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Abstract. In this article, we study the narrow capture problem on a
Riemannian 2-manifold. This involves the derivation of the mean first
passage (sojourn) time of a surface-bound ion modeled as a Brownian
particle. We use a layer potential argument in conjunction with microlo-
cal analysis in order to derive the leading order singularity as well as the
O(1) term of the mean first passage time and the associated spatial
average.

1. Introduction

We consider a Brownian particle bound to a surface that contains a small
trap denoted Γε. The narrow capture problem deals with the time required
for such a particle to first encounter the trap. This time is called the first-
passage time and is denoted τΓε . Starting from an initial location x on the
surface, the expected time that a particle will wander before being captured
by the trap is called the mean first-passage time and is denoted uε(x).

The narrow capture problem along with the closely related narrow es-
cape problem (where the traps are small windows on the otherwise reflec-
tive boundary of the search domain) have been used as simple, prototypical
models for various processes involving diffusive search such as a diffusing
ion inside a cell escaping through an ion channel on the cell membrane (see
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[34, 17, 36, 2, 8] and references therein). While we highlight some results
below, we refer the reader to [18, 4, 16] for a more comprehensive description
of results along with their applications to cellular and molecular biology.

On a flat, bounded domain Ω, it was shown in [17] and [39] that the mean
escape time had the leading order expansion

uε ∼ −|Ω| log ε+O(1) as ε → 0.

Within [37], similar expansions were derived for the sphere and annulus with
absorbing windows near singular points. More precisely, it was found that
in geometric configurations where the absorbing window was near a corner,
the mean escape time had an expansion of the form

uε ∼
|Ω|
α

log ε+O(1),

where α denotes the angle of the corner. Furthermore, it was found that
when the absorbing window was near a cusp point, the mean escape time
had an expansion given by

uε ∼
|Ω|
ε

+O(1).

It is emphasized that in the above works, the leading order term was deter-
mined and the extent to which the remainder terms were understood was
O(1).

In [34], a matched asymptotic method was employed to determine theO(1)
term in the expansion in terms of a certain Green’s function that encoded
information on the geometry of Ω, the locations of the traps, and the initial
position x. This method, developed in [44], effectively summed all logarith-
mic correction terms in the expansion of uε, with the resulting error term
being transcendentally small in ε. In [7], a more detailed model was con-
sidered in which the windows were allowed to open and close stochastically,
more closely mimicking the behavior of cell ion channels. Other quantities
of interest aside from the mean first passage time include the variance of the
first passage time [24] as well as the so-called extreme first passage time, the
minimum search time achieved by a large group of searchers [31].

In three dimensions, the narrow escape time from a Euclidean, bounded
domain Ω with one circular trap of radius ε on its boundary was shown
[39, 38] to have the leading order expansion

uε ∼ |Ω|(4ε)−1(1− επ−1H log ε) +O(1),
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where H is the mean curvature of ∂Ω at the center of the trap. In [11], a
matched asymptotic analysis similar to that employed in [34] was used to
compute the O(1) correction term in the expansion for the special case in
which Ω was the unit ball. In [33], the calculation of this correction term was
generalized using geometric microlocal methods to Riemannian 3-manifolds
with smooth boundary containing either a circular or elliptical trap.

The narrow capture problem also has wide applications in cellular biol-
ogy [10, 13]. For example, a diffusing molecule must arrive at a localized
signaling region within a cell or on its surface before a signaling cascade
can be initiated. In another example, a T cell may diffuse in search of an
antigen-presenting cell to trigger an immune response. In this latter ex-
ample, determining the duration of this search is relevant to understanding
immune response time [13, 14].

The matched asymptotic methods of [44] that were used for the afore-
mentioned narrow escape problems have also been successfully applied to
narrow capture problems in Euclidean metrics. In earlier works, the closely
related problem of computing the fundamental Neumann eigenvalue λ0 for
the Laplacian in Euclidean two- and three-dimensional domains with small
traps was considered in [12, 23]. The spatial average of the mean first pas-
sage time was shown to be proportional to 1/λ0 (see [23, 44]), and in [35],
a numerical algorithm was employed to optimize this quantity with respect
to configurations of traps located in the domain.

Extensions of these works include computing the full probability distribu-
tion (i.e., all moments as opposed to just the first) of the first passage time
[29, 3, 5, 9], stochastic resetting [3, 5, 9], moving traps [43, 30, 21], partially
absorbing traps [28, 9], traps grouped in clusters [24, 20], and the effect of
advection [24, 32].

In a non-Euclidean geometry, [13] considered the mean first passage time
of a Brownian particle on a sphere containing small absorbing traps. Explicit
results were obtained through employment of the aforementioned matched
asymptotic method along with the known analytic formula for the Neumann
Green’s function for the Laplacian on sphere. The spherical geometry consid-
ered was meant to approximate the geometry of a cell with receptor clusters
on its surface awaiting the arrival of surface-bound signaling molecules. A
more detailed model of a cell, however, would be non-spherical. In fact, a
cell’s geometry can be crucial to the manner in which it serves its function
[15]. It is with this motivation that we develop here a rigorous mathemat-
ical framework for narrow capture problems posed on non-Euclidean and
non-spherical geometries.
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We now mathematically formulate the narrow capture problem. Let
(M, g) be a compact, connected, orientable, Riemannian surface with smooth
boundary, ∂M . First, we assume the boundary to be empty and calculate
the associated mean sojourn time as well as its spatial average. When the
manifold is of non-empty boundary, we assume, without loss of generality
that M is a connected open subset of a compact orientable, Riemannian

manifold (M̃, g) without boundary. Let (Xt,Pt) be the Brownian motion on
M generated by the (negative) Laplace-Beltrami operator ∆g = −d∗d. We
use Γε ⊂ M to denote a trap with radius ε > 0 and we denote by τΓε the
first time the Brownian motion Xt hits Γε, that is

τΓε := inf{t ≥ 0 : Xt ∈ Γε}.
Within the narrow capture problem, we wish to derive an asymptotic as
ε → 0 for the mean first-passage (sojourn) time which is defined as the
expected value:

uε(x) = E[τΓε |X0 = x].

