7 (C) JZ JJ( )

Zu(C) = ) exp(sdx))

x'eC

e Z,(C) is a normalization constant called the partition function
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Feature dependence = MaxEnt models

e Many probabilistic models assume that features are independently distributed
(e.g., Hidden Markov Models, Probabilistic Context-Free Grammars)

= Estimating feature weights is simple (relative frequency)
e But features in most linguistic theories interact in complex ways

» Long-distance and local dependencies in syntax
» Many markedness and faithfulness constraints interact to determine a
single syllable’s shape

= These features are not independently distributed
e MaxEnt models can handle these feature interactions
e Estimating feature weights of MaxEnt models is more complicated
» generally requires numerical optimization



A rose by any other name . ..

e Like most other good ideas, Maximum Entropy models have been invented
many times ...
» In statistical mechanics (physics) as the Gibbs and Boltzmann distributions
» In probability theory, as Maximum Entropy models, log-linear models,
Markov Random Fields and exponential families
» In statistics, as logistic regression
» In neural networks, as Boltzmann machines
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A brief history of MaxEnt models in Computational
Linguistics

o Logistic regression used in socio-linguistics to model "variable rules” (Sedergren
and Sankoff 1974)

e Hinton and Sejnowski (1986) and Smolensky (1986) introduce the Boltzmann
machine for neural networks

o Berger, Dell Pietra and Della Pietra (1996) propose Maximum Entropy Models
for language models with non-independent features

e Abney (1997) proposes MaxEnt models for probabilistic syntactic grammars
with non-independent features

e (Johnson, Geman, Canon, Chi and Riezler (1999) propose conditional
estimation of regularized MaxEnt models)
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Learning Maximum Entropy models from data
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Finding the MaxEnt model by maximizing likelihood

e Can prove that the MaxEnt model Pg for features f and data
D=((C,x1),...,(Cn,xn)) is:

Palx| ) = g epl(sl)) = Frgy @Y ® ()

where w maximizes the likelihood Lp(w) of the data D

n
w = argmaxLp(w) = argmaxH Pw(xi | Gi)
w Wiz

l.e., choose w to make the winners x; as likely as possible compared to losers

G\ {x}
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Finding the feature weights w

e Standard method: use a gradient-based numerical optimizer to minimize the
negative log likelihood — log Lp(w)
(Limited memory variable metric optimizers seem to be best)

n

—logLp(w) = Z—|0ng(Xi|Ci)

i=1

_ Z |ogzw(c;)—va6-(Xf)
%VED(W) N jz_n;(Ew[Gle]—G(Xf))’Where:
EJ[fC] = D> f(x)Pu(x)

x'€C;

e l.e., find feature weights w that make the model’s distribution of features over
C; equal distribution of features in winners x;

14 /37



Finding the optimal feature weights w

o Numerically optimizing likelihood involves calculating — log Lp(w) and its
derivatives
o Need to calculate Z,(C;) and Ey[f;|C;], which are sums over C;, the set of
candidates for example i
e If C; can be infinite:
» depending on f and C, might be possible to explicitly calculate Z,(C;) and
Ew[f|C], or
» may be able to approximate Z,(C;) and Ey[f;|Cj], especially if Pw(x|C) is
concentrated on few x.
e Aside: using MaxEnt for unsupervised learning requires Z, and Ey[fj], but
these are typically hard to compute
o If feature weights w; should be negative (e.g., OT constraint violations can only
“hurt” a candidate), then replace optimizer with a numerical
optimizer/constraint solver
(e.g., TAO package from Argonne labs)
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Regularization and Bayesian priors
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Why regularize?

MaxEnt selects w so that winners are as likely as possible

Might not want to do this with noisy training data

Pseudo-maximal or minimal features cause numerical problems

» A feature f; is pseudo-minimal iff for all i =1,...,nand X’ € G,
fi(xi) < f(x’) (i.e., fi(xi) is the minimum value f; has in G)
» If fj is pseudo-minimal, then w; = —co

Example: Features 1, 2 and 3 are pseudo-minimal below:
Winner x; | Losers C; \ {x}
(0,0,0,1,2) | (0,1,0,0,2) (1,0,0,0,2) (0,0,1,0,2)
(0,0,0,0,2) | (0, 2,0) (1,0,0,0,1)

1
0,

)

,0
0

so we can make (some of) the losers have arbitrarily low probability by setting
the corresponding feature weights as negative as possible
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Regularization, or “keep it simple”

e Slavishly optimizing likelihood leads to over-fitting or numerical problems
= Regularize or smooth, i.e., try to find a “good” w that is “not too complex”
o Minimize the penalized negative log likelihood

