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The Stability and Slow Dynamics of Localized Spot Patterns for the 3-D
Schnakenberg Reaction-Diffusion Model∗
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Abstract. On a bounded three-dimensional domain Ω, a hybrid asymptotic-numerical method is employed to
analyze the existence, linear stability, and slow dynamics of localized quasi-equilibrium multispot
patterns of the Schnakenberg activator-inhibitor model with bulk feed-rate A in the singularly per-
turbed limit of small diffusivity ε2 of the activator component. By approximating each spot as a
Coulomb singularity, a nonlinear system of equations is formulated for the strength of each spot. To
leading order in ε, two types of solutions are identified: symmetric patterns for which all strengths
are identical, and asymmetric patterns for which each strength takes on one of two distinct values.
The O(ε) correction to the strengths is found to depend on the spatial configuration of the spots
through a certain Neumann Green’s matrix G. When e = (1, . . . , 1)T is not an eigenvector of G, a
detailed numerical and (in the case of two spots) asymptotic characterization is performed for the
resulting imperfection-sensitive bifurcation structure. For symmetric multispot patterns, a leading-
order global threshold in terms of |Ω| and parameters of the Schnakenberg model is obtained, below
which a competition instability is triggered leading to the annihilation of one or more spots. A
corresponding refined threshold is established in terms of eigenvalues of G in the special case when
Ge = ke. Additionally, a local self-replication threshold for the strength of each spot is derived
numerically, above which a spot splits into two. By examining O(ε) corrections to spot strengths, a
prediction is made as to which spot will be next to split as A is slowly tuned. When the pattern is
stable to O(1) instabilities, it is shown that the locations of spots in a quasi-equilibrium configuration
evolve on a long O(ε−3) time-scale according to an ODE system characterized by a gradient flow
of a certain discrete energy H, the minima of which define stable equilibrium points of the ODE.
The theory also illustrates that new equilibrium points can be created when A = A(x) is spatially
variable, and that finite-time pinning away from minima of H can occur when A(x) is localized.
The theory for linear stability and slow dynamics when Ω is the unit ball are compared favorably to
numerical solutions of the Schnakenberg PDE.
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1. Introduction. Localized spatio-temporal patterns, consisting of a collection of spots,
have been observed in many diverse physical and chemical experiments (see the survey [19]).
Such localized far-from-equilibrium patterns (cf. [13]) can exhibit a wide variety of dynamical
phenomena including spot self-replication, spot annihilation, spot amplitude temporal oscil-
lations, and slow spot drift. From a mathematical viewpoint, a spot pattern for a reaction-
diffusion (RD) system in a multidimensional domain Ω is a spatial pattern where at least
one of the solution components is highly localized near certain discrete points in the domain
that can evolve dynamically in time. In two-dimensional (2-D) spatial domains there are now
many studies of the stability and dynamics of localized spot patterns for certain well-known
RD systems such as the Gierer–Meinhardt model (cf. [22]), the Gray–Scott model (cf. [24],
[23], [2]), the Schnakenberg model (cf. [12], [25], [26]), and the Brusselator model (cf. [14],
[18]). A more complete list of references on applications of, and results for, 2-D spot patterns,
and corresponding one-dimensional spike patterns, in the context of RD modeling is given in
the references of these cited papers.

The new focus of this paper is to provide the first systematic asymptotic study of the
stability and dynamics of spot patterns in an arbitrary bounded three-dimensional (3-D)
domain for a two-component singularly perturbed RD system. In this 3-D context, only the
limiting shadow problem, derived from the large inhibitor diffusivity limit, has been analyzed
previously (cf. [21], [9]). For concreteness, we will consider the Schnakenberg RD model,
introduced in [15], as a particular case of an activator-substrate system, formulated originally
as a simplified model of a trimolecular autocatalytic reaction with diffusion. The main value
of this prototypical RD model has been for studying various new aspects of pattern formation
in RD systems such as the effect of domain growth (cf. [1], [4]), the effect of time-delay in the
reaction-kinetics (cf. [7]), the existence and stability of spikes in one dimension (cf. [10], [20]),
self-replicating and slow-drifting spot phenomena in two dimensions [12], and, more recently,
rotational spot dynamics in [26].

In dimensionless form, the Schnakenberg RD model (cf. [15]) is

Vt = ε2∆V + b− V + UV2 , x ∈ Ω ; ∂nV = 0 , x ∈ ∂Ω ,(1.1a)

Ut = D∆U +A− UV2 , x ∈ Ω , ∂nU = 0 , x ∈ ∂Ω .(1.1b)

Here, V and U are concentrations of the activator and inhibitor components, respectively,
Ω ⊂ R3 is a bounded 3-D domain, b and A are constant bulk activator and inhibitor feed-
rates, D > 0, and 0 < ε ≪ 1. We will show that (1.1) has localized spot solutions in the
regime where D = O(ε−4). To ensure that the amplitude of a spot is O(1) as ε → 0, we
introduce the rescaling U = ε3u, V = ε−3v, and D = ε−4D. Discarding the negligible ε3b term
in (1.1a), we obtain the rescaled singularly perturbed Schnakenberg model

vt = ε2∆v − v + uv2 , x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ω ,(1.2a)

ε3ut =
D

ε
∆u+A− uv2

ε3
, x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω .(1.2b)

The goal of this paper is to develop a hybrid asymptotic-numerical approach to analyze
the existence, linear stability, and slow dynamics of quasi-equilibrium N -spot patterns for the
3-D RD model (1.2) in the limit ε→ 0. By using a formal asymptotic analysis, in section 2 an
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N -spot quasi-equilibrium pattern is constructed for (1.2) when A > 0 is constant by asymptot-
ically matching a local approximation of the solution near each spot to a global representation
of the solution defined in terms of the Neumann Green’s function of the Laplacian. The local
problem near each spot, referred to as the core problem, is a simple radially symmetric BVP
system that must be solved numerically. In the global, or outer, representation of the solu-
tion, each spot at a given instant in time is asymptotically approximated by a 3-D Coulomb
singularity for u of strength Sj at location xj ∈ Ω for j = 1, . . . , N . We show that to within
O(ε) terms, there are “symmetric” spot quasi-equilibria for which the source strengths Sj are
given by Sj = Sc + O(ε) for j = 1, . . . , N , where the common value Sc ≡ A|Ω|/(4πN

√
D)

is independent of the spatial configuration of the spots in the domain. The O(ε) correction
terms to the source strengths do, however, depend on the spot locations through a Neumann
Green’s matrix G. In contrast, for the 2-D quasi-equilibrium spot patterns constructed in
[12], [2], [14], and [18], it was found that the O(ε) deviation in a common value for the source
strengths is replaced by a much larger O(ν) correction, where ν ≡ −1/ log ε. As a result,
unless ε is extremely small, in a 2-D domain the source strengths for localized spot patterns
are rather strongly coupled and do depend significantly on the overall spatial configuration of
the spots.

In section 2.1 we show that, to leading order in ε, there are also branches of “asymmetric”
N -spot quasi-equilibria for which the source strengths have two distinctly different values. To
leading order in ε, these asymmetric quasi-equilibria all bifurcate from the symmetric solution
branch at a common bifurcation point S = Scf ≈ 4.52. Upon including the O(ε) terms, we
find that this common bifurcation point structure for the asymmetric quasi-equilibria persists
only for spot configurations {x1, . . . ,xN} for which e = (1, . . . , 1)T is an eigenvector of the
Neumann Green’s matrix G. In the unit ball such special spot configurations occur when
spots are located at vertices of a platonic solid concentric within the ball, when spots are
equally spaced along an equator concentric within the ball, and for many of the equilibrium
configurations of the ODE system for slow spot dynamics derived in section 4. When e is
not an eigenvector of G, we show that there is an intricate imperfection-sensitive bifurcation
structure of asymmetric quasi-equilibria for S near Scf . For the case where N = 2, we provide
a detailed analytical characterization of this imperfection-sensitive bifurcation behavior. We
remark that a similar imperfection-sensitivity behavior for 2-D quasi-equilibrium spot patterns
was first identified numerically in [18] for the Brusselator RD model, but no explicit asymptotic
analysis of this behavior was given. Imperfection-sensitivity behavior, and the specific role
of whether or not e is an eigenvector of a certain Green’s matrix, were not identified in the
earlier analyses of [22], [25], [24], [23], [12], [2], and [14] of 2-D spot patterns for other RD
models.

In section 3 we analyze the linear stability of N -spot symmetric quasi-equilibrium solu-
tions to two distinct types of O(1) time-scale instabilities. From a numerical study of a local
eigenvalue problem near each spot, associated with locally nonradial perturbations, in sec-
tion 3.2 we show that the dominant spot shape-deforming instability is a mode l = 2 spherical
harmonic, which we refer to as a peanut-splitting instability. This linear instability occurs
when a spot source strength increases above the threshold Σ2 ≈ 20.16. We then verify numer-
ically that this linear instability mechanism triggers a nonlinear spot self-replication event.
In addition, for N ≥ 2, a formal asymptotic analysis is used to derive an eigenvalue problem
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associated with locally radially symmetric perturbations near each spot. To leading order as
ε → 0 we show that this linear competition instability, which preserves the sum of the spot
amplitudes, is triggered through a zero-eigenvalue crossing when the common source strength
Sc decreases below the threshold Scf ≈ 4.52, the common bifurcation point of asymmetric
quasi-equilibria in the leading-order theory. This linear instability is found numerically to be
the trigger of spot annihilation events. In summary, since Sj = Sc+O(ε) for j = 1, . . . , N , our
leading-order asymptotic theory predicts that symmetric quasi-equilibrium N -spot patterns
for N ≥ 2 are linearly stable on an O(1) time-scale if and only if

(1.3) AN,min < A < AN,max, AN,min ≡ 56.798N
√
D/|Ω|, AN,max ≡ 253.33N

√
D/|Ω|.

A spot self-replication event is triggered when the feed A is increased above the threshold
AN,max, and a spot annihilation event due to overcrowding is triggered when A is decreased
below AN,min.

Our hybrid analytical-numerical theory for the existence and linear stability of quasi-
equilibrium patterns is validated for the unit ball with rather extensive full numerical simula-
tions of the 3-D PDE system (1.2) using the finite-element package FlexPDE6 [6]. For the unit
ball, the Neumann Green’s function is known analytically (cf. [3]), making the comparison
convenient. Because FlexPDE6 dynamically adapts the mesh according to the evolution of
the solution, it is particularly useful for computing localized solutions in three dimensions. In
our computations, FlexPDE6 used up to 40000 nodes with ε = 0.03.

Figure 1 illustrates the spot-splitting phenomenon. Here, the feed-rate A is ramped up very
slowly, resulting in successive spot-replication events. The first such event occurs at A ≈ 60,
in excellent agreement with the theoretical prediction A1,max = 60.48. More generally, the
asymptotic curve AN,max is in excellent agreement with the numerics for a wide range of A; see
Figure 1 (right). We invite the interested reader to see full movies of the numerical solution
here: M108121 01.mp4 [local/web 1.31MB], M108121 02.mp4 [local/web 1.25MB].

The overcrowding instability is illustrated in Figure 2, where the feed-rate A is ramped
down very slowly, and the spots are eliminated one by one due to the competition instability.
Again, good agreement between numerics and asymptotics is observed, as shown in Figure 2
(right), especially for small numbers of spots. For example, the theory predicts that two spots
become unstable as A is decreased below A2,min = 27.1, whereas full numerics show that one
of the two spots disappears at A ≈ 28. The corresponding full movies of the numerical solu-
tion may be found here: M108121 03.mp4 [local/web 2.60MB], M108121 04.mp4 [local/web
2.47MB].

For the special case where e is an eigenvector of the Neumann Green’s matrix G, in Main
Result 3.1 we establish a more refined asymptotic prediction for the competition instability
threshold that involves the smallest eigenvalue of G in the subspace orthogonal to e. In addi-
tion, in section 3.1 we formulate the linear stability problem for asymmetric quasi-equilibria
and give some partial results for their stability.

When the stability condition (1.3) on the source strengths holds, in section 4 we show that
the spot locations associated with an N -spot symmetric quasi-equilibrium evolve to a true
steady-state configuration over a long O(ε−3) time-scale. To leading order in ε, in (4.18) of
Main Result 4.2 we show that the slow spot dynamics satisfies an ODE system defined by a
gradient flow of a certain discrete energy H(x1, . . . ,xN ), which involves the Neumann Green’s

M108121_01.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M108121X/suppl_file/M108121_01.mp4
M108121_02.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M108121X/suppl_file/M108121_02.mp4
M108121_03.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M108121X/suppl_file/M108121_03.mp4
M108121_04.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M108121X/suppl_file/M108121_04.mp4
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Figure 1. Self-replication events for (1.2) in the unit ball when slowly increasing the feed-rate A. Parameter
values are ε = 0.03 and D = 1, while A is very slowly increased from 1 to 400 according to A = 1 + 0.0036t.
Left: snapshots of solution for several values of A as shown. Right: the number of spots as a function of A,
comparing the leading-order asymptotic theory given by AN,max in (1.3) versus full numerics. Full movies of
the numerical solution may be found here: M108121 01.mp4 [local/web 1.31MB], M108121 02.mp4 [local/web
1.25MB].

function and its regular part. Minima of this discrete energy are stable equilibrium points
of this limiting ODE spot dynamics, and we explicitly identify certain such equilibrium spot
configurations. A higher-order analysis, leading to the ODE dynamics (4.13) coupled to the
constraints (2.34), shows that the slow spot dynamics consists of a weakly coupled system of
differential algebraic equations (DAEs) in which the spot source strengths depend only weakly
on the spot locations as ε→ 0.

In comparison, in a 2-D setting the dynamical characterization of slow spot dynamics
consists of a DAE system that couples ODEs for the spot locations to a nonlinear algebraic
system for the spot source strengths defined in terms of a Green’s matrix, which depends on
the overall spot configuration (cf. [12], [2], [18]). This DAE system of slow spot dynamics in
two dimensions is rather strongly coupled, owing to the logarithmic gauge ν = O (−1/ log ε).
As a result of this strong coupling in two dimensions, spot self-replication events can be
triggered intrinsically during the slow dynamics of a collection of spots whenever a particular
spot source strength exceeds a critical value (cf. [12], [2], [14]). In contrast, in our 3-D
setting where the spots have an asymptotically common source strength, with an error of
only O(ε), such intrinsically triggered spot self-replication events do not typically occur for ε
small. Instead, in three dimensions an external parameter such as the feed-rate, or the domain
volume, needs to be increased dynamically in order to trigger spot self-replication events.