An associated quantity of interest is the spatial average of the mean first-
passage time:

|Mε|−1

∫
Mε

E[τΓε,a |X0 = x]dvolg(x),

where Mε := M \Γε and |Mε| is the Riemannian volume of Mε with respect
to the metric g.

Many works have been devoted to this topic, especially in applied math-
ematics. In [27], the mean first-passage time for diffusing particles on a
surface of the sphere with one absorbing trap was considered. They ob-
tained the asymptotic, up to the bounded term, for mean first passage time
and its average. These results were generalized, in [13], for the case of sev-
eral traps. In [10, 28], the three-dimensional pseudo-differential version of
this problem was studied. For domains in R3, they obtain the asymptotic
formulas in terms of capacitance, by using the method of matched asymp-
totic expansions. We also mention works [6, 35, 42, 22, 3, 5, 40], where the
authors investigate related problems.

Despite the large number of works on this topic, there are still many
questions regarding more general geometries. In this direction, the goal of
this paper is to investigate the narrow capture problem for the Riemannian
surface. Similar to [1], we use a layer potential method, however by adjoining
this method with techniques originating from geometric microlocal analysis,
we can extend the results, as well as the method to more general geometries,
similar to the extension to broader classes of geometries for the narrow escape



The narrow capture problem 881

problem in [33, 32]. As mentioned previously, we will consider empty and
non-empty boundary cases. For the sake of conciseness, we will present
the results and required Green’s function for the ∂M = ∅ case here. For
the associated Neumann Green’s function and results for the ∂M ̸= ∅, see
Section 5.

∆gE(x, y) = −δy(x) +
1

|M |
, (1.1)

E(x, y) = E(y, x),

∫
M

E(x, y)dvolg(y) = 0.

It was already known, see for example [33] and [41], that near the diagonal
the Green function satisfies

E(x, y) = − 1

2π
log dg(x, y) + P−4(x, y), (1.2)

for some P−4(x, y) ∈ C1(M ×M) which is infinitely smooth away from the
set

{(x, y) ∈ M ×M | x = y}.

(In fact, in the language of pseudo-differential operators, we will see that
P−4(x, y) is the Schwartz kernel of a pseudo-differential operator of degree
−4.)

This expansion allows us to obtain the following asymptotic for the narrow
capture of Brownian particles in a small trap:

Theorem 1.1. Let (M, g) be a closed orientable Riemannian surface. Fix
x0 ∈ M and let Γε := Bε(x0) be a geodesic ball centered at x0 of geodesic
radius ε > 0.

i) For each x /∈ Bε(x0), the first-passage time satisfies the following
asymptotic formula, as ε → 0,

E[τΓε |X0 = x] =− |M |
2π

log ε+ |M |P−4(x0, x0)

− |M |E(x, x0) + rε(x) +O(ε log ε).

for some function rε such that ∥rε∥C(K) ≤ CKε for any compact
K ⊂ M for which K ∩ Γε = ∅. The Green function E(x, y) is given
by (1.1) and P−4(x0, x0) is the evaluation at (x, y) = (x0, x0) of the
C1(M ×M) function P−4(x, y) in (1.2).
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ii) Let Mε = M \ Γε, then the spatial average of the mean first-passage
time satisfies the asymptotic formula, as ε → 0,

1

|Mϵ|

∫
Mε

E[τΓε |X0 = y]dvolg(y)

= −|M |
2π

log ε+ |M |P−4(x0, x0) +O(ε log ε).

In Section 5 Theorem 5.3, we will prove a similar result for ∂M ̸= ∅ with
reflection boundary conditions for the Brownian motion. In this setting, we
will use instead the Neumann Green’s function E(x, y). See Section 5 for
details.

This paper is structured in the following manner. In Section 2, we in-
troduce some notation and the geometric framework with which we will be
operating. Section 3 deals with investigating the singular structure of the
Green’s function on a Riemannian surface without boundary. In Section
4, we make use of the derived Greens function to prove Theorem 1.1. In
Section 5, we consider the analogous problem in the setting of a manifold
with boundary and impose a reflecting boundary condition for our Brownian
motion. The result will be stated in Theorem 5.3.

2. Preliminaries

Throughout this paper, (M, g) be a compact connected orientable Rie-
mannian surface with smooth boundary, ∂M which could be empty. The
corresponding volume form and geodesic distance are denoted by dvolg and
dg(·, ·), respectively. By |M |, we denote the volume of M .

For fixed x ∈ M , we will denote by Bρ(x) the geodesic ball of radius ρ > 0
centered at x. In what follows ρ will always be smaller than the injectivity
radius of (M, g) and the distance from x to ∂M . We let Dρ be the Euclidean
ball in R2 of radius ρ centered at the origin. In this work, we will often
use the geodesic coordinates constructed as follows. For fixed x0 ∈ M and
orthonormal tangent vectors E1, E2 ∈ Tx0M , write t = (t1, t2) ∈ Dρ and
define

x(t;x0) := expx0
(t1E1 + t2E2) (2.1)

where expx0
(V ) denotes the time 1 map of g-geodesics with initial point x0

and initial velocity V ∈ Tx0M . The coordinate t ∈ Dρ 7→ x(t;x0) is then a
g-geodesic coordinate system for a neighborhood of x0 on M .

We will also use the re-scaled version of this coordinate system. For
ε > 0 sufficiently small, we define the (re-scaled) g-geodesic coordinate by
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the following map

xε(·;x0) : t = (t1, t2) ∈ D 7→ x(εt;x0) ∈ Bε(x0), (2.2)

where D is the unit disk in R2.
In the subsequent sections, we denote the centre of the “trap” by x0 ∈ M ,

which will be considered as fixed. We will use the following notations. We
set

Γε := Bε(x0), Mε = Mε(x0) := M \ Γε

and denote by h = h(ε, x0) the metric on ∂Mε, induced by the trivial embed-
ding of ∂Mε into Mε. The corresponding volume form is denoted by dvolh.
Further, we set z ∈ ∂Mε 7→ νz to be an outward pointing normal for Mε.
Finally, we let |Mε|, |∂Γε| be the volumes of Mε and ∂Γε with respect to g
and h.