W = argmln —logLp(w +()/Z|WJ|

where a > 0 is a parameter (often set by cross-validation on held-out training
data) controlling amount of regularization
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Aside: Regularizers as Bayesian priors

e Bayes inversion formula
P(w|D) « P(D|w) P(w)
N—— N——
posterior likelihood prior

or in terms of log probabilities:

—logP(w|D) = —logP(D|w) —logP(w) + ¢

— log likelihood  — log prior

= The regularized estimate w is also the Bayesian maximum a posteriori (MAP)
estimate with prior

m
P(w) o« exp —aZ|Wj|k
j=1

e When k = 2 this is a Gaussian prior
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Understanding the effects of the priors

e The log penalty term for a Gaussian prior (k =2)is a}_; WJ-2
so its derivative 2aw; — 0 as w; — 0

o Effect of Gaussian prior decreases as w; is small

= Gaussian prior prefers all w; to be small but not necessarily zero

o The log penalty term for a I-norm prior (k = 1) is )~ |w;]
so its derivative asign(w;) is o or —« unless w; = 0
o Effect of 1-norm prior is constant no matter how small w; is

= 1-norm prior prefers most w; to be zero (sparse solutions)

o My personal view: If most features in your problem are irrelevant, prefer a
sparse feature vector.
But if most features are noisy and weakly correlated with the solution, prefer a
dense feature vector (averaging is the solution to noise).



MaxEnt in syntactic parsing

MaxEnt model used to pick correct parse from 50 parses produced by Charniak
parser

G is set of 50 parses from Charniak parser, x; is best parse in C;

Charniak parser’s accuracy = 0.898 (picking tree it likes best)

Oracle accuracy is ~ 0.968

EM-like method for dealing with ties (training data C; contains several
equally good “best parses” for a sentence )

Yy vV VY

MaxEnt model uses 1,219,273 features, encoding a wide variety of syntactic
information

» including the Charniak model's log probability of the tree

» trained on parse trees for 36,000 sentences

» prior weight « set by cross-validation (don't need to be accurate)

e Gaussian prior results in all feature weights non-zero

L1 prior results in =~ 25,000 non-zero feature weights

e Accuracy with both Gaussian and L1 priors =~ 0.916
(Andrew and Gao, ICML 2007)
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Relationship to stochastic gradient ascent and Perceptron
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Stochastic gradient ascent

e MaxEnt: choose w to maximize log likelihood
o If w# w and ¢ is sufficiently small, then

Olog Lp(w)

log Lp (w +0 W

> > log Lp(w)

i.e., small steps in direction of derivative increase likelihood

n

0 logLp(w
Pleglole) (el ), whee
Eu[f|C] = Z £ (x") Pw(x")

x'€C;

e Gradient ascent optimizes the log likelihood in this manner.
» It is usually not an efficient optimization method
e Stochastic gradient ascent updates immediately in direction of contribution of
training example i to derivative
» It is a simple and sometimes very efficient method
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Perceptron updates as a MaxEnt approx

e Perceptron learning rule: Let x be the model’s current prediction of the
optimal candidate in C;

x; = argmax sWx’)

x'eC

If x* # x;, where x; is the correct candidate in C;, then increment the current

weights w with:
§ (F(xi) — £(x7))
e MaxEnt stochastic gradient ascent update:
0 log Lp(w)
5 2o D\")
ow
If Pw(x | C;) is peaked around x*, then Ey[f | G;] = f(x*)

= The Perceptron rule approximates the MaxEnt stochastic gradient ascent
update

= 6 (f(x) — Eu[f| G])
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Regularization as weight decay

e When we approximate regularized MaxEnt as either Stochastic Gradient Ascent
or the Perceptron update, regularization corresponds to weight decay (a popular
smoothing method for neural networks)

o Contribution of Gaussian prior to log likelihood is —a 3, WJ-2
so derivative of regularizer is —2aw;

= weights decay proportionally to their current value each iteration

e Contribution of I-norm prior to log likelihood is —a ) ||
so derivative of regularizer is —a sign(w;)

= non-zero weights decay by a constant amount each iteration
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Implementation of parse rescorer
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Overview of the parse rescorer
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Pruning useless features with two-pass feature extraction

e There are too many features to store every feature for every parse
e The job of a feature is to distinguish the best parse from the rest of the parses

= Only keep features whose value on the best parse differs from their value on at
least one other parse in at least 5 sentences
» A feature is pseudo-constant iff its value is the same for all parses of each
sentence
= Two passes over training data in feature extraction:

» first pass counts how often each feature distinguishes the best from the
rest, and only keeps useful features

