Parse rescoring

Mark Johnson
Brown University

November 2007

Outline

Linear models

Maximum Entropy models

Learning Maximum Entropy models from data
Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron
Implementation of parse rescorer

Example of a feature class

Trees and sptrees

2/37

Linear models for parse rescoring

e Charniak ¢-best parser supplies parses C = (xq, ..., xg) for each sentence
» We typically use around ¢ = 50 parses per sentence

A feature f is a function that maps a parse x to real number f(x)

» f=(f,...,) is vector of features
» f(x) = (A(x),..., fm(x)) is a vector of feature values
o A feature weight vector is a real-valued vector w = (wy, ..., wp) that

associates each feature f; with a weight w;

The score su(x) of a parse x is:

m

) = wef() = Y wif(x)

Jj=1

The optimal parse % € C is the one with the highest score:

X = argmaxsy(x)
xeC

Our goal: choose f and w to make X as accurate a parse as possible

What can features be?

o A feature can be any real-valued function of the parse
e By convention, fy(x) is the log probability of parse from Charniak’s parser
o Examples of useful features:
» The number of times the tree fragment (S (NP (DT) (NN)) (VP (VB)))
occurs in the parse tree
» The number of NPs in the parse tree beginning with a DT and ending with
an NNS and followed by a punctuation symbol ,
» The number of nodes on the right-most branch of the parse tree
» The number of VPs with less than 5 non-punctuation words between their
right edge and the end of the sentence

e We typically have m ~ 1,000, 000 features

e | don't know how to identify the most useful features (if you can think of a
good way, let me know!)

Supervised learning of feature weights

All we know about the parses x are:

» their feature vectors f(x), and
» how accurate each parse x € C is, so we can identify the best parse x* € C

Choose feature weights w so that best parse x* is optimal parse X
Best: x* | Rest: C\ {x*}
(0,0,0,1,2) | (0,1,0,0,2) (1,0,0,0,2) (0,0,1,0,2)
(0,0,0,0,2) | (0,0,0,2,0) (1,0,0,0,1)

The weight vector w = (=2, —2, —2, —1, 0) correctly classifies this data

Supervised learning problem: given features and the ¢-best parses for n
sentences, find w such that X = x* as often as possible

A variety of methods can be used to do this, including:
» MaxEnt, which maximizes likelihood of P(x*|C) under a log-linear model
» Boosting, which maximizes an approximate margin between x* and %
» Perceptron, which is a fast on-line learning algorithm

Outline

Maximum Entropy models

Why are they Maximum Entropy models?

e Goal: learn a probability distribution P as close as possible to distribution P
that generated training data D.
e But what does “as close as possible” mean?
» Require P to have same distribution of features as D
» As size of data |D| — oo, feature distribution in D will approach feature
distribution in P R
» so distribution of features in P will approach distribution of features in P

e But there are many P that have same feature distributions as D. Which one
should we choose?

» The entropy measures the amount of information in a distribution

» Higher entropy = less information

» Choose the P with maximum entropy that whose feature distributions
agree with D
=-P has the least extraneous information possible

~

3

Maximum Entropy models

e A conditional Maximum Entropy model P,, consists of a vector of features f
and a vector of feature weights w.

e The probability Py(x|C) of an outcome x € C is:

PullC) = 5y oP(5d)
1

A

m

= exp w;fi(x) | , where:
7 (C) JZ JJ()

Zu(C) =) exp(sdx))

x'eC

e Z,(C) is a normalization constant called the partition function

8/37

Feature dependence = MaxEnt models

e Many probabilistic models assume that features are independently distributed
(e.g., Hidden Markov Models, Probabilistic Context-Free Grammars)

= Estimating feature weights is simple (relative frequency)
e But features in most linguistic theories interact in complex ways

» Long-distance and local dependencies in syntax
» Many markedness and faithfulness constraints interact to determine a
single syllable’s shape

= These features are not independently distributed
e MaxEnt models can handle these feature interactions
e Estimating feature weights of MaxEnt models is more complicated
» generally requires numerical optimization

A rose by any other name . ..

e Like most other good ideas, Maximum Entropy models have been invented
many times ...
» In statistical mechanics (physics) as the Gibbs and Boltzmann distributions
» In probability theory, as Maximum Entropy models, log-linear models,
Markov Random Fields and exponential families
» In statistics, as logistic regression
» In neural networks, as Boltzmann machines