3. Initial Estimates on the Greens function

Within this section, we assume that ∂M is empty and we consider the
Greens function on M , which is the fundamental solution to the Laplace
equation:

∆gE(x, y) = −δy(x) +
1

|M |
, (3.1)

E(x, y) = E(y, x),

∫
M

E(x, y)dvolg(y) = 0.

For a fixed x0 ∈ M and set Γε = Bε(x0), we consider the following function

Iε(x0, x) :=

∫
Γε

E(x, y)dvolg(y)

for x ∈ Mϵ. We will need to know about the singular behavior of ∂νxE(·, ·),
Iε(x0, ·), and ∂νxIε(x0, ·) on ∂Γε as we approach neighborhoods of the diag-
onal. To investigate these, we recall the singularity structure of E(·, ·):

Proposition 3.1. The Greens function E(x, y) has the following singularity
structure near the diagonal

E(x, y) = − 1

2π
log dg(x, y) + P−4(x, y),

where P−4(x, y) ∈ C1(M × M) is infinitely differentiable off the diagonal
{x = y}.
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We will prove proposition 3.1 in appendix A as it involves the use of
pseudo-differential operators.

As the distance function plays a crucial role in the Green’s function
E(x, y), it is useful to derive asymptotics for them in the appropriate co-
ordinate systems:

Lemma 3.2. Let d∗g(s, t) := dg(x(s, x0), x(t, x0)), where t = (t1, t2) ∈ Dρ 7→
x(t, x0) is the coordinate system defined in (2.1). Then, we have that

d∗g(s, t) = |s− t|+ |s− t|F
(
t,

s− t

|s− t|
, |s− t|

)
,

for some smooth function

F (t, ω, r) ∈ C∞(Dρ × S1 × [0, 2ρ])

which is O(t) +O(r).

Proof. By Lemma 4.8 of [26], if t 7→ x(t, x0) is any coordinate system, there
exists a matrix Hj,k(s, t) smooth in (s, t) such that

d∗g(s, t)
2 =

2∑
j=1

Hj,k(s, t)(sj − tj)(sk − tk), (3.2)

where Hj,k(t, t) = gj,k(t) is the coordinate expression for the metric tensor
g. Since the coordinate system (2.1) is the geodesic coordinate system, we
have that

gj,k(t) = δj,k +O(|t|2).
So, we get

Hj,k(t, t) = δj,k +O(|t|2).
Taylor expanding Hj,k(s, t) around s = t and inserting the resulting expres-
sion into (3.2), we obtain

d∗g(s, t) = |s− t|+ |s− t|F
(
t,

s− t

|s− t|
, |s− t|

)
,

for some smooth function F ∈ C∞(Dρ×S1×[0, r0]) which is O(t)+O(r). □

The following distance expression in the rescaled normal coordinates given
by (2.2) was stated in Corollary 2.6 of [33]:

Lemma 3.3. For the coordinates given by (2.2),

d−1
g (xε(s, x0), x

ε(t, x0)) = ε−1|t− s|−1 + ε|t− s|−1A(ε, s, r, ω),
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for some smooth function A in the variables (ε, s, r, ω) ∈ [0, ε0]×D×R×S1,
where r = |t− s| and ω = t−s

|t−s| .

The next two lemmas describe quantitative bounds for Iε(x0, x) and its
normal derivative for x ∈ ∂Γε.

Lemma 3.4. The following estimate holds

Iε(x0, x) = OL∞(∂Γε)(ε
2 log ε), as ε → 0. (3.3)

Proof. Due to Proposition 3.1 it is sufficient to prove that∫
Γε

log dg(x, y)dvolg(y) = OL∞(∂Γε)(ε
2 log ε).

We consider ε > 0 sufficiently small, so that log(10ε) < 0. Then, for x ∈ ∂Γε,∣∣∣ ∫
Γε

log dg(x, y)dvolg(y)
∣∣∣ = ∣∣∣ ∫

Bε(x0)
log dg(x, y)dvolg(y)

∣∣∣
≤

∣∣∣ ∫
B2ε(x)

log dg(x, y)dvolg(y)
∣∣∣.

For ε > 0 sufficiently small, we can find ρ > 3ε which is smaller than the
injectivity radius. We will use the coordinate system given by

Dρ ∋ (s1, s2) 7→ x(s1, s2;x0),

defined in Section 2. We recall that s = (s1, s2) and t = (t1, t2) and let

d∗g(s, t) := dg(x(s, x0), x(t, x0)).

Lemma 3.2 tells us that

d∗g(s, t) = |s− t|+ |s− t|F
(
t,

s− t

|s− t|
, |s− t|

)
,

for some smooth function F which is O(|t|) + O(|s − t|). Therefore, for
sufficiently small ε > 0, we can choose ρ > 0 small enough so that for all
s, t ∈ Dρ,

1

2
|s− t| ≤ d∗g(t, s) ≤ 2|s− t|.

Furthermore, we choose C > 0 such that
√
det(gj,k(s)) ≤ C for s ∈ Dρ.

Therefore, for x = x(t, x0) ∈ ∂Γε, we estimate∣∣∣ ∫
B2ε(x)

log dg(x, y)dvolg(y)
∣∣∣ ≤ ∣∣∣C ∫

d∗g(t,s)≤2ε
log

(
2|s− t|

)
ds
∣∣∣
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≤
∣∣∣C ∫

|s−t|≤4ε
log

(
2|s− t|

)
ds
∣∣∣.