» second pass prints out how often each useful feature appears in each parse



Features are implemented by feature classes

e Groups of related features (e.g., all tree fragments up to a certain size) are
implemented by the same feature class

o A feature class is a C++ class that implements a group of features. It must:

» define the virtual function identifier, which returns a unique identifying
string for this feature class, e.g., TreeFrag

» define the type Feature, which are the features belonging to this feature
class

» define the function parse_featurecount, which maps each parse to the
feature values for each feature in the feature class.

e Features can be any kind of object that:

» can be written to a single line with <<, and read back in with >>

» can be hashed with hash<Feature>()

» if you use (vectors of) the predefined symbols or trees, this is automatically
done for you by templates



How feature classes communicate with the program

e The FeatureClassPtrs object is a vector of pointers to the feature classes
used by the feature extractor. Its constructor usually calls function that pushes
the feature classes to be used
inline void FeatureClassPtrs::features_connll() {

push_back(new NLogP());

push_back(new Rule());

push_back(new Rule(0, 1));
push_back(new Rule(0, 0, true));
push_back(new Rule(0, 0, false, true));

e The feature class is called with a parse and feature count map feat_count

» A feature count map is a “smart” map object that (appears to) map
features to non-negative integers

e If a feature f has value v in the parse, then the feature class should set
feat_count[f] = v

Since the value of many features is the number of times the feature appears in
the parse tree, it can be easier to increment the feature ++feat_count|[f]
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Types of feature classes

e A parse consists of a parse tree together with other information, e.g., Charniak
parser probability, etc.

e Features are functions from parses to real numbers, but most features count
how often specific configurations occur in the parse tree. The tree-walking code
needed to do this is already encapsulated in a NodeFeatureClass.

e Feature classes inheriting directly from FeatureClass (e.g., BinnedLogCondP)
define
template <typename FeatClass, typename Feat_Count> void
parse_featurecount (FeatClass& fc, const sp_parse_type& parse,

Feat_Count& feat_count)

e Feature classes inheriting from NodeFeatureClass (e.g., SubjVerbAgr) define

template <typename FeatClass, typename Feat_Count>

void node_featurecount(FeatClass& fc, const sptreex node,
Feat_Count& feat_count)

31/37



Outline

Example of a feature class
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Example feature class: SubjVerbAgr

e Goal: add a feature that will (roughly) capture subject-verb agreement

e Penn POS tags distinguish singular and plural nouns and verbs

o |dea: create a feature consisting of the subject NP’s head’'s POS and the VP's
head's POS.

e Good (NP head POS, VP head POS) combinations will have positive weights,
bad combinations will have negative weights (we hope)

s
N
NP VP .

NNP NNP VBD SBAR .

Rolls-Royce Inc. said S

N‘P VP
/\
PI‘?P V‘BZ S
/\
it expects NP VP
T~

PRP$ NNP NNS TO VP
it‘s U.‘S. Sal‘es t‘o VB ADJP
renLain J‘J

ey
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SubjVerbAgr feature class

class SubjVerbAgr : public NodeFeatureClass {
public:

// Feature is vector of symbols
typedef std::vector<symbol> Feature;

template <typename FeatClass, typename Feat_Count>
void node_featurecount (FeatClass& fc, const sptree* node,
Feat_Count& feat_count);

virtual const char * identifier() comst {
return "SubjVerbAgr";

}

// Macro defines functions that every feature class needs
SPFEATURES_COMMON_DEFINITIONS;
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SubjVerbAgr feature class feature counting

template <typename FeatClass, typename Feat_Count>
void SubjVerbAgr::node_featurecount(FeatClass& fc, const sptree* node,
Feat_Count& feat_count) {
if ((node->label.cat != S() &% node->label.cat != SINV())
|| node->label.syntactic_lexhead == NULL)
return;
const sptree* subject = NULL;
for (const sptree* child = node->child; child != NULL;
child = child->next)
if (child->label.cat == NP())
subject = child;
else if (child->label.cat == VP())
break;
if (subject == NULL || subject->label.semantic_lexhead == NULL)
return;
Feature f;
f.push_back(subject->label.semantic_lexhead->label.cat);
f.push_back(node->label.syntactic_lexhead->label.cat);
++feat_count [f];
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The representation of trees

o A tree includes a 1abel and a pointer to next and child trees

S S
/\
NP VP
| | v
cats bite
A4 A4
NNS VBZ
A4 A4
cats bite

e The label is a template class argument to the tree node class

e A node's label must include a category cat field, but it may include other
fields as well

e The labels of sptrees include pointers to syntactic and semantic lexical head
nodes, string positions of left and right edges of this node, etc.
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