In section 4.1 we extend our asymptotic theory for constant A to the case of a spatially
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Figure 2. Coarsening when decreasing the feed-rate A. Parameter values are ε = 0.03 and D = 1, while A
is very slowly decreased from 400 to 1 according to A = 400 − 0.0036t. Left: snapshots of solution for several
values of A as shown. Right: the number of spots as a function of A, comparing leading-order asymptotic
theory given by AN,min in (1.3) versus full numerics. Full movies of the numerical solution may be found here:
M108121 03.mp4 [local/web 2.60MB], M108121 04.mp4 [local/web 2.47MB].

variable feed, where A = A(x) in (1.2b). For the linear stability theory, we find that the
leading-order result (1.3) still holds provided that we replace A in (1.3) with Ā, which denotes
the spatial average of A(x) over the domain. Moreover, to leading order in ε, the slow
spot dynamics is characterized in Main Result 4.3 in terms of the discrete energy H and an
additional nonlocal term involving A(x). In the unit ball, our ODEs characterizing slow spot
dynamics are verified with full numerical FlexPDE6 simulations of (1.2). For a few specific
choices of the variable feed-rate, we illustrate from our ODEs, and from full numerical PDE
simulations, the effect of spot pinning, whereby a spot trajectory can be pinned to a new
equilibrium state created by the nonuniform feed-rate. Finally, in section 5 we suggest a few
open problems that warrant further study.

2. N-spot quasi-equilibria. In this section, we use the method of matched asymptotic
expansions to construct an N -spot quasi-equilibrium solution to (1.2). In our analysis we
assume that the feed A > 0 in (1.2b) is constant. The case of the spatially variable feed
A(x) > 0 is considered in section 4.1. We construct a pattern for which the spot solution
is, to a first approximation, locally radially symmetric in an O(ε) region near the centers
x1, . . . ,xN of the spots, where we assume |xi − xj | = O(1) for i ̸= j. On an O(1) time-scale,
we construct a quasi-equilibrium solution where the spot locations are, for ε → 0, stationary
in time. In section 4, we will show that the spot dynamics is slow and occurs on the long
time-scale t = O(ε−3) ≫ 1.

M108121_03.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M108121X/suppl_file/M108121_03.mp4
M108121_04.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M108121X/suppl_file/M108121_04.mp4


300 J. C. TZOU, S. XIE, T. KOLOKOLNIKOV, AND M. J. WARD

In the inner region near the jth spot, we introduce the local variables

y = ε−1(x− xj) , v(xj + εy) =
√
D [Vj0(ρ) + εVj1 + · · · ] ,(2.1)

u(xj + εy) =
1√
D

[Uj0(ρ) + εUj1 + · · · ] ,

where ρ = |y|. Upon substituting (2.1) into (1.2) we obtain, to leading order on 0 < ρ < ∞,
that

∆ρVj0 − Vj0 + Uj0V
2
j0 = 0 , V ′

j0(0) = 0 , Vj0 → 0 , as ρ→ ∞ ,(2.2a)

∆ρUj0 − Uj0V
2
j0 = 0 , U ′

j(0) = 0 ,(2.2b)

where ∆ρVj0 ≡ V ′′
j0 + 2ρ−1V ′

j0. The linear −Vj0 term in (2.2a) allows us to impose an ex-
ponential decay condition at infinity for Vj0, whereas the far-field behavior of Uj0 must be
proportional to the free-space Green’s function for the Laplacian in three dimensions. As
such, in terms of some unknown source strength Sj, we impose limρ0→∞ ρ2∂ρUj0

∣∣
ρ=ρ0

= Sj,
so that the far-field behavior for Uj0 is

(2.2c) Uj0 ∼ µj − Sj/ρ+ · · · , as ρ→ ∞ ,

where µj = µ0(Sj) must be computed numerically from (2.2). From (2.2b), we readily obtain
the identity

(2.3) Sj =

∫ ∞

0
Uj0V

2
j0 ρ

2 dρ .

Next, we obtain an asymptotic solution for u in the outer region in terms of the Neumann
Green’s function. We first note that v ∼ 0 in the outer region, and that from (2.1) and (2.3)
we can express the term ε−3uv2 in (1.2b) in the sense of distributions as

(2.4) ε−3uv2 → 4π
√
D

N∑

j=1

(∫ ∞

0
Uj0V

2
j0ρ

2 dρ

)
δ(x − xj) = 4π

√
D

N∑

j=1

Sjδ(x − xj) .

Therefore, from (1.2b), the quasi-equilibrium solution for u in the outer region satisfies

(2.5)
1

ε
∆u+

A

D
∼ 4π√

D

N∑

j=1

Sjδ(x − xj) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω .

This expression suggests an expansion for u in the form

(2.6) u ∼ u0 + εu1 + ε2u2 + · · · ,

where u0 is an unknown global constant, and where u1 satisfies

(2.7) ∆u1 +
A

D
=

4π√
D

N∑

j=1

Sjδ(x− xj) , x ∈ Ω ; ∂nu1 = 0 , x ∈ ∂Ω .
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By applying the divergence theorem to (2.7), we obtain the solvability condition

(2.8)
N∑

j=1

Sj =
A|Ω|
4π

√
D

.

Then, we write the solution to (2.7) as

(2.9) u1 = − 4π√
D

N∑

i=1

SiG(x;xi) + ū1 ,

for some unknown constant ū1, where G(x, ξ) is the unique Neumann Green’s function satis-
fying

∆G =
1

|Ω|
− δ(x− ξ) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ,(2.10a)

G(x; ξ) =
1

4π|x− ξ|
+R(x; ξ) , as x → ξ ;

∫

Ω
Gdx = 0 ,(2.10b)

where R(x; ξ) is smooth. In (2.10b), R(ξ; ξ) is called the regular part of G at the singularity
x = ξ. For the special case where Ω is the unit ball, the Neumann Green’s function is given
explicitly by (cf. [3])
(2.11a)

G(x; ξ) =
1

4π|x− ξ|+
1

4π|x||x′ − ξ|+
1

4π
log

(
2

1− x·ξ + |x||x′ − ξ|

)
+

1

8π

(
|x|2 + |ξ|2

)
− 7

10π
.

Here x′ = x/|x|2 is the image point to x outside the unit ball, and · denotes the dot product.
To calculate R(ξ; ξ) from (2.11a) we take the limit of G(x, ξ) as x → ξ and extract the
nonsingular part of the resulting expression. We readily obtain that

(2.11b) R(ξ; ξ) =
1

4π (1− |ξ|2) −
1

4π
log
(
1− |ξ|2

)
+

|ξ|2

4π
− 7

10π
.

Next, by using (2.6) with (2.9) and (2.10b), we obtain that the local behavior of u near
xj is

(2.12) u ∼ u0 + ε

⎡

⎢⎣−
Sj√

D|x− xj|
− 4π√

D

⎛

⎜⎝SjRjj +
N∑

i=1
i ̸=j

SiGji

⎞

⎟⎠+ ū1

⎤

⎥⎦ , as x → xj .

Here, we have defined Rjj ≡ R(xj ;xj) and Gji ≡ G(xj ;xi). Matching the local behavior
(2.12) to the far-field behavior (2.2c) of the inner solution Uj0, we find to leading order that

(2.13) µj =
√
Du0 , j = 1, . . . , N ,

while the singularity behavior matches by construction. Because the spot strengths are deter-
mined in terms of µj , the simplest N -spot pattern is one in which all spots have a common
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source strength Sj = Sc for j = 1, . . . , N , independent of their locations. From (2.8), we
obtain that this common source strength is

(2.14) Sc =
A|Ω|

4πN
√
D

.

We refer to such a pattern as “symmetric.” This result is analogous to that for the mean first
passage time (MFPT) for a narrow capture problem in a 3-D domain with N small identical
traps [3], where the leading-order average MFPT is independent of the locations of the traps
in the domain.

A symmetric quasi-equilibrium pattern of N spots is then characterized to leading order
by

(2.15) vqe ∼
√
D

N∑

i=1

Vc
(
ε−1|x− xi|

)
, uqe ∼

1√
D
µ0 + ε

(
−4πSc√

D

N∑

i=1

G(x;xi) + ū1

)
,

where ū1 is a constant to be determined below in section 2.1 by a higher-order matching
procedure. Here Vc(ρ) and µ0 = µ0(S), with S = Sc, are determined by the following radially
symmetric core problem on 0 < ρ < ∞:

∆ρVc − Vc + UcV
2
c = 0 , V ′

c (0) = 0 , Vc → 0 , as ρ→ ∞ ,(2.16a)

∆ρUc − UcV
2
c = 0 , U ′

c(0) = 0 , Uc ∼ µ0 −
S

ρ
, as ρ→ ∞ .(2.16b)

In the inner region near xj , we have that vqe and uqe are given to leading order by

(2.17) vqe ∼
√
DVc

(
ε−1|x− xj |

)
, uqe ∼

1√
D
Uc
(
ε−1|x− xj|

)
.

Upon solving the BVP (2.16) using numerical continuation, we plot µ0 in terms of the strength
S in Figure 3(a). The fold point at (Scf , µ0f ) ≈ (4.52, 5.78) divides µ0(S) into a left and a right
branch as shown in Figure 3(a). In addition, in Figure 3(b),(c) we plot Vc and Uc versus ρ,
respectively, for a few values of S. We observe from Figure 3(b) that Vc has a volcano-shaped
profile, characterized by a maximum not at ρ = 0, when S ≥ 18.7.

We can determine the limiting asymptotics as S → 0 for the curve µ0(S) by seeking a
perturbation solution of (2.16) as S → 0. We readily derive for S → 0 that

(2.18) Uc ∼
b

S

(
1 +

S2

b2
(µ1 + Uc1) + · · ·

)
, Vc ∼

S

b

(
w +

S2

b2
(−µ1w + Vc1)

)
,

and that µ0(S) for S ≪ 1 has the limiting asymptotics

(2.19) µ0 ∼
b

S

(
1 +

S2

b2
µ1 + · · ·

)
; b ≡

∫ ∞

0
ρ2w2 dρ , µ1 ≡ b−1

∫ ∞

0
ρ2Vc1 dρ .

Here w(ρ) is the unique ground-state solution of ∆ρw − w + w2 = 0 with w(0) > 0 and
limρ→∞w = 0, while Uc1(ρ) and Vc1(ρ) are the unique solutions on 0 < ρ < ∞ to

LVc1 ≡ ∆ρVc1 − Vc1 + 2wVc1 = −w2Uc1 ; V ′
c1(0) = 0 , lim

ρ→∞
Vc1 = 0 ,(2.20a)

∆ρUc1 = w2 ; U ′
c1(0) = 0 , Uc1 ∼ −b/ρ , as ρ→ ∞ .(2.20b)



STABILITY AND SLOW DYNAMICS OF SPOT PATTERNS IN THREE DIMENSIONS 303

0 5 10 15 20 25 30 35
S

5

6

7

8

9

10

11

µ
0

(a) µ0 versus S.
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Figure 3. In (a), we plot the relationship µ0 = µ0(S) as obtained from a numerical solution of the core
problem (2.16). The fold point at (Scf , µ0f ) ≈ (4.52, 5.78) divides µ0(S) into a left and a right branch. In
(b), we plot Vc versus ρ = |y| for S = 3.67 (dotted line), S = 18.7 (dashed line), and S = 29.1 (solid line).
For S ! 18.7, the profile is volcano shaped so that the maximum of Vc occurs at ρ > 0. When S " 18.7, the
maximum of Vc is at ρ = 0. In (c), we show the corresponding profiles for Uc(ρ).
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Figure 4. Comparison of the asymptotic result (2.19) for µ0 for small S (discrete points) with the numerical
result (solid curve) computed from (2.16). In (2.19) we use b ≈ 10.43 and µ1 ≈ 10.67. The asymptotic result
agrees well on 0 < S < 3, with the minimum of the µ0 versus S graph occurring at Scf ≈ 4.52.

By solving for w and the pair (Uc1, Vc1) numerically, we estimate that b ≈ 10.43 and µ1 ≈ 10.67.
In Figure 4 we show that the asymptotic result (2.19) agrees very closely with the correspond-
ing numerical result for most of the left branch of the µ0-versus-S curve of Figure 3(a).

For a given µ0 > µ0f , the multivalued nature of S(µ0) in Figure 3(a) gives rise to the
possibility of “asymmetric” patterns consisting of Nℓ spots with strength Sℓ on the left branch
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and Nr spots with strength Sr on the right branch. Such a pattern takes the form

vqe ∼
√
D

Nℓ∑

i=1

Vcℓ

(
ε−1|x− xi|

)
+

√
D

Nr∑

i=1

Vcr
(
ε−1|x− xi|

)
,(2.21a)

uqe ∼
µ0√
D

+ ε

(

−4πSℓ√
D

Nℓ∑

i=1

G(x;xi)−
4πSr√

D

Nr∑

i=1

G(x;xi) + ū1

)

,(2.21b)

where the pairs (Vcℓ, Ucℓ) and (Vcr, Ucr) are the solutions to (2.16) with Ucℓ ∼ µ0 − Sℓ/ρ as
ρ → ∞, and Ucr ∼ µ0 − Sr/ρ as ρ → ∞, respectively. For given positive integers Nℓ and
Nr, with N = Nℓ +Nr, the two source strengths Sℓ and Sr for the leading-order asymmetric
pattern must be determined from the nonlinear algebraic problem

(2.22) NℓSℓ +NrSr =
A|Ω|
4π

√
D

, µ0(Sℓ) = µ0(Sr) , where Sℓ < Scf < Sr .

For N = 2 and N = 4, in Figure 5 we plot the symmetric and asymmetric solution branches,
as computed numerically from (2.22) using MATCONT [5]. From these figures we observe
that the leading-order asymptotic theory predicts that the asymmetric branches bifurcate
from the symmetric solution branch at Scf ≈ 4.52.
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Figure 5. Bifurcation diagram of
√

N−1
∑

i S
2
iε versus A|Ω|/(4πN

√
D) computed using MATCONT [5]

from the leading-order problem (2.22) for D = 0.1 and ε = 0.05 for N = 2 spots (left panel) and for N = 4
spots (right panel). The heavy solid curve in each panel is the symmetric solution branch. In the left panel,
the dashed curve represents the asymmetric branch. In the right panel the labeling of the curves is as follows:
Nr = 3 and Nℓ = 1 (dashed curve); Nr = Nℓ = 2 (dashed-dotted curve); Nr = 1 and Nℓ = 3 (dotted curve).
The leading-order theory predicts that the asymmetric branches bifurcate from a common point.