Thus, we have that Iε(x0, x) = OL∞(∂Γε)(ε
2 log ε). □

Lemma 3.5. The following estimate holds

∂νxIε(x0, x) = OL∞(∂Γε)(ε), as ε → 0. (3.4)

Proof. Let us use the coordinate system x(t, x0). Note that in these coor-
dinates the volume form for M is given by

dvolg(y) = (1 + εVε(s))ds1 ∧ ds2 (3.5)

for some smooth function Vε(s) whose derivatives of all orders are bounded
uniformly in ε. We also note that in these coordinates, we have

dg(x(t;x0), x(s;x0))
2 =

2∑
α,β=1

Gα,β(s, t)(sα − tα)(sβ − tβ), (3.6)

where t = (t1, t2), s = (s1, s2), and Gα,β(s, t) is a smooth function on D×D
such that Gα,β(s, s) = δβα +O(|s|2) for s near 0. Then, by Proposition 2.8 in
[41], we know that

E(x(t;x0), x(s;x0)) =− 1

4π
log

( 2∑
α,β=1

Gα,β(s, t)(sα − tα)(sβ − tβ)
)

+ q2(s, s− t) + p2(s, s− t) log |s− t|+R(s, t).

Here, p2(x, z) is a polynomial homogeneous of degree 2 in z, with the co-
efficients that are bounded, together with their x-derivatives. A function
q2(x, z) is smooth on R2 \ {0} and homogeneous of degree 2 in z. Finally,
R ∈ C2(R2

s × R2
t ).

Let us use the polar coordinates t = (r cos θ, r sin θ), s = (r′ cos θ′, r′ sin θ′).
We note that ∂Γε is the image under the x-chart of {|t| = ε} and r 7→
(r cos θ, r sin θ) is the parametrization of unit speed geodesic issued from the
origin. Therefore, since ∂νx is the inward normal of ∂Γε, it follows from
Gauss Lemma that

Φ∗∂νx = −∂r ∈ T(r cos θ,r sin θ)R2.

Therefore,

∂νxE(x, y) = ∂r

[
− 1

4π
log

( 2∑
α,β=1

Gα,β(s, t)(sα − tα)(sβ − tβ)
)
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+ q2(s, s− t) + p2(s, s− t) log |s− t|+R(s, t)
]
.

Using the definition for I(x0, x) yields the following expression

∂xI(x0, x) =

∫
Dε

∂r

[
− 1

4π
log

( 2∑
α,β=1

Gα,β(s, t)(sα − tα)(sβ − tβ)
)

+ q2(s, s− t) + p2(s, s− t) log |s− t|+R(s, t)
]
(1 + εVε(s))ds.

From the properties of functions q2, p2, and R, mentioned above, it follows
that∫

Dε

∂r (q2(s, s− t) + p2(s, s− t) log |s− t|+R(s, t)) (1 + εVε(s))ds = O(ε2)

uniformly on t. Hence, we have that

∂xI(x0, x) = − 1

4π

∫
Dε

∂r log
( 2∑

α,β=1

Gα,β(s, t)(sα − tα)(sβ − tβ)
)
ds (3.7)

− ε

4π

∫
Dε

∂r log
( 2∑

α,β=1

Gα,β(s, t)(sα − tα)(sβ − tβ)
)
Vε(s)ds+O(ε2).

The first integral of the right-hand side is equal to

∫ 2π

0

∫ ε

0

2
[
cos θ sin θ

]
G

[
r cos θ − r′ cos θ′

r sin θ − r′ sin θ′

]
[
r cos θ − r′ cos θ′ r sin θ − r′ sin θ′

]
G

[
r cos θ − r′ cos θ′

r sin θ − r′ sin θ′

]r′dr′dθ′+
∫ 2π

0

∫ ε

0

[
r cos θ − r′ cos θ′ r sin θ − r′ sin θ′

]
∂rG

[
r cos θ − r′ cos θ′

r sin θ − r′ sin θ′

]
[
r cos θ − r′ cos θ′ r sin θ − r′ sin θ′

]
G

[
r cos θ − r′ cos θ′

r sin θ − r′ sin θ′

] r′dr′dθ′

(3.8)

where G = G(r, θ, r′, θ′) is two by two matrix with entries {Gα,β(s, t)} with
t = t(r, θ) and s = s(r′, θ′). Since x ∈ ∂Bε(x0), we take r = ε. Then, if we
re-scale r′ 7→ εr′, the last expression becomes

ε

∫ 2π

0

∫ 1

0

2
[
cos θ sin θ

]
G

[
cos θ − r′ cos θ′

sin θ − r′ sin θ′

]
[
cos θ − r′ cos θ′ sin θ − r′ sin θ′

]
G

[
cos θ − r′ cos θ′

sin θ − r′ sin θ′

]r′dr′dθ′
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+ε2
∫ 2π

0

∫ 1

0

[
cos θ − r′ cos θ′ sin θ − r′ sin θ′

]
∂rG

[
cos θ − r′ cos θ′

sin θ − r′ sin θ′

]
[
cos θ − r′ cos θ′ sin θ − r′ sin θ′

]
G

[
cos θ − r′ cos θ′

sin θ − r′ sin θ′

] r′dr′dθ′.

Note that we have an integrable singularity at the point (r′, θ′) = (1, θ)
and the integrals are uniformly bounded in θ. Therefore, the integrals given
above are OL∞(∂Γε)(ε) as ε → 0 uniformly in θ. Since Vε(s) is bounded

uniformly in ε, the second term of (3.7) is OL∞(∂Γε)(ε
3). □

Next, we obtain the singularity structure of ∂νxE(·, ·) in a neighborhood
of x0:

Lemma 3.6. Let Bε(x0) be the geodesic ball with radius ε centered at x0.
Then

∂νxE(x, y) |x,y∈∂Γε
=

1

4πε
+Qε(x, y),

for some function Qε such that∫
∂Γε

Qε(x, y)dvolh(y) = OL∞(∂Γε)(ε).