10 /37

A brief history of MaxEnt models in Computational
Linguistics

o Logistic regression used in socio-linguistics to model "variable rules” (Sedergren
and Sankoff 1974)

e Hinton and Sejnowski (1986) and Smolensky (1986) introduce the Boltzmann
machine for neural networks

o Berger, Dell Pietra and Della Pietra (1996) propose Maximum Entropy Models
for language models with non-independent features

e Abney (1997) proposes MaxEnt models for probabilistic syntactic grammars
with non-independent features

e (Johnson, Geman, Canon, Chi and Riezler (1999) propose conditional
estimation of regularized MaxEnt models)

11/37

Outline

Learning Maximum Entropy models from data

12/37

Finding the MaxEnt model by maximizing likelihood

e Can prove that the MaxEnt model Pg for features f and data
D=((C,x1),...,(Cn,xn)) is:

Palx|) = g epl(sl)) = Frgy @Y ® ()

where w maximizes the likelihood Lp(w) of the data D

n
w = argmaxLp(w) = argmaxH Pw(xi | Gi)
w Wiz

l.e., choose w to make the winners x; as likely as possible compared to losers

G\ {x}

13 /37

Finding the feature weights w

e Standard method: use a gradient-based numerical optimizer to minimize the
negative log likelihood — log Lp(w)
(Limited memory variable metric optimizers seem to be best)

n

—logLp(w) = Z—|0ng(Xi|Ci)

i=1

_ Z |ogzw(c;)—va6-(Xf)
%VED(W) N jz_n;(Ew[Gle]—G(Xf))’Where:
EJ[fC] = D> f(x)Pu(x)

x'€C;

e l.e., find feature weights w that make the model’s distribution of features over
C; equal distribution of features in winners x;

14 /37

Finding the optimal feature weights w

o Numerically optimizing likelihood involves calculating — log Lp(w) and its
derivatives
o Need to calculate Z,(C;) and Ey[f;|C;], which are sums over C;, the set of
candidates for example i
e If C; can be infinite:
» depending on f and C, might be possible to explicitly calculate Z,(C;) and
Ew[f|C], or
» may be able to approximate Z,(C;) and Ey[f;|Cj], especially if Pw(x|C) is
concentrated on few x.
e Aside: using MaxEnt for unsupervised learning requires Z, and Ey[fj], but
these are typically hard to compute
o If feature weights w; should be negative (e.g., OT constraint violations can only
“hurt” a candidate), then replace optimizer with a numerical
optimizer/constraint solver
(e.g., TAO package from Argonne labs)

15 /37

Outline

Regularization and Bayesian priors

16 /37

Why regularize?

MaxEnt selects w so that winners are as likely as possible

Might not want to do this with noisy training data

Pseudo-maximal or minimal features cause numerical problems

» A feature f; is pseudo-minimal iff for all i =1,...,nand X’ € G,
fi(xi) < f(x’) (i.e., fi(xi) is the minimum value f; has in G)
» If fj is pseudo-minimal, then w; = —co

Example: Features 1, 2 and 3 are pseudo-minimal below:
Winner x; | Losers C; \ {x}
(0,0,0,1,2) | (0,1,0,0,2) (1,0,0,0,2) (0,0,1,0,2)
(0,0,0,0,2) | (0, 2,0) (1,0,0,0,1)

1
0,

)

,0
0

so we can make (some of) the losers have arbitrarily low probability by setting
the corresponding feature weights as negative as possible

17 /37

Regularization, or “keep it simple”

e Slavishly optimizing likelihood leads to over-fitting or numerical problems
= Regularize or smooth, i.e., try to find a “good” w that is “not too complex”
o Minimize the penalized negative log likelihood

W = argmln —logLp(w +()/Z|WJ|

where a > 0 is a parameter (often set by cross-validation on held-out training
data) controlling amount of regularization

18 /37

Aside: Regularizers as Bayesian priors

e Bayes inversion formula
P(w|D) « P(D|w) P(w)
N—— N——
posterior likelihood prior

or in terms of log probabilities:

—logP(w|D) = —logP(D|w) —logP(w) + ¢

— log likelihood — log prior

= The regularized estimate w is also the Bayesian maximum a posteriori (MAP)
estimate with prior

m
P(w) o« exp —aZ|Wj|k
j=1

e When k = 2 this is a Gaussian prior

19/37

Understanding the effects of the priors

e The log penalty term for a Gaussian prior (k =2)is a}_; WJ-2
so its derivative 2aw; — 0 as w; — 0

o Effect of Gaussian prior decreases as w; is small

= Gaussian prior prefers all w; to be small but not necessarily zero

o The log penalty term for a I-norm prior (k = 1) is)~ |w;]
so its derivative asign(w;) is o or —« unless w; = 0
o Effect of 1-norm prior is constant no matter how small w; is

= 1-norm prior prefers most w; to be zero (sparse solutions)

o My personal view: If most features in your problem are irrelevant, prefer a
sparse feature vector.
But if most features are noisy and weakly correlated with the solution, prefer a
dense feature vector (averaging is the solution to noise).