2.1. Refined asymptotic theory. For the symmetric quasi-equilibrium pattern constructed
above we now perform a higher-order matching procedure to determine the constant ū1 in
(2.15). This analysis is also needed in section 4 in our derivation of slow spot dynamics.

With u0 = µ0/
√
D and S = Sc, we first write the local behavior (2.12) in terms of inner

variables as

(2.23) u ∼ 1√
D

(
µ0 −

Sc

ρ

)
+ ε

[
−4πSc√

D
(Ge)j + ū1

]
+ · · · , as x → xj .
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Here e ≡ (1, . . . , 1)T , while G is the N ×N symmetric Neumann Green’s matrix with matrix
entries (G)ij = G(xj ;xi) for i ̸= j and (G)jj = R(xj;xj).

To account for theO(ε) correction to the singularity behavior in (2.23), we need the higher-
order terms Uj1 and Vj1 in the inner expansion as introduced in (2.1). Upon substituting (2.1)
into (1.2), we obtain in matrix form that W1 = (Vj1, Uj1)T satisfies

∆ρW1 +MW1 = 0 , 0 < ρ < ∞ ,(2.24a)

W′
1(0) = (0, 0)T ; W1 ∼ (0,αj)

T , as ρ→ ∞ ,(2.24b)

where αj and the 2× 2 matrix M are defined by

(2.24c) αj ≡ −4πSc (Ge)j + ū1
√
D , M ≡

(
−1 + 2UcVc V 2

c

−2UcVc −V 2
c

)
.

We can readily identify the solution to (2.24) by differentiating the core problem (2.16) with
respect to S. For S ̸= Scf , we obtain that

(2.25) Vj1 =
αj

µ′
0(S)

∂SVc , Uj1 =
αj

µ′
0(S)

∂SUc .

Therefore, provided that Sc ̸= Scf , we have for S = Sc that
(2.26)

Uj1 ∼ αj −
αj

µ′
0(Sc)ρ

, as ρ→ ∞ , and

∫ ∞

0

(
2UcVcVj1 + V 2

c Uj1
)
ρ2 dρ =

αj

µ′
0(Sc)

.

Next, we proceed to one higher order in the outer region. In the sense of distributions,
and upon using the integral identity in (2.26), we get as ε→ 0 that

(2.27) ε−3uv2 → 4π
√
D

N∑

j=1

[
Sc +

εαj

µ′
0(Sc)

]
δ(x − xj) .

By using (2.27) in (1.2b), we obtain that the term u2 in the outer expansion (2.6) satisfies

(2.28) ∆u2 =
4π√

Dµ′
0(Sc)

N∑

j=1

αjδ(x − xj) , x ∈ Ω ; ∂nu2 = 0 , x ∈ ∂Ω .

The solvability condition for (2.28) is that
∑N

j=1 αj = 0. Upon using (2.24c) for αj , we
determine ū1 as

(2.29) ū1 =
4πSc

N
√
D

(
eTGe

)
.

Then, by solving (2.28) for u2 up to a constant, and by using (2.15) and (2.29), we obtain
that the outer expansion for a symmetric N -spot quasi-equilibrium solution is
(2.30)

uqe∼
µ0√
D
+
4πεSc√

D

(
−

N∑

i=1

G(x;xi)+
eTGe
N

)
−4πε2√

D

(
4πSc

µ′
0(Sc)

) N∑

i=1

[
eTGe
N

−(Ge)i
]
G(x;xi)+ε

2ū2+· · ·.
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To illustrate (2.30), we let N = 1, Ω be the unit ball, and take x1 = 0, so that the spot
is at the center of the ball. Then we use the explicit Green’s function (2.11) to obtain from
(2.30) that

uqe ∼
µ0√
D

− εSc√
D

(
r2

2
+

1

r

)
+O(ε2) , Sc =

A

3
√
D

,

where r = |x|, so that on the domain boundary where r = 1 we get

(2.31) uqe =
µ0√
D

− 3εSc

2
√
D

, x ∈ ∂Ω .

For this radially symmetric setting, we can solve for the steady-state of (1.2) numerically
and then compare with the asymptotic result (2.31). The comparison of uqe on the domain
boundary versus ε in Figure 6 shows that the asymptotic result is very accurate even when ε
is only moderately small.
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ε
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22

u q
e| r

=
1

Figure 6. Comparison of asymptotic result (2.31) (solid curve) and full numerical result computed from
the steady-state of (1.2) (discrete points) for u corresponding to a one spot solution centered at the origin in
the unit ball. The parameters are A = 10 and D = 0.1.

Finally, we provide an alternative analysis to construct an N -spot quasi-equilibrium solu-
tion, which is needed in sections 3 and 4. In this approach, we allow the source strength Sj

in (2.2c) to depend weakly on ε, and so we write Ujε, Vjε as the solution to (2.2) for which
Ujε ∼ µj − Sjε/ρ as ρ → ∞, where µj ≡ µ0(Sjε). By proceeding as in (2.4) and (2.5), we
obtain that the outer solution satisfies

(2.32) ∆u+
εA

D
∼ 4πε√

D

N∑

j=1

Sjεδ(x − xj) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω .

Instead of expanding u as a power series in ε as in (2.6), we solve (2.32) exactly to obtain

(2.33) u = ξ − 4πε√
D

N∑

i=1

SiεG(x;xi) ,
N∑

i=1

Siε =
A|Ω|
4π

√
D

,



STABILITY AND SLOW DYNAMICS OF SPOT PATTERNS IN THREE DIMENSIONS 307

where ξ is a constant and G satisfies (2.10). By matching the local behavior of the outer
solution u as x → xj with the far-field behavior uj = D−1/2Ujε ∼ D−1/2 (µj − Sjε/ρ) of the
jth inner solution, where µj ≡ µ0(Sjε), we obtain that Sjε for j = 1, . . . , N, and the constant
ξ must satisfy the (N + 1)-dimensional weakly coupled nonlinear algebraic system

(2.34) ξ − 4πε√
D

(GS)j =
µ0(Sjε)√

D
, j = 1, . . . , N ;

N∑

j=1

Sjε =
A|Ω|
4π

√
D

.

Here µ0(Sjε) is to be computed from the core problem (2.2), S ≡ (S1ε, . . . , SNε)T , and G is
the symmetric Neumann Green’s matrix with matrix entries (G)ij = G(xj ;xi) for i ̸= j and
(G)jj = R(xj ;xj). It is readily shown from (2.34) that a two-term expansion for ξ and Sjε is

Sjε ∼ Sc +
4πεSc

µ′
0(Sc)

(
eTGe
N

− (Ge)j
)
+ · · · , j = 1, . . . , N ,(2.35)

ξ ∼ µ0(Sc)√
D

+
4πε√
DN

Sce
TGe+ · · · ,

provided that Sc ̸= Scf . Upon substituting this result into (2.33) we recover our previous result
(2.30) obtained from a more conventional power series representation of the outer solution.

An important special case of (2.34) occurs when the spot locations are aligned so that
e = (1, . . . , 1)T is an eigenvector of the Green’s matrix G. In particular, assume that Ge = k1e
for some eigenvalue k1. Then (2.34) has a solution with S = Sce for any ε > 0, for which

(2.36) ξ =
4πε√
D
Sck1 +

µ0(Sc)√
D

, Sc ≡
A|Ω|

4πN
√
D

.

Therefore, when Ge = k1e, there is a common source strength solution to (2.34) that is
precisely the same as that for the leading-order solution in (2.14). For this special case, we
readily identify that αj = 0 in (2.24c) so that Uj1 = Vj1 = 0 from (2.25). As a consequence,
we have Ujε = Uc + O(ε2) and Vjε = Vc + O(ε2), which is used in section 3 in our linear
stability analysis.

For N = 4, we now illustrate the solution structure to the nonlinear algebraic system
(2.34) in the unit ball for both the situation where e is an eigenvector of G and when this
condition does not hold. We first place the spots at the vertices of a tetrahedron at a distance
r0 = 0.564 from the origin, with one spot at the north pole. From Table 1, as discussed in
section 4, this configuration, for which e is an eigenvector of G, is a true equilibrium state
for (1.2). We then solve (2.34) numerically using MATCONT [5] for D = 0.1 and ε = 0.05
to compute both the symmetric and asymmetric branches of solutions as the parameter A
is varied. The results shown in Figure 7(a) indicate that all the asymmetric solutions (see
caption for branch identification) bifurcate from the symmetric branch (heavy solid line) at
the common value predicted from our theory. However, in contrast, if we then perturb the spot
at the north pole so that e is no longer an eigenvector of G, we observe from Figure 7(b) an
imperfection-sensitivity phenomenon whereby the asymmetric solution branches now exhibit
a saddle-node structure, and the bifurcation point from the symmetric branch as predicted
by the leading-order theory does not persist under the ε-perturbation induced by (2.34). In
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(a) e is an eigenvector of G.
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(b) e is not an eigenvector of G.

Figure 7. (a) Bifurcation diagram of
√

N−1
∑

i S
2
iε versus A|Ω|/(4πN

√
D), computed from (2.34) using

MATCONT [5], for D = 0.1 and ε = 0.05 when N = 4 spots are placed at the vertices of a tetrahedron of radius
r0 = 0.564 concentric with the unit ball where |Ω| = 4π/3. For this case where e is an eigenvector of G all
three asymmetric branches of quasi-equilibria bifurcate from the common value (4.52, 4.52) as expected by the
theory. The curves are defined with respect to the left and right branches of µ0(S) in Figure 3(a): symmetric
branch (solid curve); 3 right 1 left (dashed curve); 2 right 2 left (dashed-dotted curve); 1 right 3 left (dotted
curve). (b) Same plot and parameter values as in (a) except that the spot at the north pole for the tetrahedron
is moved to r0(0, sin(π/6), cos(π/6)) with r0 = 0.564. In this case there is an imperfection sensitivity of the
asymmetric solution branches, and the bifurcation point from the symmetric branch predicted by the leading-
order theory does not persist under the ε-perturbation. Some solution branches corresponding to permutations
of the asymmetric patterns have been omitted in (b) for clarity.

a 2-D context, a similar imperfection-sensitivity behavior was first observed in [18] for spot
patterns of the Brusselator RD model on the surface of the unit ball. In Figure 7(b), the
heavy solid curves indicate solution branches of (2.34) where the strengths Sjε satisfy either
Sjε < Scf for all j or Sjε > Scf for all j. The other curves indicate solutions that consist of
strengths both smaller and larger than Scf (see figure caption for details).

For the case of N = 2 spots for which e is not an eigenvector of G we now provide
an asymptotic theory to analytically characterize the imperfection sensitivity as shown in
Figure 8, which was obtained by solving (2.34) numerically using MATCONT [5]. The heavy
solid curves indicate solutions of (2.34) in which S1, S2 < Scf or S1, S2 > Scf , while the dashed
curves indicate asymmetric solutions where S1 < Scf and S2 > Scf and vice versa. For N = 2,
we eliminate ξ in (2.34) to obtain

(2.37) S1 + S2 =
A|Ω|
4π

√
D

, µ0(S1)− µ0(S2) = −4πε [R11S1 −R22S2 + (S2 − S1)G12] ,

where we have relabeled S1 = S1ε and S2 = S2ε for simplicity. We now introduce a detuning
parameter δ that measures how close we are to the critical value Scf , so that

(2.38)
A|Ω|

4π(2)
√
D

= Scf +
δ

2
, δ ≪ 1 ,
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Figure 8. Left panel: bifurcation diagram of
√

N−1
∑

i S
2
iε versus A|Ω|/(4πN

√
D) computed from (2.34)

using MATCONT [5] for D = 0.1 and ε = 0.05 when N = 2 spots are placed at x1 = (0, 0, r0 + 0.1) and
x2 = (0, 0,−r0), with r0 = 0.429, which corresponds to a small perturbation of the true equilibrium values
as given in Table 1 and discussed in section 4. The dashed branches are the asymmetric solution branches.
Since e is not an eigenvector of G, we observe an imperfection-sensitivity behavior for the quasi-equilibria. The
numerical results for the saddle-node point are S1 ≈ 5.72 and S2 ≈ 3.33, which agree rather closely with the
corresponding values S1 ≈ 5.82 and S2 ≈ 3.23 predicted from the ε1/3 asymptotic theory. Right panel: favorable
comparison of full numerical results (dotted and heavy solid lines) for the solution branches, computed from
(2.34), with the asymptotic result (light solid line) from the cubic (2.44).

and we write S1 and S2 in terms of δ and some S̃ ≪ 1 as

(2.39) S1 = Scf + S̃ +
δ

2
, S2 = Scf + S̃ − δ

2
.

Upon substituting (2.39) into (2.37), we obtain using Taylor series, together with µ′
0(Scf ) = 0,

that
(2.40)

−4πε
[
Scf (R11 −R22) +O(S̃, δ)

]
= µ′′

0(Scf )
(
S̃δ +O(δ2)

)
+

µ′′′
0 (Scf )

3
S̃3 +O(S̃2δ, S̃δ2, δ3) .

To balance the terms in (2.40) we need S̃ = O(ε1/3) and S̃δ = O(ε), which yields δ = O(ε2/3).
With this scaling, it readily follows that we can neglect the error terms written in (2.40). We
then write S̃ = ε1/3S̃0 and δ = ε1/3δ0, where S̃0 satisfies the cubic

(2.41)
µ′′′
0 (Scf )

3
S̃3
0 + µ′′

0(Scf )S̃0δ0 = −4πScf (R11 −R22) .

From the numerical results used for Figure 3(a), we estimate that µ′′
0(Scf ) ≈ 0.15 and

µ′′′
0 (Scf ) ≈ −0.12. Relabeling the spots so that R11 > R22 without loss of generality, we

reduce (2.41) to a canonical cubic by introducing x and y by

(2.42a) S̃0 = S̃0dy , δ0 = δ0dx ,

where S̃0d and δ0d are
(2.42b)

S̃0d ≡
(
12πScf (R11 −R22)

|µ′′′
0 (Scf )|

)1/3

, δ0d ≡
(
|µ′′′

0 (Scf )|
3

)1/3 [4πScf (R11 −R22)]
2/3

µ′′
0(Scf )

,
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so that (2.41) reduces to the canonical cubic

(2.43) y3 − xy = 1 .

This cubic always has one real solution y3 > 0 for any x, and two additional real solutions y1
and y2, with y1 < ymin ≡ −2−1/3 < 0 and ymin < y2 < 0, whenever x > xmin = 2−2/3 +21/3 ≈
1.8899.