Proof. We begin as in the proof of Lemma 3.5. We can repeat all the steps
until we derive the following equation

∂νxE(x, y) = ∂r

[
− 1

4π
log

( 2∑
α,β=1

Gα,β(s, t)(sα − tα)(sβ − tβ)
)

(3.9)

+ q2(s, s− t) + p2(s, s− t) log |s− t|+R(s, t)
]
.

We recall that p2(x, z) is a polynomial homogeneous of degree 2 in z, with the
coefficients that are bounded, together with their x−derivatives. A function
q2(x, z) is smooth on R2 \ {0} and homogeneous of degree 2 in z. Finally,
R ∈ C2(R2

s × R2
t ). These conditions imply that∫ 2π

0
∂r [q2(s, s− t) + p2(s, s− t) log |s− t|+R(s, t)]

∣∣∣∣
r=r′=ε

dθ′ = O(1)

as ε → 0 uniformly on θ.
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Next, we investigate the first term of the right-hand side of (3.9), which
can be written as follows

1

4π

2
[
cos θ sin θ

]
G

[
r cos θ − r′ cos θ′

r sin θ − r′ sin θ′

]
[
r cos θ − r′ cos θ′ r sin θ − r′ sin θ′

]
G

[
r cos θ − r′ cos θ′

r sin θ − r′ sin θ′

]

+
1

4π

[
r cos θ − r′ cos θ′ r sin θ − r′ sin θ′

]
∂rG

[
r cos θ − r′ cos θ′

r sin θ − r′ sin θ′

]
[
r cos θ − r′ cos θ′ r sin θ − r′ sin θ′

]
G

[
r cos θ − r′ cos θ′

r sin θ − r′ sin θ′

] .

Since x, y ∈ ∂Γε, we let r = r′ = ε, so that the above expression is given by

1

2πε

[
cos θ sin θ

]
G

[
cos θ − cos θ′

sin θ − sin θ′

]
[
cos θ − cos θ′ sin θ − sin θ′

]
G

[
cos θ − cos θ′

sin θ − sin θ′

]

+
1

4π

[
cos θ − cos θ′ sin θ − sin θ′

]
∂rG

[
cos θ − cos θ′

sin θ − sin θ′

]
[
cos θ − cos θ′ sin θ − sin θ′

]
G

[
cos θ − cos θ′

sin θ − sin θ′

] .

Note that the last term belongs to L∞(S1
θ × S1

θ′) uniformly in ε. Therefore,
it remains to show that

1

2πε

[
cos θ sin θ

]
G

[
cos θ − cos θ′

sin θ − sin θ′

]
[
cos θ − cos θ′ sin θ − sin θ′

]
G

[
cos θ − cos θ′

sin θ − sin θ′

] =
1

4πε
+ Lε(θ, θ

′),

(3.10)
for some function Lε such that∫ 2π

0
Lε(θ, θ

′)dθ′ = O(1), as ε → 0,

uniformly on θ. Let J(θ, θ′) be the left-hand side of (3.10). We denote

J1 := Jχ|θ−θ′|<ε and J2 := Jχ|θ−θ′|>ε,

where χ is an indicator function of the corresponding set. To investigate J1,
we Taylor expand the numerator and denominator at θ′ = θ. We recall that
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Gj,k(x, x) = gj,k(x), for r = r′ = ε, we get

G = g + εRε(θ, θ
′)(θ − θ′), (3.11)

where Rε is a two by two matrix with C∞(S1
θ × S1

θ′) entries and

g = {gj,k(ε cos θ, ε sin θ)}2k,j .
Furthermore, we express g as

g = I + Γ(ε, θ), (3.12)

where I is two by two identity matrix and Γ is two by two matrix with
interiors O(ε2). Therefore, by Taylor expanding at θ = θ′, we obtain[

cos θ sin θ
]
G

[
cos θ − cos θ′

sin θ − sin θ′

]
=

[
cos θ sin θ

]
g

[
− sin θ
cos θ

]
+
[
cos θ sin θ

]
g

[
K1(θ, θ

′)
K2(θ, θ

′)

]
(θ − θ′)2 +O(ε)O(|θ − θ′|2),

for some K = (K1,K2) ∈ L∞ (
S1 × S1

)2
. Note that the normal vector to

{|t| = ε} is given by cos θ∂t1 + sin θ∂t2 at the point (ε cos θ, ε sin θ), while
the tangent is given by − sin θ∂t1 + cos θ∂t2 . Therefore, the first term of the
right-hand side of the last equation is zero, so that[

cos θ sin θ
]
G

[
cos θ − cos θ′

sin θ − sin θ′

]
=

[
cos θ sin θ

]
g

[
K1

K2

]
(θ − θ′)2 +O(ε)O(|θ − θ′|2).

Similarly, by using (3.11) and (3.12), we have that[
cos θ − cos θ′ sin θ − sin θ′

]
G

[
cos θ − cos θ′

sin θ − sin θ′

]
= 2(θ − θ′)2 +O(ε)O(|θ − θ′|2).

The previous two estimates imply that

∫ 2π

0
J1dθ

′ =
1

2πε

∫ 2π

0

[
cos θ sin θ

]
G

[
K1

K2

]
+O(ε)

2 +O(ε)
χ|θ−θ′|<ε(θ

′)dθ′ = O(1)

as ε → 0 uniformly in θ. From (3.11) and (3.12), it follows that[
cos θ sin θ

]
G

[
cos θ − cos θ′

sin θ − sin θ′

]



The narrow capture problem 891

= 1− cos(θ − θ′) +O(ε2)O(|θ − θ′|) +O(ε)O(|θ − θ′|2).

In the region {|θ − θ′| > ε}, we can rewrite this[
cos θ sin θ

]
G

[
cos θ − cos θ′

sin θ − sin θ′

]
= 1− cos(θ − θ′) +O(ε)O(|θ − θ′|2).

Similarly, we have that[
cos θ − cos θ′ sin θ − sin θ′

]
G

[
cos θ − cos θ′

sin θ − sin θ′

]
= 2− 2 cos(θ − θ′) +O(ε)O(|θ − θ′|3).