MaxEnt in syntactic parsing

MaxEnt model used to pick correct parse from 50 parses produced by Charniak
parser

G is set of 50 parses from Charniak parser, x; is best parse in C;

Charniak parser’s accuracy = 0.898 (picking tree it likes best)

Oracle accuracy is ~ 0.968

EM-like method for dealing with ties (training data C; contains several
equally good “best parses” for a sentence)

Yy vV VY

MaxEnt model uses 1,219,273 features, encoding a wide variety of syntactic
information

» including the Charniak model's log probability of the tree

» trained on parse trees for 36,000 sentences

» prior weight « set by cross-validation (don't need to be accurate)

e Gaussian prior results in all feature weights non-zero

L1 prior results in =~ 25,000 non-zero feature weights

e Accuracy with both Gaussian and L1 priors =~ 0.916
(Andrew and Gao, ICML 2007)

21/37

Outline

Relationship to stochastic gradient ascent and Perceptron

22/37

Stochastic gradient ascent

e MaxEnt: choose w to maximize log likelihood
o If w# w and ¢ is sufficiently small, then

Olog Lp(w)

log Lp (w +0 W

> > log Lp(w)

i.e., small steps in direction of derivative increase likelihood

n

0 logLp(w
Pleglole) (el), whee
Eu[f|C] = Z £ (x") Pw(x")

x'€C;

e Gradient ascent optimizes the log likelihood in this manner.
» It is usually not an efficient optimization method
e Stochastic gradient ascent updates immediately in direction of contribution of
training example i to derivative
» It is a simple and sometimes very efficient method

23 /37

Perceptron updates as a MaxEnt approx

e Perceptron learning rule: Let x be the model’s current prediction of the
optimal candidate in C;

x; = argmax sWx’)

x'eC

If x* # x;, where x; is the correct candidate in C;, then increment the current

weights w with:
§ (F(xi) — £(x7))
e MaxEnt stochastic gradient ascent update:
0 log Lp(w)
5 2o D\")
ow
If Pw(x | C;) is peaked around x*, then Ey[f | G;] = f(x*)

= The Perceptron rule approximates the MaxEnt stochastic gradient ascent
update

= 6 (f(x) — Eu[f| G])

24 /37

Regularization as weight decay

e When we approximate regularized MaxEnt as either Stochastic Gradient Ascent
or the Perceptron update, regularization corresponds to weight decay (a popular
smoothing method for neural networks)

o Contribution of Gaussian prior to log likelihood is —a 3, WJ-2
so derivative of regularizer is —2aw;

= weights decay proportionally to their current value each iteration

e Contribution of I-norm prior to log likelihood is —a) ||
so derivative of regularizer is —a sign(w;)

= non-zero weights decay by a constant amount each iteration

Outline

Implementation of parse rescorer

26 /37

Overview of the parse rescorer

[Penn treebank]

:

Cross-validating
(-best parser

|

[{-best parsed PTB]

'

models/$FNN/

‘ extract-features
features

|

train, dev, test

'

weight estimator
cvlm, gavper

[features/$FNN/ }

models/$FNN/
$ENN-weights

—

%

Training time

-

[Input sentence j

‘ parselt ‘

{-best parses
for input sentence

best-parses ‘

I

best parse for
input sentence

Run time

~
N

N

Pruning useless features with two-pass feature extraction

e There are too many features to store every feature for every parse
e The job of a feature is to distinguish the best parse from the rest of the parses

= Only keep features whose value on the best parse differs from their value on at
least one other parse in at least 5 sentences
» A feature is pseudo-constant iff its value is the same for all parses of each
sentence
= Two passes over training data in feature extraction:

» first pass counts how often each feature distinguishes the best from the
rest, and only keeps useful features

» second pass prints out how often each useful feature appears in each parse

Features are implemented by feature classes

e Groups of related features (e.g., all tree fragments up to a certain size) are
implemented by the same feature class

o A feature class is a C++ class that implements a group of features. It must:

» define the virtual function identifier, which returns a unique identifying
string for this feature class, e.g., TreeFrag

» define the type Feature, which are the features belonging to this feature
class

» define the function parse_featurecount, which maps each parse to the
feature values for each feature in the feature class.

e Features can be any kind of object that:

» can be written to a single line with <<, and read back in with >>

» can be hashed with hash<Feature>()