In summary, in terms of the roots of the cubic (2.43), and the scaling (2.42), the roots of
(2.34) near Scf are given in terms of x and y by

A|Ω|
4π(2)

√
D

∼ Scf +

(
δ0d
2

)
xε2/3 ,(2.44a)

S1 ∼ Scf + ε1/3S̃0dy +

(
δ0d
2

)
xε2/3 , S2 ∼ Scf − ε1/3S̃0dy +

(
δ0d
2

)
xε2/3 .(2.44b)

The saddle-node bifurcation value associated with (2.44) is at

(2.45)

(
A|Ω|

4π(2)
√
D

)

sn

∼ Scf +

(
δ0d
2

)
xminε

2/3 , Scf ≈ 4.52 , xmin ≈ 1.8899 .

For the unit ball, and for the specific two spot pattern of Figure 8 where ε = 0.05 and D = 0.1,
(2.45) yields a value of 4.942, which is very close to the saddle-node point of 5.05 computed in
the left panel of Figure 8. In the right panel of Figure 8 we show that the asymptotic result
from the cubic (2.44) accurately predicts the imperfection-sensitive bifurcation structure of
the full system (2.34) even when ε = 0.05. In Figure 9 we confirm the ε2/3 prediction of (2.45)
for the saddle-node location by comparing it on a log-log plot against full numerical results
computed from (2.34) using MATCONT [5].
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Figure 9. Log-log plot of ( A|Ω|
4π(2)

√
D
)sn − Scf versus ε characterizing the location of the saddle-node point

on the asymmetric solution branch of Figure 8 versus ε. The solid curve corresponds to the asymptotic result
(2.45), while the discrete points are computed from (2.34) using MATCONT [5]. This plot confirms the ε2/3

scaling law of (2.45).
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3. The linear stability of quasi-equilibrium patterns. In this section, we analyze the
linear stability of symmetric quasi-equilibrium patterns. We begin by considering the effect
of locally radially symmetric perturbations near each spot. We let vqe and uqe denote the
N -spot symmetric quasi-equilibrium pattern, and in (1.2) we introduce the perturbation

(3.1) v = vqe + eλtφ , u = uqe + eλtψ , where |φ| ≪ 1, |ψ| ≪ 1 ,

to obtain the linear eigenvalue problem

ε2∆φ− φ+ 2uqevqeφ+ v2qeψ = λφ , x ∈ Ω , ∂nφ = 0 , x ∈ ∂Ω ,(3.2a)

D

ε
∆ψ − 1

ε3
(
2uqevqeφ+ v2qeψ

)
= ε3λψ , x ∈ Ω , ∂nψ = 0 , x ∈ ∂Ω .(3.2b)

In the inner region near the jth spot at x = xj , we let

(3.3) φ ∼ cjΦj(ρ) , ψ ∼ cjΨj(ρ)

D
,

for some constant cj to be determined. We then use the local behavior vqe ∼
√
DVjε(ρ) and

uqe ∼ Ujε(ρ)/
√
D to obtain the leading-order inner eigenvalue problem

∆ρΦj−Φj+2VjεUjεΦj+V 2
jεΨj=λΦj , 0<ρ<∞; Φ′

j(0)=0 , Φj→0 , as ρ→∞ ,

(3.4a)

∆ρΨj − 2VjεUjεΦj − V 2
jεΨj = 0 , 0 < ρ < ∞ ; Ψ′

j(0) = 0 .

(3.4b)

We will impose the normalization condition that limρ→∞ ρ2∂ρΨj = −1, so that we have the
following far-field behavior in terms of some function Bj = Bj(λ;Sjε):

(3.4c) Ψj ∼
1

ρ
+Bj(λ;Sjε) , as ρ→ ∞ .

Here Sjε, for j = 1, . . . , N , is to be determined from the nonlinear algebraic system (2.34).
By applying the divergence theorem to (3.4b), we obtain the integral identity

(3.5)

∫ ∞

0

(
2VjεUjεΦj + V 2

jεΨj
)
ρ2 dρ = −1 .

Now in the outer region, the reaction term in (3.2b) of order O(ε−3) is localized. Therefore,
in the sense of distributions we write

ε−3
(
2uqevqeφ+v2qeψ

)
→4π

N∑

j=1

cj

[∫ ∞

0

(
2VjεUjεΦj+V 2

jεΨj
)
ρ2 dρ

]
δ(x−xj)=−4π

N∑

j=1

cjδ(x−xj) ,

so that the outer equation for ψ is

(3.6) ∆ψ = −4πε

D

N∑

i=1

ciδ(x − xi) , x ∈ Ω ; ∂nψ = 0 , x ∈ ∂Ω .
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The exact solution to (3.6) is

(3.7) ψ = ψ̄ +
4πε

D

N∑

i=1

ciG(x;xi) ,

where ψ̄ is a constant to be determined, and G(x;xi) is the Neumann Green’s function sat-
isfying (2.10). Then by applying the divergence theorem to (3.6) we obtain the solvability
condition

(3.8)
N∑

j=1

cj = 0 .

In view of (3.1) and (3.8) we see that the perturbation preserves the sum of the spot ampli-
tudes. As such, this type of instability is referred to as a competition instability (cf. [17]).

Next, we derive a linear algebraic system for the constants cj, j = 1, . . . , N , and ψ̄. We
expand (3.7) as x → xj and, in terms of inner variables, we get

(3.9) ψ ∼ ψ̄ +
cj
Dρ

+
4πε

D
(Gc)j , as x → xj ,

where ρ ≡ ε−1|x − xj |, G is the Neumann Green’s matrix, and c ≡ (c1, . . . , cN )T . This local
behavior of the outer eigenfunction must match the far-field behavior of the corresponding
inner solution, given by ψ ∼ cjD−1 (Bj + 1/ρ) as ρ → ∞. In this way, we obtain that c and
ψ̄ satisfy

(3.10) cjBj = Dψ̄ + 4πε (Gc)j , j = 1 , . . . , N ;
N∑

i=1

ci = 0 ,

where Bj = Bj(λ;Sjε). By eliminating ψ̄, we readily derive in matrix form that c satisfies
the matrix eigenvalue problem

(3.11) (I − E) (B − 4πεG) c = 0 , E ≡ 1

N
eeT ; eT c = 0 ,

where e = (1, . . . , 1)T , and where B is the diagonal matrix with entries (B)jj = Bj and
(B)ij = 0 for i, j = 1, . . . , N . The discrete eigenvalues λ of the linearization (3.2) are roots of
det ((I − E) (B − 4πεG)) = 0, provided that the corresponding eigenvector c satisfies the side
constraint eTc = 0.

We first consider the leading-order theory associated with (3.11). To leading order in ε, we
obtain that Sj = Sc+O(ε) for j = 1, . . . , N , where Sc is defined in (2.14), and Ujε ∼ Uc+O(ε)
and Vjε ∼ Vc +O(ε), where Uc and Vc satisfy the core problem (2.16). As a result, we obtain
that B = B(λ;Sc)I+O(ε), where B(λ;Sc) is to be computed from the following common core
problem that is the same for each spot:

∆ρΦc−Φc+2VcUcΦc+V 2
c Ψc=λΦc, 0<ρ<∞; Φ′

c(0)=0, Φc→0, as ρ→∞,

(3.12a)

∆ρΨc−2VcUcΦc−V 2
c Ψc=0, 0<ρ<∞; Ψ′

c(0)=0, Ψc∼
1

ρ
+B(λ;Sc), as ρ→∞.(3.12b)
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Figure 10. The real (a) and imaginary (b) parts of the eigenvalue with largest real part corresponding to
the leading-order competition instability criterion (3.13). As Sc decreases, there is a complex conjugate pair of
eigenvalues that collide on the negative real axis when Sc ≈ 5.12. As Sc is decreased further, a real eigenvalue
crosses into the right half-plane when Sc = Scf ≈ 4.52.

For N ≥ 2, the leading-order term in (3.11) yields that the discrete eigenvalues λ of the
linearization (3.2) satisfy

(3.13) B(λ;Sc) = 0 ,

and that for N ≥ 2 the allowable amplitude perturbations c consists of the (N−1)-dimensional
subspace where eT c = 0.

We first suppose that λ is real-valued, and we solve (3.12) numerically, subject to the side
constraint (3.13). In Figure 10 we plot the real and imaginary parts of the corresponding
eigenvalue with largest real part as a function of Sc. For Sc sufficiently large (not shown), our
computations of the root of (3.13) with the largest real part shows that λ is negative real. As
Sc decreases, two real negative eigenvalues collide and split, forming a complex conjugate pair
in the left half-plane. As Sc decreases further, as shown in Figure 10, this pair hits the negative
real axis when S ≈ 5.12 and λ ≈ −0.2. One of the eigenvalues remains in the left half-plane
on the negative real axis, while the other eigenvalue crosses into the unstable right half-plane
along the real axis, triggering a competition instability as a result of a zero-eigenvalue crossing.
We claim that the value Sc = Scomp at which this crossing occurs corresponds precisely with
the minimum point of the graph µ0(Sc) versus Sc shown in Figure 3(a). To see this, we
observe upon differentiating the core problem (2.16) with respect to Sc that the resulting
problem is precisely the inner eigenvalue problem (3.12) with λ = 0, which gives rise to the
equivalence B(0;Sc) = −µ′

0(Sc). With the required condition B(λ;Sc) = 0, we conclude that
the leading-order competition threshold must occur at Scomp = Scf ≈ 4.52.

Next, we consider the possibility that an instability arises through a Hopf bifurcation,
whereby a complex conjugate pair of eigenvalues enters ℜ(λ) > 0 through the imaginary
axis. We let λ = iλI in (3.12) and, upon separating the resulting system into real and
imaginary parts, we readily compute the modulus |B(iλI ;Sc)| numerically as a function of
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(a) surface plot of |B(iλI ;S)|.
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(c) B(iλI ; 10) versus λI .

Figure 11. In (a), we plot the numerically computed surface |B(iλI ;S)| for 0 < S < 30 and 0 < λI < 30,
showing that |B(iλI ;S)| > 0 holds. In (b) we plot the slice |B(i/100; S)| versus S, showing, as expected, that
|B(i/100; S)| is very small when S = Scf ≈ 4.52. In (c), we plot the slice |B(iλI ; 10)| versus λI .

Sc and λI > 0. The surface plot and slices through the surface shown in Figure 11 verify
that the strict inequality |B(iλI ;Sc)| > 0 holds, and so there can be no Hopf bifurcation as
Sc is varied. Since for Sc ≪ 1, (3.12) is readily seen to reduce to leading order to the scalar
self-adjoint local eigenvalue problem LΦc0 = λΦc0, where L is defined in (2.20), which has no
imaginary eigenvalues, it follows by continuity of the eigenvalue path with respect to Sc that
any complex-valued eigenvalues for (3.12), with the side constraint (3.13), must remain in the
stable left half-plane ℜ(λ) < 0 for any Sc > 0.

Overall, the numerical results of Figures 10 and 11 show that to leading order in ε, the N -
spot quasi-equilibrium pattern is linearly stable (unstable) to a competition instability when
Sc > Scomp (Sc < Scomp). In terms of the parameters A and D, we obtain from (2.14) that
to leading order in ε, a quasi-equilibrium pattern of N identical spots is linearly stable to a
competition instability when

(3.14)
A|Ω|

4πN
√
D

> Scomp = Scf ≈ 4.52 .

That is, a competition instability is triggered when the total inhibitor feed-rate A|Ω| is insuf-
ficient to sustain the N spots, or when the interaction of the spots, mediated by the diffusion
coefficient D of the inhibitor, is sufficiently strong.

We now make several remarks. First, the leading-order-in-ε linear stability criterion (3.14)
is independent of where the spots are located. Second, with the competition threshold coin-
ciding with the minimum point of the graph µ0(Sc), the entire left (right) branch of µ0(Sc) is
unstable (linearly stable) to a competition instability. Finally, while this leading-order analysis
determines when a symmetric quasi-equilibrium pattern loses stability when N ≥ 2, it gives
no information regarding which mode of instability is most dominant. This is unsurprising,
since all spots are identical to leading order, regardless of location. A higher-order analysis is
thus required to determine the dominant mode. We will provide such a higher-order theory
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below when the spot configuration has a special structure.
In Figure 12, we illustrate our leading-order theory by solving (1.2) for an initial configu-

ration of two antipodal spots located at (0,±0.429, 0) inside a unit ball (see Figure 13 for the
initial configuration). In Figure 12(a), we set the parameters D = 0.092 and A = 10 so that
Sc ≈ 5.5. We initialize the spots so that the amplitude of one is slightly larger than that of the
other. Since Sc > Scomp, we observe no competition instability. In particular, since Sc > 5.12,
for which there is a complex conjugate eigenvalue pair in the left half-plane (see Figure 10),
we observe in Figure 12 that the spot amplitudes oscillate out of phase in a manner consistent
with cT e = 0 as they settle to their steady-state value. In Figure 12(b), we set D = 0.143 and
A = 10 so that Sc ≈ 4.4. Since Sc < Scomp, we observe that the linear competition instability
triggers a nonlinear event leading to the collapse on an O(1) time-scale of only one of the two
spots.
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(a) Sc ≈ 5.5 > Scomp.
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(b) Sc ≈ 4.4 < Scomp.

Figure 12. Plots of the amplitude of two antipodal spots located at (0,±0.429, 0) as computed from numeri-
cally solving (1.2) using FlexPDE6 [6]. In (a), we set D = 0.092 and A = 10 so that Sc ≈ 5.5 > Scomp ≈ 4.52.
The amplitudes appear to oscillate out of phase as they settle to their steady-state values. In (b), D = 0.143
and A = 10 so that Sc ≈ 4.4 < Scomp. The linear competition instability is seen to trigger a nonlinear event
leading to the collapse of one of the two spots. In (a), ε = 0.02, while in (b), ε = 0.01.

For the case N = 1 of a one spot solution, the solvability condition (3.8) would require that
c1 = 0 unless the integral in (3.5) were identically zero. To have c1 ̸= 0, the far-field condition
in (3.12b) must, therefore, be replaced with the condition that Ψ → 1 as ρ→ ∞. That is, Ψ
must be a constant at infinity. From a numerical solution of (3.12) with this modified far-field
behavior, we show in Figure 14 that the eigenvalue with largest real part always lies in the left
half-plane. Therefore, the one spot solution is always linearly stable to a radially symmetric
perturbation.

Next, for N ≥ 2, we extend the leading-order stability theory to capture the weak effects
on the stability thresholds of the locations of the spots for the special case where the spots are
aligned so that e is an eigenvector of the Green’s matrix G. In the unit ball such patterns occur
when spots are located at vertices of a platonic solid concentric within the ball, when spots are
equally spaced along an equator concentric within the ball, and for some of the equilibrium
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(a) v(y, 0) and u(y, 0) on x = z = 0. (b) v at t = 0 on z = 0.