As a result, we have that

J2 =
1

2πε

(1
2
+

O(ε)O(|θ − θ′|2)
2− 2 cos(θ − θ′) +O(ε)O(|θ − θ′|3)

)
=

1

4πε
+

O(1)
2−2 cos(θ−θ′)

(θ−θ′)2 +O(ε)O(|θ − θ′|)
.

Since (2 − 2 cos(θ − θ′))(θ − θ′)−2 is a positive and continuous function of
θ′ ∈ [0, 2π], we conclude that∫ 2π

0

(
J2 −

1

4πε

)
dθ′ = O(1) as ε → 0,

uniformly in θ, thus the lemma is proven. □

4. Narrow capture problem on
the surface without boundary

In this section, we prove Theorem 1.1. We start by recalling the formula-
tion of the problem. Let (Xt,Px) be the Brownian motion on a boundary-
less manifold M starting at x, generated by ∆g. For x0 ∈ M and ε > 0,
let Γε = Bε(x0) be a small geodesic ball centered at fixed point x0 ∈ M .
Denote by τΓε the first time the Brownian motion Xt hits Γε, that is,

τΓε := inf{t ≥ 0 : Xt ∈ Γε}.

We aim to investigate the mean first-passage time and its average:

E[τΓε |X0 = x], |Mε|−1

∫
Mε

E[τΓε |X0 = x]dvolg(x),
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where Mε := M \ Γε. Namely, we want to derive asymptotic expansion
for these quantities as ε → 0. It is known that E[τΓε |X0 = x] satisfies the
following boundary value problem, see for instance Appendix A in [33],{

∆guε = −1 on Mε;

uε = 0 on ∂Mε = ∂Γε,
(4.1)

which gives the compatibility condition∫
∂Γε

∂νuε(y)dvolh(y) = −|Mε|. (4.2)

To prove Theorem 1.1, we will need the following auxiliary result.

Proposition 4.1. Let uε be the solution of (4.1), then

∂ν uε|∂Γε
= −|Mε|

2πε
+Wε

for some Wε ∈ OL∞(∂Γε)(1) as ε → 0.

Proof. By using Green’s identity, we obtain

1

|M |

∫
Mε

uε(y)dvolg(y)− uε(x) (4.3)

+

∫
∂Γε

E(x, y)∂νuε(y)dvolh(y) = Iε(x0, x).

We take ∂νx and restrict to ∂Γε

−∂νxuε(x) + ∂νx

∫
∂Γε

E(x, y)∂νuε(y)dvolh(y) = ∂νxIε(x0, x),

and hence, by Lemma 3.5, we derive

−∂νxuε(x) + ∂νx

∫
∂Γε

E(x, y)∂νuε(y)dvolh(y) = OL∞(∂Γε)(ε).

By Proposition 11.3 of [41],

−1

2
∂νuε(x) +

∫
∂Γε

∂νxE(x, y)∂νuε(y)dvolh(y) = OL∞(∂Γε)(ε).

Therefore, from Lemma 3.6, it follows

1

2
∂νuε(x) =

1

4πε

∫
∂Γε

∂νuε(y)dvolh(y)

+

∫
∂Γε

Qε(x, y)∂νuε(y)dvolh(y) +OL∞(∂Γε)(ε).
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Hence, the compatibility condition (4.2) gives

ε∂νuε(x) = −|Mε|
2π

+ 2ε

∫
∂Γε

Qε(x, y)∂νuε(y)dvolh(y) +OL∞(∂Γε)(ε
2). (4.4)

Next, we estimate

sup
x∈∂Γε

∣∣∣ε∫
∂Γε

Qε(x, y)∂νuε(y)dvolh(y)
∣∣∣

≤ sup
x∈∂Γε

|ε∂νuε| sup
x∈∂Γε

∫
∂Γε

|Qε(x, y)|dvolh(y) ≤ Cε2 sup
x∈∂Γε

|∂νuε| .

The last estimate comes from Lemma 3.6. Combine this estimate with (4.4)
we obtain that

ε∂νxuε(x) = −|Mε|
2π

+OL∞(∂Γε)(ε).

This completes the proof. □

Proof of Theorem 1.1. We first prove ii) then proceed with i). By Propo-
sition 4.1, we can express

∂ν uε|∂Γε
= −|Mε|

2πε
+Wε, Wε = OL∞(∂Γϵ)(1). (4.5)

Then, for x ∈ Mε \ ∂Γε, (4.3) gives

Iε(x0, x) =
1

|M |

∫
Mε

uε(y)dvolg(y)− uε(x)−
|Mε|
2πε

∫
∂Γε

E(x, y)dvolh(y)

+

∫
∂Γε

E(x, y)Wε(y)dvolh(y),

or equivalently

1

|M |

∫
Mε

uε(y)dvolg(y) = uε(x) +
|Mε|
2πε

∫
∂Γε

E(x, x0)dvolh(y)

+
|Mε|
2πε

∫
∂Γε

(E(x, y)− E(x, x0))dvolh(y) (4.6)

−
∫
∂Γε

E(x, y)Wε(y)dvolh(y) + Iε(x, x0).