» if you use (vectors of) the predefined symbols or trees, this is automatically
done for you by templates

How feature classes communicate with the program

e The FeatureClassPtrs object is a vector of pointers to the feature classes
used by the feature extractor. Its constructor usually calls function that pushes
the feature classes to be used
inline void FeatureClassPtrs::features_connll() {

push_back(new NLogP());

push_back(new Rule());

push_back(new Rule(0, 1));
push_back(new Rule(0, 0, true));
push_back(new Rule(0, 0, false, true));

e The feature class is called with a parse and feature count map feat_count

» A feature count map is a “smart” map object that (appears to) map
features to non-negative integers

e If a feature f has value v in the parse, then the feature class should set
feat_count[f] = v

Since the value of many features is the number of times the feature appears in
the parse tree, it can be easier to increment the feature ++feat_count|[f]

30/37

Types of feature classes

e A parse consists of a parse tree together with other information, e.g., Charniak
parser probability, etc.

e Features are functions from parses to real numbers, but most features count
how often specific configurations occur in the parse tree. The tree-walking code
needed to do this is already encapsulated in a NodeFeatureClass.

e Feature classes inheriting directly from FeatureClass (e.g., BinnedLogCondP)
define
template <typename FeatClass, typename Feat_Count> void
parse_featurecount (FeatClass& fc, const sp_parse_type& parse,

Feat_Count& feat_count)

e Feature classes inheriting from NodeFeatureClass (e.g., SubjVerbAgr) define

template <typename FeatClass, typename Feat_Count>

void node_featurecount(FeatClass& fc, const sptreex node,
Feat_Count& feat_count)

31/37

Outline

Example of a feature class

32/37

Example feature class: SubjVerbAgr

e Goal: add a feature that will (roughly) capture subject-verb agreement

e Penn POS tags distinguish singular and plural nouns and verbs

o |dea: create a feature consisting of the subject NP’s head’'s POS and the VP's
head's POS.

e Good (NP head POS, VP head POS) combinations will have positive weights,
bad combinations will have negative weights (we hope)

s
N
NP VP .

NNP NNP VBD SBAR .

Rolls-Royce Inc. said S

N‘P VP
/\
PI‘?P V‘BZ S
/\
it expects NP VP
T~

PRP$ NNP NNS TO VP
it‘s U.‘S. Sal‘es t‘o VB ADJP
renLain J‘J

ey

33/37

SubjVerbAgr feature class

class SubjVerbAgr : public NodeFeatureClass {
public:

// Feature is vector of symbols
typedef std::vector<symbol> Feature;

template <typename FeatClass, typename Feat_Count>
void node_featurecount (FeatClass& fc, const sptree* node,
Feat_Count& feat_count);

virtual const char * identifier() comst {
return "SubjVerbAgr";

}

// Macro defines functions that every feature class needs
SPFEATURES_COMMON_DEFINITIONS;

34 /37

SubjVerbAgr feature class feature counting

template <typename FeatClass, typename Feat_Count>
void SubjVerbAgr::node_featurecount(FeatClass& fc, const sptree* node,
Feat_Count& feat_count) {
if ((node->label.cat != S() &% node->label.cat != SINV())
|| node->label.syntactic_lexhead == NULL)
return;
const sptree* subject = NULL;
for (const sptree* child = node->child; child != NULL;
child = child->next)
if (child->label.cat == NP())
subject = child;
else if (child->label.cat == VP())
break;
if (subject == NULL || subject->label.semantic_lexhead == NULL)
return;
Feature f;
f.push_back(subject->label.semantic_lexhead->label.cat);
f.push_back(node->label.syntactic_lexhead->label.cat);
++feat_count [f];

Outline

Linear models

Maximum Entropy models

Learning Maximum Entropy models from data
Regularization and Bayesian priors

Relationship to stochastic gradient ascent and Perceptron
Implementation of parse rescorer

Example of a feature class

Trees and sptrees

36/37

The representation of trees

o A tree includes a 1abel and a pointer to next and child trees

S S
/\
NP VP
| | v
cats bite
A4 A4
NNS VBZ
A4 A4
cats bite

e The label is a template class argument to the tree node class

e A node's label must include a category cat field, but it may include other
fields as well

e The labels of sptrees include pointers to syntactic and semantic lexical head
nodes, string positions of left and right edges of this node, etc.

37/37

	Linear models
	Maximum Entropy models
	Learning Maximum Entropy models from data
	Regularization and Bayesian priors
	Relationship to stochastic gradient ascent and Perceptron
	Implementation of parse rescorer
	Example of a feature class
	Trees and sptrees