Figure 13. Typical initial conditions for numerical solutions of (1.2) on the unit ball. Two antipodal spots
are located at (0,±0.429, 0). In (a), we plot v (solid line) and u (dashed line) at t = 0 as a function of y on
the line x = z = 0. In (b), we show a surface plot of v on the plane z = 0. Here, D = 0.143, A = 10, and
ε = 0.01. The surface plot (b) has been slightly altered for clarity.
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Figure 14. The real (a) and imaginary (b) parts of the eigenvalue with largest real part corresponding to
a radially symmetric perturbation of a one spot solution. The real part is negative for all S. For S " 10 (not
shown), the largest eigenvalue becomes −1 due to discretization and is therefore absorbed into the continuous
spectrum located on the negative real axis with λ ≤ −1.

configurations of the spot dynamics (4.13) derived in section 4. For such patterns, it follows
from the fact that G is symmetric that its matrix spectrum is

(3.15) Ge = k1e ; Gqj = kjqj , qT
j e = 0 , j = 2, . . . , N , qT

j qi = 0 , i ̸= j .

We recall from the discussion following (2.36) that when Ge = k1e, there is a common
source strength solution to (2.34) that is the same as that for the leading-order solution in
(2.14), i.e., that Sjε = Sc for all j = 1, . . . , N, where Sc is defined in (2.14). In addition, we
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have Ujε = Uc +O(ε2) and Vjε = Vc +O(ε2), so that B = B(λ;Sc)I +O(ε2) in (3.11). As a
result, with a negligible error of O(ε2), we obtain for N ≥ 2 from (3.11) that

(3.16) B(λ;Sc) = 4πεkj , when c = qj , j = 2, . . . , N .

To determine the critical values for Sc at the stability threshold, we set λ = 0 in (3.16) and
use B(0;Sc) = −µ′

0(Sc), which yields the N − 1 nonlinear algebraic equations

(3.17) µ′
0(Sc) = −4πεkj , j = 2, . . . , N .

To determine the root of (3.17) for each j, we expand Sc = Scf+εS̃j, and by using µ′
0(Scf ) = 0,

we readily calculate

(3.18) S̃j = − 4πkj
µ′′
0(Scf )

, j = 2, . . . , N .

We conclude that there are zero-eigenvalue crossings whenever Sc = Scf + εS̃j + · · · for
j = 2, . . . , N . The competition instability threshold will then correspond to the largest of
these possible values for S̃j. Since µ′′

0(Scf ) > 0 from Figure 3(a), this threshold will be
determined by the smallest of the eigenvalues of G in the subspace perpendicular to e. We
summarize this result as follows.

Main Result 3.1. Let ε → 0 and N ≥ 2, and suppose that the spots are aligned so that
e = (1, . . . , 1)T is an eigenvector of the Neumann Green’s matrix G. Then, the N -spot quasi-
equilibrium solution is linearly stable to a competition instability on an O(1) time-scale if and
only if

(3.19) Sc > Scomp ≡ Scf −
4πε

µ′′
0(Sc)

min
j=2,...,N

kj , where Sc ≡
A|Ω|

4πN
√
D

.

Here kj for j = 2, . . . , N are the eigenvalues of G in the subspace perpendicular to e (see
(3.15)). In addition, Scf ≈ 4.52 is the minimum point of the graph of µ0(Sc) versus Sc shown
in Figure 3(a), where we estimate that µ′′

0(Scf ) ≈ 0.15. Equivalently, we predict that such a
pattern is linearly stable on an O(1) time-scale if and only

(3.20) D < Dcomp ≡ (A|Ω|)2

16π2N2

(
Scf −

4πε

µ′′
0(Sc)

min
j=2,...,N

kj

)−2

.

For the unit ball, we now compare the prediction of (3.19) and (3.20) with full numerical
results computed from FlexPDE6 [6] for a symmetric two spot pattern with spots at x1 =
(0, 0, r0) and x2 = −x1, and for the four-spot tetrahedral pattern of Figure 7(a) of section 2.1.
A pattern was classified as unstable when the amplitude of one of the spots collapsed to zero
on an O(1) time-scale (as in Figure 12(b)) while deemed not to be caused by a triggering due
to slow spot dynamics (see brief discussion below). Otherwise, the pattern was classified as
stable. The results of these computations for ε = 0.03, A = 10 are shown in Figure 15(a),(b),
where numerically stable (unstable) parameter sets are marked by solid (open) circles. The
leading-order competition stability threshold is indicated by the dashed line, while the refined
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Figure 15. Comparison of the predictions of the refined competition stability threshold (3.19) (solid curves)
with the full numerical results computed from (1.2) using FlexPDE6 [6] for a two spot pattern with spots at
x1 = (0, 0, r0) and x2 = −x1 for A = 10 and ε = 0.03 inside the unit ball. The vertical axis is Dcomp (a)
and Scomp (b). The solid (open) dots represent parameter sets where the pattern was observed numerically
from FlexPDE6 to be stable (unstable). The horizontal dotted lines are the leading-order competition thresholds
Dcomp ≡ (A2S−2

cf )/36 ≈ 0.136 (a) and Scomp ≡ Scf ≈ 4.52 (b).

threshold is plotted in the heavy solid line. As expected, the smaller the distance between
the spots, the smaller the diffusivity D must be in order for the pattern to be stable. We
observe excellent agreement between the refined asymptotic theory and results from the full
PDE solution.

Similarly, in Figure 16(a),(b) with ε = 0.03 and D = 1, we show a favorable comparison
between the refined stability threshold (3.19) and full numerical results computed from (1.2)
using FlexPDE6 [6] for the case where N = 4 spots are placed at the vertices of a tetrahedron
of radius r0 < 1 concentric within the unit ball. The true steady-state of the slow dynamics is
when r0 = 0.564 (see Table 1). For this case, there is a mode degeneracy in that k2 = k3 = k4,
so that up to O(ε) terms the entire 3-D subspace perpendicular to e becomes unstable as Sc

crosses below Scomp. As a result, although the refined stability theory determines the stability
threshold, the linearized stability theory is not capable of identifying which mode of instability
is dominant.

We make three remarks. First, with regards to numerically determining the stability
of quasi-equilibrium patterns, the process was made difficult by the slow drift of concentric
patterns to their equilibrium radius rc (see Table 1 of section 4). When r0 > rc, an originally
stable pattern may become unstable as the spots drift closer together. Starting close to
threshold, the dynamics can destabilize a pattern rather quickly when ε is only moderately
small. Thus, a pattern needed to be initialized farther below threshold in order to be more
assuredly classified as stable, resulting in apparently poorer agreement with asymptotics when
r0 > rc. When r0 < rc, dynamics increases distances between spots so that an originally stable
pattern will remain stable for all time. On the other hand, the O(1) instability of an unstable
pattern will trigger before the O(ε3) dynamics can stabilize it. This results in seemingly
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Figure 16. Comparison of the predictions of the refined competition stability threshold (3.19) (solid curves)
with the full numerical results computed from (1.2) using FlexPDE6 [6] for a four-spot pattern with spots
centered at the vertices of a tetrahedron of radius r0 < 1 concentric within the unit ball. The parameters are
D = 1 and ε = 0.03. The vertical axis is the competition instability threshold for A (a) and S (b). The solid
(open) dots represent parameter sets where the pattern was observed numerically from FlexPDE6 to be stable
(unstable). The horizontal dotted lines are the leading-order competition thresholds Acomp ≡ 12

√
DScf ≈ 54.24

(a) and Scomp = Scf ≈ 4.52 (b).

better agreement with asymptotics when r0 < rc. Second, even though the linear theory
predicts that all modes destabilize simultaneously at S = Scomp, we have only numerically
observed the annihilation of a single spot at a time, regardless of initial conditions. This mode
selection may be due to an effect of higher order than the above analysis can capture. Finally,
for the case where e is not an eigenvector of G, it is much more challenging to calculate
ε-dependent correction terms to the leading-order competition stability threshold Scf , and
we do not perform this analysis here. This difficulty arises due to the need to resolve the
intricate imperfection-sensitive bifurcation structure that exists near Scf whenever e is not an
eigenvector of G.

3.1. Linear stability of asymmetric patterns. In this subsection we briefly formulate the
leading-order linear stability problem for the asymmetric patterns of (2.21). It is beyond the
scope of this paper to give a comprehensive study of the stability of these patterns, and we
give only a partial result showing the instability of asymmetric patterns for which Nr ≥ Nℓ.
While previous studies of 2-D spot problems (cf. [25], [18]) have found that certain asymmetric
patterns can be stable in a particular regime, we have not been able to numerically observe any
stable asymmetric patterns (even when Nr < Nℓ) in the 3-D Schnakenberg model, perhaps
owing to the small domain of attraction of such patterns.

The formulation of the linear stability problem proceeds in a manner similar to that for
the symmetric pattern, with the critical difference being that B(λ;S) need not be zero. The
relationship B(λ;S) must therefore be determined in order to determine stability. To begin,

we index the spots so that spots corresponding to strength Sℓ,r are located at x(ℓ,r)
j , for

j = 1, . . . , Nℓ,r. Then in the inner region near x(ℓ,r)
j where (vqe, uqe) ∼ (

√
Dν(ℓ,r), µ(ℓ,r)/

√
D),



320 J. C. TZOU, S. XIE, T. KOLOKOLNIKOV, AND M. J. WARD

we let φ ∼ c(ℓ,r)j Φ(ℓ,r)(ρ) and ψ ∼ c(ℓ,r)j Ψ(ℓ,r)(ρ)/D in (3.2). This results in the inner eigenvalue

problem of (3.4) with the far-field condition Ψ(ℓ,r) ∼ 1/ρ+B(λ;Sℓ,r). By the same matching
procedure leading to (3.10), we have that

(3.21)
c(ℓ)j B(λ;Sℓ)

D
= ψ0 ,

c(r)j B(λ;Sr)

D
= ψ0 .

The weights associated with the perturbation of each type of spot must then have a common
value, so that

(3.22) c(ℓ)j = cℓ , j = 1, . . . , Nℓ ; c(r)j = cr , j = 1, . . . , Nr .

Together with (3.21), (3.22) yields the first equation for cℓ and cr,

(3.23a) B(λ;Sℓ)cℓ −B(λ;Sr)cr = 0 ,

while the second equation comes from the solvability condition (3.8), which we rewrite as

(3.23b) Nℓcℓ +Nrcr = 0 .

A nontrivial solution to the system (3.23) exists if and only if λ satisfies the transcendental
equation K(λ) = 0, where

(3.24) K(λ) ≡ Nr

Nℓ
+

B(λ;Sr)

B(λ;Sℓ)
,

where for given positive integers Nr and Nℓ, the source strengths Sℓ and Sr are determined
by the nonlinear algebraic system (2.22). The asymmetric pattern is unstable if (3.24) has a
root in ℜ(λ) > 0, and it is linearly stable if all roots to (3.24) are in ℜ(λ) < 0.

We now give a numerically assisted proof for the existence of at least one positive real root
of (3.24) when Nr ≥ Nℓ. We first recall that B(0, S) = −µ′

0(S). Together with the one-sided
inverse functions Sℓ = Sℓ(µ0) and Sr = Sr(µ0) of the map µ0(S), we obtain

(3.25) K(0) ≡ Nr

Nℓ
−D(µ0) ; D(µ0) ≡ −µ′

0 [Sr(µ0)]

µ′
0 [Sℓ(µ0)]

> 0 .

The function µ0(S) is shown in Figure 3(a). Observe that µ′
0(S) > 0 (µ′

0(S) < 0) when
S > Scf (S < Scf ). In Figure 17(a) we plot the numerically computed function D(µ0) versus
µ0 on µ0 > µ0min, where µ0min = µ0(Scf ). By L’Hopital’s rule we must have D(µ0min) = 1.
However, our plot in Figure 17(a) shows that 0 < D(µ0) < 1 for µ0 > µ0min. Therefore, when
Nr ≥ Nℓ, we have from (3.25) that K(0) > 0. Next, we note that because the entire right
branch of µ0(S) is stable with respect to positive real eigenvalues, B(λ;Sr) must be of only
one sign when λ is positive real. With B(0;Sr) = −µ′

0[Sr(µ0)] < 0, we have that B(λ;Sr) < 0
for all λ > 0. Now since the left branch is unstable to a competition instability, there must
exist a λc positive real such that B(λc;Sℓ) = 0. With B(0;Sℓ) = −µ′

0[Sℓ(µ0)] > 0, we must
have B(λ;Sℓ) > 0 when 0 < λ < λc. Therefore, as λ → λ−c , K → −∞. Using that K(0) > 0
whenever Nr ≥ Nℓ, we conclude from the intermediate value theorem that there must exist
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Figure 17. In (a), we plot D(µ0) defined in (3.25) versus µ0 on µ0 > µ0min. Here, Sℓ < Scf (Sr > Scf ) is
the smaller (larger) value of S associated with µ0(S) (see Figure 3(a)). In (b), we plot B(λ;Sℓ) (dashed line) and
B(λ;Sℓ). Here, Sℓ = 3.06 and Sr = 6.99 are solutions of (2.22) with Nℓ = Nr = 1 and A|Ω|/(4π

√
D) = 10.05.

For the particular parameters used, B(λ;Sℓ) crosses 0 at λc ≈ 0.65, while B(λ;Sr) has constant sign. In (c),
with Nℓ = Nr = 1, we plot the positive root of K(λ) in (3.24) satisfying 0 < λr < λc. Observe that λr → 0+ as
A|Ω|/(4π(2)

√
D) → S+

cf .

a positive real root 0 < λr < λc to (3.24). As such, all asymmetric patterns of (2.21) with
Nr ≥ Nℓ are unstable to a monotonic instability. In Figure 17(b), we show typical curves
for B(λ;Sℓ) (dashed line) and B(λ;Sr) (solid line) for λ > 0 with Sℓ = 3.06 and Sr = 6.99.
Here, B(λ;Sℓ) crosses 0 at λc ≈ 0.65, while B(λ;Sr) is of constant sign. In Figure 17(c),
we plot the positive real root satisfying 0 < λr < λc of K(λ) in the case Nℓ = Nr = 1. As
A|Ω|/(4π(2)

√
D) → S+

cf , the asymmetric pattern approaches a symmetric two spot pattern
with S1 = S2 = Scf . From the leading-order stability theory, this pattern is neutrally stable
with a zero eigenvalue, consistent with Figure 17(c).