To compute the left-hand side, we restrict this to ∂Γε where uε = 0. We note
that Proposition 3.1 combined with Lemma 3.2 shows that in the coordinates
(2.1) the singularity structure of the Green’s function E(x(s, x0, ), x(t, x0))
is of the form

E(x(s, x0), x(t, x0)) = C log |t− s|+ L∞(Dρ × Dρ).
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Combining this with Lemma 3.4 and (4.5) gives∫
∂Γε

E(x, y)Wε(y)dvolh(y) = OL∞(∂Γε)(ε log ε),

Iε(x0, x) = OL∞(∂Γε)(ε
2 log ε),

as ε → 0. Therefore, restricting (4.6) to ∂Γε and using Proposition 3.1, we
obtain

1

|M |

∫
Mε

uε(y)dvolg(y)−
|Mε||∂Γε|

4π2ε
log ε+

|Mε||∂Γε|
2πε

P−4(x0, x0)

+
|Mε|
2πε

∫
∂Γε

(E(x, y)− E(x, x0))dvolh(y)

∣∣∣∣
x∈∂Γε

+OL∞(∂Γε)(ε log ε). (4.7)

Let us examine the third term of the right-hand side∫
∂Γε

(E(x, y)− E(x, x0))dvolh(y) (4.8)

=

∫
∂Γε

(log dg(x, y)− log dg(x, x0))dvolh(y)

+

∫
∂Γε

(P−4(x, y)− P−4(x, x0))dvolh(y),

where x ∈ ∂Γε. Joint differentiability of P−4 gives

sup
x∈∂Γε

∣∣∣ ∫
∂Γε

(P−4(x, y)− P−4(x, x0))dvolh(y)
∣∣∣ ≤ Cε2. (4.9)

To investigate the first term of the right-hand side of (4.8), we use the
coordinate system xε(·, x0) with x = xε(t, x0) and y = xε(s, x0). Let dσ(s)
be the pull-back of the volume form dvolh(y) under s 7→ xε(s, x0), then

dvolh(y) = ε(1 + vε(s))dσ(s)

for some smooth function ∥vε∥L∞(∂Γε) ≤ Cε. By Lemma 3.3, we have

d−1
g (xε(t, x0), x

ε(s, x0)) = ε−1|t− s|−1 + ε|t− s|−1A(ε, s, r, ω)

for some smooth function A(ϵ, s, r, ω) in the variables (ε, s, r, ω) ∈ [0, ε0] ×
D × R × S1, where r = |t − s| and ω = t−s

|t−s| . Therefore, the first term of

(4.8) becomes

ε

∫
∂D

log
( ε|t− s|
1 + ε2A

)
(1 + vε(s))dσ(s). (4.10)
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It easily follows that

ε
∣∣∣ ∫

∂D
log

( ε

1 + ε2A(ε, s, r, ω)

)
(1 + vε(s))dσ(s)

∣∣∣ ≤ Cε log ε (4.11)

and∣∣∣ε∫
∂D

log |t− s|vε(s)dσ(s)
∣∣∣ ≤ ε

∫
∂D

|log |t− s|vε(s)| dσ(s) ≤ Cε2 (4.12)

for all t ∈ ∂D. Therefore, inserting the estimates (4.11) and (4.12) into
(4.10) gives that for t ∈ ∂D,∫

∂Γε

(log dg(x, y)− log dg(x, x0))dvolh(y) = OL∞(∂Γε)(ε log ε).

This combined with (4.9) and (4.8) gives∣∣∣ ∫
∂Γε

(E(x, y)− E(x, x0))dvolh(y)
∣∣∣ ≤ Cε log ε.

Inserting this estimate into (4.7) implies

1

|M |

∫
Mε

uε(y)dvolg(y)

= −|Mε||∂Γε|
4π2ε

log ε+
|Mε||∂Γε|

2πε
P−4(x0, x0) +OL∞(∂Γε)(ε log ε).

We take the supremum norm over ∂Γε to obtain

1

|M |

∫
Mε

uε(y)dvolg(y) (4.13)

= −|Mε||∂Γε|
4π2ε

log ε+
|Mε||∂Γε|

2πε
P−4(x0, x0) +O(ε log ε).

Next, we note that |Γε| = |Bε(x0)| = O(ε2) and

|∂Γε| = |∂Bε(x0)| =
∫
∂Bε(x0)

dvolh(y)

=

∫
∂D

ε(1 + vε(s))dσ(s) = 2πε+O(ε2).

This gives us part ii) of Theorem 1.1.
Let us put (4.13) into (4.3) to obtain

uε(x) = −|M |
2π

log ε+ |Mε|P−4(x0, x0)
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+

∫
∂Mε

E(x, y)∂νuε(y)dvolh(y)− Iε(x0, x) +O(ε log ε),

as ε → 0. It remains to show that for a fixed compact set K ⊂⊂ Mε,∫
∂Γε

E(x, y)∂νuε(y)dvolh(y)− Iε(x0, x) = −|M |E(x, x0) + rε(x) (4.14)

for some rε(x) whose L∞(K) norm is of order ε.
To do this, let us fix any compact set K ⊂ M which does not contain x0,

so that K ∩ Γε is empty for sufficiently small ε > 0. Then E(·, ·) is smooth
in K × Γε, and hence, we estimate

sup
x∈K

I(x0, x) = sup
x∈K

∫
Γε

E(x, y)dvolg(y) = O(ε2) as ε → 0.

Next, we write∫
∂Γε

E(x, y)∂νuε(y)dvolh(y)

=

∫
∂Γε

(E(x, y)− E(x, x0))∂νuε(y)dvolh(y) + E(x, x0)

∫
∂Γε

∂νuε(y)dvolh(y).

The first integral can be estimated using Proposition 4.1 and the smoothness
of E(·, ·) in K × Γε to give∫

∂Γε

E(x, y)∂νuε(y)dvolh(y) = OL∞(K)(ε) + E(x, x0)

∫
∂Γε

∂νuε(y)dvolh(y).

Now, use the compatibility condition (4.2) to get for x ∈ K,∫
∂Γε

E(x, y)∂νuε(y)dvolh(y)

= −|Mε|E(x, x0) +OL∞(K)(ε) = −|M |E(x, x0) +OL∞(K)(ε).

This gives Part i) of Theorem 1.1. □

5. Narrow capture problem on the surface with boundary

Here, we consider the same problem for the case when the surface has a
smooth boundary , ∂M , which reflects the particle. Without loss of general-
ity, we assume that M is an connected open subset of a compact orientable

Riemannian manifold (M̃, g) without boundary. Let Ẽ(x, y) be the Green’s



The narrow capture problem 897

function on M̃ , given by (3.1). The Neumann Green’s function E(x, y) is
given by, for x ∈ M0,

∆g,yE(x, y) = −δx(y) +
1

|M |
, for y ∈ M,

∂νyE(x, y) = 0, for y ∈ ∂M,∫
M

E(x, y)dvolg(y) = 0.