The argument above cannot, in general, be applied when Nr < Nℓ. Numerical solutions
of K(λ) = 0 in the case Nr = 1 and Nℓ = 3 (dotted branch in the right panel of Figure 5)
indicate that the solution at the saddle node is neutrally stable, while the upper branch is
unstable to a real positive eigenvalue. There is no positive real root of K(λ) on the lower
branch, though numerical solutions of the full PDE still indicate that these solutions are
monotonically unstable. This may be due to a small domain of attraction of solutions on the
lower branch. A full characterization of the stability of asymmetric branches with Nr < Nℓ,
as well as a refined stability theory for general asymmetric patterns, is beyond the scope of
this paper.

3.2. Spot self-replication: A peanut-splitting instability. Next, we analyze the linear
stability of a quasi-equilibrium pattern to localized radially asymmetric perturbations near
each spot. Because this instability to leading order is local and does not involve coupling
between spots, the same analysis applies to both symmetric and asymmetric patterns. In the
jth inner region, we use the local behavior (2.17) and φ(xj + εy) = Φ(y) and ψ(xj + εy) =
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Ψ(y)/D to write (3.2) as
(3.26)
∆yΦ−Φ+2UcVcΦ+V 2

c Ψ = λΦ , ∆yΨ− 2UcVcΦ−V 2
c Ψ = 0 , Φ → 0 as |y| → ∞ ,

where Uc and Vc satisfy the common core problem (2.16). For (3.26), we impose the usual
regularity conditions at |y| = 0, while the far-field condition for Ψ depends on the mode of
the perturbation. That is, we decompose Φ and Ψ into spherical harmonics as

(3.27) Φ = Pm
ℓ (cos φ)eimθF (ρ) , Ψ = Pm

ℓ (cos φ)eimθH(ρ) ,

where yt = ρ(sinφ cos θ, sinφ sin θ, cosφ), with 0 < φ < π and 0 < θ ≤ 2π being the spherical
angles. In (3.27), Pm

ℓ (z) are the associated Legendre polynomials, ℓ is a positive integer, and
m = 0, . . . , ℓ. The ℓ = 1 mode represents the translation mode for which λ = O(ε3); these
eigenvalues are captured in the analysis of slow spot dynamics studied in section 4. The ℓ = 0
mode is associated with the competition instability studied in section 3. As such, we consider
only the modes ℓ ≥ 2. Substituting (3.27) into (3.26), we obtain the radially symmetric
eigenvalue problem

LℓF − F + 2UcVcνF + V 2
c H = λF , F (0) = 0 , F → 0 , as ρ→ ∞ ,(3.28a)

LℓH − 2UcVcF − V 2
c H = 0 , H(0) = 0 , H ∼ 1

ρℓ+1
, as ρ→ ∞ ,(3.28b)

where we have defined the operator Lℓ by Lℓ ≡ ∂ρρ + 2ρ−1∂ρ − ℓ(ℓ + 1)ρ−2. In (3.28), the
boundary conditions at ρ = 0 are required for the regularity of LℓF and LℓH at the origin.

By solving (3.28) discretely for a range of S, we find that the eigenvalue with largest real
part is real, and for each ℓ it is negative (positive) when S < Σℓ (S > Σℓ). Here, Σℓ depends
on ℓ and, for the first three modes that we consider, has the ordering Σ2 < Σ3 < Σ4 as shown
in Figure 18. We have found that this ordering persists for the higher modes and thus see that
the ℓ = 2 mode is the dominant instability. The corresponding threshold is Σ2 ≈ 20.16. This
linear instability mechanism is found numerically to trigger a nonlinear event leading to the
splitting of a radially symmetric spot into two. In the analysis of localized spot patterns for
the 2-D Schnakenberg model [12], this has been referred to as a “peanut-splitting instability.”
In our 3-D case, there is a mode degeneracy in the sense that the radial modes m = 0, 1, 2 all
lose stability simultaneously. The mode that is activated presumably depends on the initial
conditions.

In terms of the original parameters of the Schnakenberg model, the splitting instability
occurs when the total inhibitor feed-rate A|Ω| is sufficiently large to support more than the
current number of spots, or when interaction between the spots is sufficiently weak (D is
small). We remark that, in contrast to the competition mode, the peanut splitting is a local
instability in that there is no leading-order coupling between the spots. That is, a particular
spot will split if its strength exceeds Σ2, independent of the other spots. The spots of a
symmetric pattern will therefore also split simultaneously if Sc > Σ2. Together with the
competition stability criterion (3.14), our leading-order asymptotic theory predicts that the
symmetric quasi-equilibrium N -spot pattern is linearly stable on an O(1) time-scale if and
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Figure 18. Plot of the eigenvalue of (3.28) with largest real part versus S for ℓ = 2 (heavy solid line), ℓ = 3
(light solid line), and ℓ = 4 (heavy dashed line). As S increases, the ℓ = 2 mode is the first to become unstable.

only if

(3.29) Scomp <
A|Ω|

4πN
√
D

< Σ2 ; Scomp ≈ 4.52, Σ2 ≈ 20.16 .

These thresholds are equivalent to thresholds for A given in (1.3) and are in excellent agree-
ment with numerics, as Figures 1 and 2 show.

The leading-order thresholds (1.3) provide an excellent prediction for when the splitting
first starts to occur but do not predict which spot(s) will split. In fact, it is surprising that
only one spot splits at a time. Indeed, on snapshot 7 of Figure 1 (A = 173.248), one can
observe that at least two spots initiate the deformation (right and center spots). However,
eventually only the center spot undergoes splitting. This is also very different qualitatively
from both one and two dimensions. For example, in [12] the authors performed an analogous
experiment in two dimensions and observed that increasing A past the threshold resulted in
multiple spots splitting simultaneously. Similarly, in one dimension, multiple spots tend to
replicate simultaneously [11]. A two-order expansion of Sj—see (2.35)—shows that the largest
Sj corresponds to the smallest value of (Ge)j . This suggests that as A is increased, the spot
that self-replicates is the one with the smallest value of (Ge)j. Figure 19 shows self-replication
with seven spots. The value of (Ge)j is indicated for each spot in the figure. While all of these
values are rather close, the self-replicating spot is indeed the one with the smallest such value
(−0.27).

4. Slow spot dynamics. In this section, we analyze the slow dynamics associated with
an N -spot quasi-equilibrium solution. To derive an ODE system characterizing the slow spot
dynamics, we must extend the calculation in section 2 to one higher order. We will proceed
by the method summarized at the end of section 2.1. In the inner region near the jth spot,
we let xj = xj(σ), where σ = ε3t, and expand the inner solution as

y = ε−1(x− xj(σ)) , v(xj + εy) =
√
D
[
Vjε(ρ) + ε2Vj2(y) + · · ·

]
,(4.1)

u(xj + εy) =
1√
D

[
Ujε(ρ) + ε2Uj2(y) + · · ·

]
,
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Figure 19. Numerical simulation of (1.2a) showing self-replication process of seven spots. Here ε = 0.06,
and A is very slowly increased according to the formula A = 200 + ε4t. Snapshots show the value of A at the
self-replication thresholds. Next to the spots, the value of (Ge)j is also given. Asymptotics predict that the spot
with the smallest value of (Ge)j will be the one that self-replicates.

with ρ ≡ |y|, where Ujε, Vjε satisfy the radially symmetric core problem

∆ρVjε − Vjε + UjεV
2
jε = 0 , V ′

jε(0) = 0 , Vjε → 0 , as ρ→ ∞ ,(4.2a)

∆ρUjε − UjεV
2
jε = 0 , U ′

jε(0) = 0 ,(4.2b)

with far-field behavior

(4.2c) Ujε ∼ µj − Sjε/ρ+ · · · , as ρ→ ∞ ,

where µj ≡ µ0(Sjε). The corresponding outer solution (see (2.33)) is given by

(4.3) u ∼ ξ − 4πε√
D

N∑

i=1

SiεG(x;xi) ,
N∑

i=1

Siε =
A|Ω|
4π

√
D

,

where Sjε, for j = 1, . . . , N , and ξ satisfy the nonlinear algebraic system (2.34).
We first expand u as x → xj , while retaining the higher-order gradient terms associated

with the Green’s function. Upon using (2.10b), we obtain in terms of inner variables that
(4.4)

u∼ξ− Sjε√
Dρ

− 4πε√
D

(GS)j−
4πε2√
D

y·

⎛

⎜⎝Sjε∇xR(x;xj)|x=xj+
N∑

i=1
i ̸=j

Siε∇xG(x;xi)|x=xj

⎞

⎟⎠, as x → xj ,

where G is the Neumann Green’s matrix. The O(ε2) term in (4.4) is the motivation for the
form of the higher-order expansion in (4.1) and the scaling for the slow time-scale σ = ε3t.

Upon substituting (4.1) into (1.2) and matching the inner solution to the O(ε2) term in
(4.4), we obtain that W2 = (Vj2, Uj2)T satisfies
(4.5a)

LW2≡∆yW2 +MεW2=−
(

x′
j ·∇yVjε

0

)
, y∈R2; W2∼

(
0

bj · y

)
, as |y| → ∞ .
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Here the 2× 2 matrix Mε and the vector bj are defined by
(4.5b)

Mε≡
(

−1 + 2UjεVjε V 2
jε

−2UjεVjε −V 2
jε

)
, bj≡−4πSjε∇xR(x;xj)|x=xj−4π

N∑

i=1
i ̸=j

Siε∇xG(x;xi)|x=xj .

Let y = (y1, y2, y3)T and Wjε ≡ (Vjε, Ujε)T . We observe upon differentiating the core
problem (4.2) with respect to ith coordinate yi of y that

L (∂yiWjε) = 0, where ∂yiWjε ≡ ρ−1

(
V ′
jε(ρ)

U ′
jε(ρ)

)
yi , for i = 1, 2, 3 .

This shows that the dimension of the nullspace of L, and consequently L⋆, is at least three-
dimensional. We will assume that this nullspace is exactly three-dimensional, which we can
verify numerically provided that Sjε does not coincide with the critical value Σ2 ≈ 20.16 for
the peanut-splitting instability.

From a Fredholm alternative criterion, the following lemma provides a necessary condition
for (4.5) to have a solution.

Lemma 4.1. A necessary condition for (4.5) to have a solution is that xj(σ) satisfies

(4.6) x′
j = − 3

κ1
bj , κ1 = κ1(Sjε) ≡

∫ ∞

0
ρ2P1(ρ)V

′
jε(ρ) dρ ,

where P1(ρ) is the first component of P(ρ) ≡ (P1(ρ), P2(ρ))T , which satisfies

(4.7) ∆ρP− 2

ρ2
P+MT

εP = 0 , 0 < ρ < ∞ ; P ∼
(

0
1/ρ2

)
, as ρ→ ∞ ,

and P = O(ρ) as ρ→ 0, where ∆ρP ≡ P′′ + 2ρ−1P′.

Proof. We first seek three independent nontrivial solutions to the homogeneous adjoint
problem L⋆Ψ ≡ ∆yΨ+MT

εΨ = 0 in the form Ψi ≡ P(ρ)yi/ρ for i = 1, . . . , 3. Since

∆y [Pyi/ρ] =

(
∆ρP− 2

ρ2
P

)
yi
ρ
,

we readily obtain that P(ρ) satisfies ∆ρP − 2ρ−2P + MT
εP = 0. To establish the far-field

behavior of P, we obtain, using (4.5b) for Mε and the fact that Vj0 → 0 exponentially as
ρ → ∞, that P2(ρ) satisfies P ′′

2 + 2ρ−1P ′
2 − 2ρ−2P2 ≈ 0 for ρ ≫ 1. The decaying solution to

this Euler’s equation implies that P2 = O(ρ−2) as ρ→ ∞, and the eigenfunction is normalized
by imposing the precise behavior that P2 ∼ 1/ρ2 as ρ→ ∞. In contrast, for P1(ρ) we obtain
that P ′′

1 + 2ρ−1P ′
1 − P1 ≈ 0 as ρ → ∞, so that P1 decays exponentially as ρ → ∞. In this

way, we obtain that P satisfies (4.7).
Next, to derive our solvability condition we use Green’s identity over a large ball of radius

|y| = ρ0 ≫ 1 to obtain that

(4.8) lim
ρ0→∞

∫

Ωρ0

(
ΨT

i LW2 −WT
2 L⋆Ψi

)
dy = lim

ρ0→∞

∫

∂Ωρ0

(
ΨT

i ∂ρW2 −WT
2 ∂ρΨi

) ∣∣∣
ρ=ρ0

dS .
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With Ψi ≡ P(ρ)yi/ρ, and for a fixed i ∈ {1, 2, 3}, we first calculate the left-hand side of this
expression using (4.5a) to obtain

lim
ρ0→∞

∫

Ωρ0

(
ΨT

i LW2 −WT
2 L⋆Ψi

)
dy = − lim

ρ0→∞

∫

Ωρ0

yi
ρ
P1(ρ)

(
x′
j ·∇yVjε

)
dy

= −
3∑

k=1

x′jk lim
ρ0→∞

∫

Ωρ0

yiyk
ρ2

V ′
jε(ρ)P1(ρ) dy ,(4.9)

where x′
j ≡ (x′j1, x

′
j2, x

′
j3)

T . By using symmetry considerations, we readily establish that∫
Ωρ0

yiykf(ρ) dy = 0 when i ̸= k and
∫
Ωρ0

y2i f(ρ) dy = 4π
3

∫ ρ0
0 ρ4f(ρ) dρ for any radially

symmetric function f(ρ). In this way, the last expression (4.9) becomes

(4.10) lim
ρ0→∞

∫

Ωρ0

(
ΨT

i LW2 −WT
2 L⋆Ψi

)
dy = −4π

3
x′ji

∫ ∞

0
ρ2P1(ρ)V

′
jε(ρ) dρ .

Next, we calculate the right-hand side of (4.8). For the first term on the right-hand side
of (4.8), we use P2(ρ) ∼ 1/ρ2, Uj1 ∼ bj·y, and ∂ρUj1 ∼ bj ·y/ρ as ρ→ ∞ to estimate that

lim
ρ0→∞

∫

∂Ωρ0

ΨT
i ∂ρW2|ρ=ρ0 dS= lim

ρ0→∞

∫

∂Ωρ0

P2(ρ)
yi
ρ
∂ρUj1

∣∣∣
ρ=ρ0

dS= lim
ρ0→∞

∫

∂Ωρ0

yi
ρ4

(bj ·y)
∣∣∣
ρ=ρ0

dS .

Then, since
∫
∂Ωρ0

yiykf(ρ)|ρ=ρ0 dS = 0 for i ̸= k, and writing dS = ρ20dΩ0, where dΩ0 is the

solid angle for the unit ball, we obtain that

(4.11) lim
ρ0→∞

∫

∂Ωρ0

ΨT
i ∂ρW2|ρ=ρ0 dS = lim

ρ0→∞

∫

∂Ωρ0

y2i
ρ20

bji dΩ0 =
4π

3
bji ,

for each i = 1, 2, 3. In a similar way, we can calculate the second boundary integral in (4.8) as

− lim
ρ0→∞

∫

∂Ωρ0

WT
2 ∂ρΨi|ρ=ρ0 dS = − lim

ρ0→∞

∫

∂Ωρ0

(bj ·y) ∂ρ
[
P2(ρ)

yi
ρ

] ∣∣∣
ρ=ρ0

ρ20 dΩ0

= − lim
ρ0→∞

∫

∂Ωρ0

(bj ·y) ∂ρ
(
yi
ρ3

) ∣∣∣
ρ=ρ0

ρ20 dΩ0

= lim
ρ0→∞

∫

∂Ωρ0

(bj ·y)
(
2yi
ρ4

) ∣∣∣
ρ=ρ0

ρ20 dΩ0

= 2 lim
ρ0→∞

∫

∂Ωρ0

bji
y2i
ρ20

∣∣∣
ρ=ρ0

dΩ0 =
8π

3
bji .(4.12)

By adding (4.11) and (4.12), we obtain that the right-hand side of (4.8) is 4πbji. Finally, by
equating this expression with that given in (4.10) for the left-hand side of (4.8), we obtain
that x′ji = −3bji/κ1, where κ1 is defined in (4.6). In vector form, with i = 1, 2, 3, we obtain
(4.6).
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By combining (4.6) with our expression for bj in (4.5b), we obtain an ODE–DAE system
for the slow spot dynamics given by

(4.13)
dxj

dt
=

12πε3

κ1

⎛

⎜⎝Sjε∇xR(x;xj)|x=xj +
N∑

i=1
i ̸=j

Siε∇xG(x;xi)|x=xj

⎞

⎟⎠ , j = 1, . . . , N ,

where κ1 = κ1(Sjε) and S1ε, . . . , SNε are determined from the nonlinear algebraic system
(2.34), which for ε≪ 1 depends weakly on the spot locations x1, . . . ,xN . This ODE–DAE sys-
tem is valid when the N -spot quasi-equilibrium pattern is linearly stable to either competition
or peanut-splitting instabilities, as was discussed in section 3. Our numerical computations
of κ1 shown in Figure 20(a) reveal that κ1 < 0 for 0 < Sj < Σ2 ≈ 20.16.

Numerical realizations of the ODE–DAE system (4.13) and (2.34) are readily possible
when Ω is the unit ball. In this special case, the Neumann Green’s function and its regular
part were given explicitly in (2.11). Since G(x; ξ) = G(ξ;x), we can write (2.11) as
(4.14)

G(x; ξ)=
1

4π

(
1

|x− ξ| +
1

|ξ|
1

|x− ξ′|

)
− 1

4π
log (T )+

1

8π
|x|2+h(ξ) , T ≡(ξ′−x)· ξ|ξ|+|ξ′−x| ,

for some h(ξ), where ξ′ ≡ ξ/|ξ|2. A simple calculation of the gradient, which is needed in
(4.13), yields

∇xG(x; ξ) = − 1

4π

(
x− ξ

|x− ξ|3 +
1

|ξ|
x− ξ′

|x− ξ′|3

)
+

1

4πT

(
ξ

|ξ| +
ξ′ − x

|x− ξ′|

)
+

x

4π
,(4.15a)

∇xR(x; ξ) = − 1

4π

1

|ξ|
x− ξ′

|x− ξ′|3
+

1

4πT

(
ξ

|ξ| +
ξ′ − x

|x− ξ′|

)
+

x

4π
.(4.15b)

For a particular parameter set, as described in the caption of Figure 20(b), we compare
results from (4.13) for a two spot evolution in the ball with corresponding full numerical results
computed from the PDE (1.2) using FlexPDE6 [6]. In our example, the two spots are initially
taken to be in an antipodal configuration so that e = (1, 1)T is an eigenvector of the Green’s
matrix G. As a result, from (2.36) we have S1ε = S2ε ≡ Sc = A/(6

√
D). The results shown

in Figure 20(b) show that the asymptotic result (4.13) is highly accurate in predicting the full
dynamics. For this special configuration, we obtain from (4.13) and (4.15) that x1 = (0, 0, z0)
and x2 = −x1, where z0 satisfies the explicit ODE

(4.16)
dz0
dt

= −3Scε3

|κ1|
F2(z0) , F2(z0) ≡

2z30(3− z40)

(z40 − 1)2
+ 2z0 −

1

4z20
.

It is readily verified that there is a unique root z0e to F2(z0) = 0 on 0 < z0 < 1, and using a
root finder we get z0e ≈ 0.42885, which confirms the result shown in Figure 20.

For an arbitrary initial configuration of spots, we recall from (2.35) that to leading order
in ε we have Sj = Sc+O(ε), where Sc is given in (2.14). Then, upon introducing the discrete
energy H(x1, . . . ,xN ) defined by

(4.17) H(x1, . . . ,xN ) ≡
N∑

i=1

R(xi;xi) + 2
N∑

i=1

N∑

j>i

G(xi;xj) ,
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Figure 20. (a) κ1 versus Sc computed numerically from (4.6), which shows that κ1 < 0 for 0 < Sc < Σ2 ≈
20.16. (b) Plot of the z-coordinate z0(t) > 0 of two antipodal spots initially located at (0, 0,±0.1375). The other
spot evolves as −z0(t). The solid curve is obtained from numerically solving the full Schnakenberg model (1.2)
in the unit ball, while the circles are obtained from numerically solving the ODE (4.16), as derived from (4.13),
with S1ε = S2ε = A/(6

√
D). The parameters are D = 1, A = 80, and ε = 0.02. For this parameter set, where

S1ε ≈ 13.33, we get κ1 = −2.0395.

we can write (4.13) in the form of a gradient flow. The result is summarized as follows.

Main Result 4.2. Let ε → 0, and suppose that the N -spot quasi-equilibrium solution of
(1.2) is linearly stable on an O(1) time-scale to either competition or peanut-splitting insta-
bilities. Then to leading order in ε, the collection of spots evolves by the gradient flow

(4.18)
dxj

dt
= −6πε3Sc

|κ1|
∇xjH(x1, . . . ,xN ) , j = 1, . . . , N ; Sc =

A|Ω|
4πN

√
D

,

where the discrete energy H is defined in (4.17). Here κ1 = κ1(Sc) is defined in (4.6). In
terms of the spatial configuration {x1, . . . ,xN} of spots, a two-term expansion for the spot
strengths when µ′

0(Sc) ̸= 0 is

(4.19) Sjε ∼ Sc +
4πεSc

µ′
0(Sc)

(
eTGe
N

− (Ge)j
)
+ · · · , j = 1, . . . , N ,

where e = (1, . . . , 1)T and G is the Neumann Green’s matrix.

We now use (4.18) to discuss possible steady-state spot configurations. It follows from
(4.18) that spatial configurations of steady-state spots are critical points of the discrete energy
H, and that patterns that are linearly stable with respect to the ODE dynamics (4.18) are
minima of H. The discrete energy H also arises in the analysis of the MFPT for a Brownian
walk in a 3-D domain with small localized spherical traps (cf. [3]). Following the decomposition
in [3], we define H0 by
(4.20)

H(x1, . . . ,xN )=
H0

4π
−7N2

10π
, H0≡4π

⎡

⎣
N∑

i=1

(
R(xi;xi)+

7

10π

)
+2

N∑

i=1

N∑

j>i

(
G(xi;xj)+

7

10π

)⎤

⎦.
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Table 1
Numerically computed minimal values of the discrete energy function H0 for the optimal arrangement of

N-traps within a unit ball where the optimization is restricted to a one-ring configuration H(a)
0 , or to a one-ring

configuration with a center spot H(b)
0 (see [3]). The minimum of these two values is shown in boldface. The

unrestricted optimization of H0 gives results extremely close to the restricted minimum energies in this table,
but that not all spots lie exactly on a ring of a common radius.

N H(a)
0 Spherical radii H(b)

0 Spherical radii

rj = rc for all j rj = rc for all j , (r1 = 0)

2 7.2763 0.429 9.0316 0.563

3 18.5047 0.516 20.3664 0.601

4 34.5635 0.564 36.8817 0.626

5 56.2187 0.595 58.1823 0.645

6 82.6490 0.618 85.0825 0.659

7 115.016 0.639 116.718 0.671

8 152.349 0.648 154.311 0.680

9 195.131 0.659 196.843 0.688

10 243.373 0.668 244.824 0.694

11 297.282 0.676 297.283 0.700

12 355.920 0.683 357.371 0.705

13 420.950 0.689 421.186 0.710

14 491.011 0.694 491.415 0.713

15 566.649 0.698 566.664 0.717

16 647.738 0.702 647.489 0.720

17 734.344 0.706 733.765 0.722

18 826.459 0.709 825.556 0.725

19 924.360 0.712 922.855 0.727

20 1027.379 0.715 1025.94 0.729

For the unit ball, in Table 1 we give some results for N = 2, . . . , 20 computed in [3] using nu-
merical optimization software for a restricted optimization problem, whereby H0 is minimized
subject to the condition that either all N spots must be on a single ring (second and third
columns) or all N − 1 points are on a single ring while the remaining spot is at the origin
(fourth and fifth columns). From this table we observe for N ≥ 16 that the second class of
patterns gives a smaller H0. It was found in [3] that, for N = 2, . . . , 20, an unrestricted opti-
mization of H0 gives results that coincide to the number of digits shown with the restricted
minimum energies in Table 1, with all spots being very close to, but not exactly on, a common
ring of radius rc. As a result, for N = 2, . . . , 20, the global minimum of H0 can be predicted
rather accurately from the restricted optimization results in Table 1.

Point configurations corresponding to such global minima of H0 are linearly stable equi-
libria of the ODE dynamics (4.18). We then perform numerical simulations of (4.18) with
randomly generated initial conditions in an attempt to classify steady-states of (4.18) with
large basins of attraction of initial conditions. We find for N = 2, 3, 4, 6, 8 that the computed
steady-state solutions agree precisely with those for the one-ring patterns shown in the second
and third columns in Table 1 and that, for these values of N , e = (1, . . . , 1)T is an eigenvector
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of the Green’s matrix G at the steady-state. In particular, for N = 2, the first row of Table
1 predicts that a two spot steady-state of (4.18) will correspond to antipodal spots on an
interior ball of radius rc ≈ 0.429, which is precisely what was observed in the results shown
in Figure 20(b). In addition, for N = 4 we observe from Table 1 that the bifurcation diagram
shown in Figure 7(a) corresponds to true steady-state solutions. Moreover, our numerical
results show for N = 12 that some initial conditions for (4.18) lead to a steady-state where
the spots are centered at the vertices of an icosahedron with discrete energy and radius given
in Table 1, for which e is an eigenvector of G, while other initial conditions lead to a pattern
with 11 spots nearly on a common ring with a spot at the center. For N = 13, 14, 15, initial
conditions lead either to spots nearly on a common ring or to the near-ring and center-hole
pattern. For N = 16, . . . , 20 our computations of (4.18) lead typically to the near-ring and
center-hole pattern. For N = 12, . . . , 20, we find that the discrete energies at the steady-state
coincide very closely with the restricted optimization results in Table 1. For N = 5, our sim-
ulations of (4.18) with random initial conditions show that (4.18) converges to a steady-state
with two antipodal spots at a distance of 0.59279 from the origin, and with three spots equally
spaced on a midplane with spots being at a distance of 0.59605 from the origin.

4.1. Spot dynamics with a spatially varying feed-rate. In this subsection we extend our
previous analysis of (1.2) to the case where the feed-rate A depends on x, with A(x) > 0 in
Ω. We only briefly highlight the new features of the analysis needed when A = A(x).

We proceed by the method discussed at the end of section 2.1. Since the inner solution
near each spot does not depend on A, we can proceed as in section 2.1 to allow the source
strength Sj in (2.2) to depend weakly on ε, and so we write Ujε, Vjε to be the solution to
(2.2) for which Ujε ∼ µj −Sjε/ρ as ρ→ ∞, where µj ≡ µ0(Sjε). In place of (2.32), the outer
solution now satisfies

(4.21) ∆u ∼ −εA(x)
D

+
4πε√
D

N∑

j=1

Sjεδ(x− xj) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω .

By the divergence theorem, we obtain that

(4.22)
N∑

i=1

Siε =
Ā|Ω|
4π

√
D

, Ā ≡ 1

|Ω|

∫

Ω
A(x) dx .

The exact solution to (4.21) is simply

(4.23) u = ξ +
ε

D
u1p(x)−

4πε√
D

N∑

i=1

SiεG(x;xi) ,

where ξ is a constant, G is the Neumann Green’s function of (2.10), and u1p(x) is the unique
solution to

(4.24) ∆u1p = −A(x) + Ā , x ∈ Ω ; ∂nu1p = 0 , x ∈ ∂Ω ;

∫

Ω
u1p dx = 0 ,
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which is given explicitly by

(4.25) u1p(x) =

∫

Ω
G(ξ;x)A(ξ) dξ .

By expanding (4.23) as x → xj we obtain in terms of inner variables that

(4.26) u ∼ ξ − Sjε√
Dρ

+
ε

D
u1p(xj)−

4πε√
D

(GS)j +
ε2√
D
y·b̃j + · · · , as x → xj ,

where G is the Neumann Green’s matrix, S ≡ (S1ε, . . . , SNε)T , and where we have defined b̃j

by

(4.27) b̃j ≡
1√
D
∇xu1p|x=xj − 4π

⎛

⎜⎝Sjε∇xR(x;xj)|x=xj +
N∑

i=1
i ̸=j

Siε∇xG(x;xi)|x=xj

⎞

⎟⎠ .

Upon matching (4.26) to the far-field behavior of the jth inner solution defined in (4.1) we
obtain, in place of (2.34), that Sjε, for j = 1, . . . , N , and ξ now satisfy

(4.28) ξ − 4πε√
D

(GS)j +
ε

D
u1p(xj) =

µ0(Sjε)√
D

, j = 1, . . . , N ;
N∑

j=1

Sjε =
Ā|Ω|
4π

√
D

,

where the graph of µ0(Sjε) versus Sjε was shown in Figure 3(a). In addition, we obtain that
W2 = (Vj2, Uj2)T now satisfies (4.5) with bj replaced by b̃j . Therefore, by using Lemma 4.1
we can determine the slow spot dynamics in terms of b̃j. This yields, in place of (4.13), that
the ODE–DAE system for the slow spot dynamics when A = A(x) is, for each j = 1, . . . , N ,
(4.29)

dxj

dt
= − ε3

κ1

⎡

⎢⎣
3√
D
∇xu1p|x=xj − 12π

⎛

⎜⎝Sjε∇xR(x;xj)|x=xj +
N∑

i=1
i ̸=j

Siε∇xG(x;xi)|x=xj

⎞

⎟⎠

⎤

⎥⎦ ,

where S1ε, . . . , SNε are now determined from the nonlinear algebraic system (4.28), and κ1 =
κ1(Sjε) < 0 from Figure 20(a). Finally, upon making the leading-order approximation Sj =
Sc +O(ε), for j = 1, . . . , N , where

(4.30) Sc =
Ā|Ω|

4πN
√
D

,

we can readily reduce (4.29) to the following simple result.

Main Result 4.3. Let ε → 0, and suppose that the N -spot quasi-equilibrium solution of
(1.2) with A = A(x) > 0 is linearly stable on an O(1) time-scale to either competition or
peanut-splitting instabilities. Then, to leading order in ε, the slow time evolution of the col-
lection of spots satisfies, for each j = 1, . . . , N ,

(4.31)
dxj

dt
= −12πScε3

|κ1|

⎛

⎜⎝∇xR(x;xj)|x=xj +
N∑

i=1
i ̸=j

∇xG(x;xi)|x=xj −
N

Ā|Ω|
∇xu1p|x=xj

⎞

⎟⎠ ,
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where Sc is given in (4.30). In terms of the discrete energy H of (4.17), we have equivalently
that

(4.32)
dxj

dt
= −6πScε3

|κ1|

(
∇xjH(x1, . . . ,xN )− 2N

Ā|Ω|
∇xu1p|x=xj

)
, j = 1, . . . , N ,

where u1p, which satisfies (4.24), is given explicitly in (4.25). Here κ1 = κ1(Sc) < 0 is defined
in (4.6) (see Figure 20(a)). In terms of the spatial configuration {x1, . . . ,xN} of spots, a
two-term expansion for the source strengths when µ′

0(Sc) ̸= 0, as obtained from (4.28), is
(4.33)

Sjε ∼ Sc+
4πεSc

µ′
0(Sc)

(
eTGe
N

− (Ge)j
)
+

ε√
Dµ′

0(Sc)

(
u1p(xj)−

1

N

N∑

i=1

u1p(xi)

)
, j = 1, . . . , N ,

where e = (1, . . . , 1)T and G is the Neumann Green’s matrix.

We now illustrate Main Result 4.3 for a few choices of the variable feed A in the unit ball.

Example 1 (radially symmetric feed-rate: A = A(r)). We first use (4.31) to derive an ODE
for a one spot solution centered at x1 = (r, 0, 0) along the positive x axis inside a unit ball
when the feed-rate A is purely radial, i.e., A = A(r). We use Sc = Ā/(3

√
D) from (4.30),

together with (4.15) and the solution u1p to (4.24), to readily obtain that (4.31) reduces to

(4.34)
dr

dt
= − Āε3√

D|κ1|
F1a(r) , where F1a(r) ≡

r(2− r2)

(1− r2)2
+

3

Ār2

∫ r

0
A(ρ)ρ2 dρ ,

and Ā = 3
∫ 1
0 ρ

2A(ρ) dρ. Since F1a(0) = 0, r = 0 is always an equilibrium point. Moreover,
since F1a(r) ∼ r

[
2 +A(0)/Ā

]
> 0 as r → 0, it follows that r = 0 is a stable equilibrium point

of the ODE (4.34) for any A(r) > 0. Finally, since F1a(r) > 0 on 0 < r < 1, we conclude
that there is no radially symmetric feed-rate that can lead to the pinning of a spot at some
distance re, with 0 < re < 1, from the origin.

Next, we consider a two spot pattern in a spherical domain where the spots are symmet-
rically placed at x1 = (r, 0, 0) and x2 = −x1 with 0 < r < 1. Assume that A = A(r) > 0. We
use Sc = Ā/(6

√
D) from (4.30), together with (4.15) and the solution u1p to (4.24), to readily

obtain that (4.31) reduces to

(4.35)
dr

dt
= −3Scε3

|κ1|
F2a(r) , F2a(r) ≡

2r3(3− r4)

(r4 − 1)2
+ r − 1

4r2
+

3

r2Ā

∫ r

0
Aρ2 dρ ,

where Ā = 3
∫ 1
0 ρ

2A(ρ) dρ. Any steady-state r0e of (4.35) must satisfy

(4.36)
2r5(3− r4)

(r4 − 1)2
+

∫ r
0 ρ

2A(ρ) dρ
∫ 1
0 ρ

2A(ρ) dρ
=

1

4
− r3 .

The left-hand side of (4.36) is monotone increasing, is zero at r = 0, and is unbounded as
r → 1−. Since the right-hand side is monotone decreasing on 0 < r < 1 and has a unique sign
change at r = 4−1/3, it follows that there is a unique steady-state solution r0e to (4.35) on
0 < r0e < 4−1/3 for any A(ρ) > 0. Therefore, the effect of the radially symmetric feed-rate is
simply to modify the location of the steady-state observed in Figure 20 for the case where A
was constant.
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Example 2 (pinning of a spot). We consider a one spot solution and take A(x) = A0+Bz
with 0 < B < A0, where x = (x, y, z)T . For this case, Ā = A0, and we calculate from (4.24)
that

(4.37) u1p(x) =
Bz

10

(
3− |x|2

)
, ∇xu1p(x) =

B

10

(
−2xz,−2yz, 3 − |x|2 − 2z2

)T
.

We obtain from (4.15b) that

(4.38) ∇xR(x;x1)|x=x1 =
x1

4π

[
2− r2

(1− r2)2
+ 1

]
,

so that (4.31) with N = 1 and u1p as in (4.37) yields that

(4.39)
dx1

dt
= −3ε3S1

|κ1|

[
x1

(
(2− r2)

(1− r2)2
+ 1

)
+

3B

10A0

(
2x1z1, 2y1z1,−3 + r2 + 2z21

)T
]
,

where r = |x1| and S1 = A0/(3
√
D). The steady-state for (4.39) is x1e = y1e = 0, while

z1e = re is the unique root on 0 < re < 1 of

(4.40) r

(
(2− r2)

(1− r2)2
+ 1

)
=

9B

10A0
(1− r2) ,

which can be found numerically. In particular, if A0 = 40 and B = 20 so that A(x) =
40 (1 + z/2), the unique equilibrium point is (x1e, y1e, z1e)T = (0, 0, 0.14387)T . Therefore, in
this case we predict that the variable feed-rate leads to an equilibrium spot solution on the
positive z axis in the direction where the feed is largest. For ε = 0.03 and the initial location
x1(0) = (0.4, 0.5, 0.3)T , this is confirmed in Figure 21(a) from a FlexPDE6 [6] full numerical
computation of (1.2). We remark that the full numerical results in Figure 21(a) compare very
favorably with results from the ODE (4.39).

Example 3 (pinning of a spot by a localized source of feed). Finally, we consider one spot
dynamics for the case where the variable feed-rate has a background state that is augmented
by a localized source where the feed is large. As a model for this situation we take

(4.41) A(x) = A0 +Bδ(x − ξ) ,

where A0 > 0, B > 0, and ξ ∈ Ω. We calculate Ā = A0 +B/|Ω|, and the solution to (4.24) is
u1p(x) = BG(x; ξ). From (4.31) and (4.15), we obtain that the one spot dynamics is

(4.42)
dx1

dt
= −3ε3S1

|κ1|

[
x1

(
(2− r2)

(1− r2)2
+ 1

)
− 3B

A0 +B/|Ω|∇xG(x; ξ)|x=x1

]
,

with S1 = (A0 +B/|Ω|) /(3
√
D), and where ∇xG(x; ξ)|x=x1 can be calculated from (4.15a).

Due to the 1/r singularity inG, it follows from (4.42) that if the initial point x1(0) is sufficiently
close to the source ξ of the feed, then we claim that x1(T ) = ξ at some t = T < ∞. To see this,
we observe from (4.42) and (4.15a) that for x1 near ξ, we have dx1/dt ∼ −c(x1 − ξ)/|x1 − ξ|3
for some c > 0, which implies that |x1 − ξ| ∼ (3c)1/3(T − t)1/3 for t near T .
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(a) Example 2: x1 versus t.
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(b) Example 3: |x1(t)− ξ| versus t.

Figure 21. (a) Plot of the full numerical results (discrete points) computed from (1.2) using FlexPDE6
[6] for the three components of the spot trajectory x1 versus t for Example 2 where A(x) = 40 + 20z, D = 1,
ε = 0.03, and with initial condition x1(0) = (0.4, 0.5, 0.3)T . The three curves are the asymptotic result (4.39)
with the labels x (dotted line), y (dashed line), and z (solid line), where x1 = (x, y, z)T . The results confirm that
x1 → (0, 0, 0.14387)T as t → ∞. (b) Numerical solutions of the ODE (4.42) (continuous curves) for Example
3 where A(x) is given in (4.41) with D = 1 and ε = 0.03. The discrete points are full numerical results
computed from (1.2) using FlexPDE6 [6]. The parameters are A0 = 20 and B = 20|Ω|, with |Ω| = 4π/3. The
localized feed is at ξ = (0, 0, 0.5), and we plot the distance |x1(t)−ξ| versus t for three initial conditions: x1(0) =
(0, 0.7,−0.2)T (heavy solid curve), x1(0) = (−0.7,−0.2,−0.6)T (solid curve), and x1 = (−0.5, 0.0, 0.0)T (dotted
curve).

This finite-time pinning phenomenon is shown in Figure 21(b) where we plot the distance
|x1(t) − ξ| versus t for a one spot solution in the unit ball for the parameter set A0 = 20,
B = 20|Ω|, D = 1, and ε = 0.03. In this figure we show a very favorable comparison between
results computed from the asymptotic ODE (4.42) and the full numerical solution to (1.2)
using FlexPDE6 [6] for three different initial conditions x1(0). When using FlexPDE6 on
(1.2) for A(x) given in (4.41), we mollified the delta singularity by using the following 3-D
Gaussian approximation with σ = 0.005:

A(x) = A0 +BF (|x− ξ|) , where F (|x− ξ|) ≡ (πσ)−3/2 exp
(
−σ−1|x− ξ|2

)
.

5. Discussion. We have developed a hybrid asymptotic-numerical approach to analyze
the existence, linear stability, and slow dynamics of quasi-equilibrium N -spot patterns for
the singularly perturbed three-dimensional (3-D) Schnakenberg model (1.2) in the limit ε →
0. In terms of the original model (1.1), such patterns occur in the large diffusivity regime
D = O(ε−4). Our hybrid asymptotic-numerical framework characterizing the linear stability
of quasi-equilibrium spot patterns and slow spot dynamics was implemented numerically for
some spot patterns in the unit ball. Our linear stability results and asymptotic predictions
for the slow spot dynamics were shown to compare very favorably with results obtained from
full numerical simulations of the 3-D Schnakenberg model (1.2) using FlexPDE6 [6].

We now briefly discuss a few open problems that warrant further study. Our implemen-
tation of slow spot dynamics was done only for the case where Ω is the unit ball, for which
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there is an explicit analytical formula for the Neumann Green’s function and its regular part.
To leading order in ε, the slow ODE dynamics in (4.18) for a spatially uniform feed A, and in
(4.32) for a variable feed A(x), depend on the gradient of this Neumann Green’s function. For
more complicated domains, it would be interesting to implement the explicit ODE dynamics
numerically by using fast multipole methods (cf. [8]) to compute the required Green’s function
both accurately and rapidly. Such fast multipole methods would be highly advantageous in
this setting, since in simulating the ODE dynamics in (4.18) or (4.32) the gradients of the
Green’s function must be evaluated at each discrete point of the discretization of the ODE dy-
namics. With this approach it should be tractable to numerically study spot dynamics and,
in particular, spot-pinning effects due to either changes in the domain geometry or spatial
variations in the variable feed-rate A(x).

For the case where A > 0 is constant, a second open problem is to identify stable equilibria
of the leading-order ODE dynamics (4.18) that have large basins of attraction for initial
conditions. As N increases, the energy landscape of the discrete energy H in (4.17) will have
an increasingly large number of local minima with nearly the same energy (cf. [3] and the
references therein). These local minima are all linearly stable equilibrium points of (4.18). A
natural question is to study, as N increases, whether most initial conditions for (4.18) tend
to the global minimum point of H. Our computations of (4.18) for random configurations of
spots have suggested that this property holds: N = 2, . . . , 20. For the unit ball, the global
minimum of H for N = 2, . . . , 20 was computed using numerical optimization software in [3],
but it becomes computationally much more challenging to compute it for larger N . Therefore,
in what sense can the ODE system (4.18) be used as a regularization for computing the global
minimum point of H? From a numerical analysis viewpoint, a related ODE regularization
was used in [16] to compute a minimum energy configuration for 2-D Coulomb particles on
the surface of a ball. We remark that the identification of the global minimum point of H also
arises in other contexts. In particular, it corresponds to the spatial configuration of the centers
of small traps that minimize the average mean first passage time for a Brownian walker in a
3-D domain [3] that has a uniformly distributed starting point in the domain.

A related open question is to identify steady-state spatial configurations of (4.18) for which
e = (1, . . . , 1)T is an eigenvector of the Neumann Green’s matrix G. When this condition
holds, we determined an improved approximation for the competition stability threshold in
Main Result 3.1 that involves the minimum eigenvalue of G in the subspace orthogonal to e.
In this case, asymmetric spot equilibrium solution branches all bifurcate from the symmetric
solution branch at a common point. In contrast, if e is not an eigenvector of G at the steady-
state of (4.18), we can expect an intricate imperfection-sensitive bifurcation structure near
the competition instability threshold. Although we studied this delicate behavior analytically
near the competition instability threshold for the case N = 2 in (2.44) of section 2.1, it is an
open issue to locally examine this imperfection sensitivity analytically for larger N .

Finally, we remark that it should be possible to develop a similar hybrid asymptotic-
numerical approach to study localized quasi-equilibrium spot patterns in a 3-D setting for other
well-known singularly perturbed reaction-diffusion systems, such as the Gierer–Meinhardt,
Gray–Scott, and Brusselator models.
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