(5.1)

We can obtain this function by setting E = Ẽ − C, where the correction
term C(x, y) is the solution to the boundary value problem, for x ∈ M0,

∆g,yC(x, y) =
1

|M̃ |
− 1

|M |
, for y ∈ M,

∂νyC(x, y) = ∂νy Ẽ(x, y), for y ∈ ∂M,∫
M

C(x, y)dg(y) =

∫
M

Ẽ(x, y)dvolg(y).

Therefore, for U ⊂⊂ M away from the boundary, that is

distg(U, ∂M) > 0,

it follows

C = Ẽ − E ∈ C∞(Ū × Ū).

Hence, we can decompose

E(x, y) = − 1

2π
log dg(x, y) + P−4(x, y), (5.2)

where P−4(x, y) ∈ C1(Ū × Ū). Moreover, since we are considering the centre
of the trap, x0, to be fixed in the interior of M with a sufficiently small
ε > 0, we have that ∫

Γε

C(x, y)dvolg(y) = OL∞(∂Γε)(ε
2),

∂νx

∫
Γε

C(x, y)dvolg(y) = OL∞(∂Γε)(ε
2),

∂νx

∫
∂Γε

C(x, y)dvolh(y) = OL∞(∂Γε)(ε),

as ε → 0. Note that the difference between the second and third identities
are that we are integrating with respect to dvolh over ∂Γε as opposed to
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dvolg over Γε. As a result, we obtain the following analogues of Lemmas
3.4-3.6 for the function

Iε(x0, x) :=

∫
Γε

E(x, y)dvolg(y).

Lemma 5.1. As ε → 0, we have that

Iε(x0, x) = OL∞(∂Γε)(ε
2 log ε),

∂νxI(x0, x) = OL∞(∂Γε)(ε),

∂νxE(x, y) |x,y∈∂Γε
=

1

4πε
+Qε(x, y),

for some function Qε such that∫
∂Γε

Qε(x, y)dvolh(y) = OL∞(∂Γε)(ε).

Note that, in this case, ∂M ̸= ∅, the mean first-passage time E[τΓε |X0 = x]
satisfies the following mixed boundary value problem, see Appendix in [33],

∆guε = 1 on Mε,

uε = 0, on ∂Γε,

∂νu = 0, on ∂M,

(5.3)

which gives the compatibility condition∫
∂Γε

∂νuε(y)dvolh(y) = −|Mε|. (5.4)

As a result, we have the following analogue of Proposition 4.1.

Proposition 5.2. Let uε be the solution of (5.3), then

∂ν uε|∂Γε
= −|Mε|

2πε
+Wε

for some Wε ∈ OL∞(∂Γε)(1) as ε → 0.

Proof. Green’s identity yields the following equation,

1

|M |

∫
Mε

uε(y)dvolg(y)− uε(x)− Iε(x0, x)

=

∫
∂Mε

∂νyE(x, y)uε(y)dvolh(y)−
∫
∂Mε

E(x, y)∂νuε(y)dvolh(y).
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Using the boundary conditions for E and uε, we obtain

1

|M |

∫
Mε

uε(y)dvolg(y)− uε(x) +

∫
∂Γε

E(x, y)∂νuε(y)dvolh(y) = Iε(x0, x).

Next, as in Proposition 4.1, we take ∂νx , restrict to ∂Mε, and use Lemma
5.1 to obtain

−∂νuε(x) + ∂ν

∫
∂Γε

E(x, y)∂νuε(y)dvolh(y) = OL∞(∂Γε)(ε).

By Proposition 11.3 of [41], we have that

−1

2
∂νuε(x) +

∫
∂Γε

∂νxẼ(x, y)∂νuε(y)dvolh(y)

−
∫
∂Γε

∂νxC(x, y)∂νuε(y)dvolh(y) = OL∞(∂Γε)(ε)

which implies that

−1

2
∂νuε(x) +

∫
∂Γε

∂νxE(x, y)∂νuε(y)dvolh(y) = OL∞(∂Γε)(ε).

We can then repeat the proof of Proposition 4.1 by replacing Lemma 3.6
with 5.1. □

It follows that repeating the proof of Theorem 1.1 by replacing Proposition
4.1 with 5.2 and Lemmas 3.4-3.6 with 5.1 yields the following theorem.

Theorem 5.3. Let (M, g, ∂M) be a compact, connected and orientable Rie-
mannian surface with smooth boundary. Fix x0 ∈ M0 and let Γε := Bε(x0) be
a geodesic ball centered at x0 of geodesic radius ε > 0 such that ∂Γε∩∂M = ∅.

i) For each x /∈ Γε, the first-passage time satisfies the following asymp-
totic formula, as ε → 0,

E[τΓε |X0 = x] = −|M |
2π

log ε+ |M |P−4(x0, x0)

− |M |E(x, x0) + rε(x) +O(ε log ε)

for some function rε such that

∥rε∥C(K) ≤ CKε

for any compact K ⊂ M for which K∩Γε = ∅. The Neumann Green’s
function E(x, y) is given by (5.1) and P−4(x0, x0) is the evaluation
at (x, y) = (x0, x0) of the kernel P−4(x, y) in (5.2).
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ii) Let Mε = M \ Γε, then the spatial average of the mean first-passage
time satisfies the asymptotic formula, as ε → 0,

1

|M |

∫
Mε

E[τΓε |X0 = y]dvolg(y)

= −|M |
2π

log ε+ |M |P−4(x0, x0) +O(ε log ε).

Appendix A. Proof of Proposition 3.1

In this section, we provide a brief outline for the necessary aspects of the
theory of pseudo-differential operators. For a greater in-depth description of
ΨDO , we refer to the reader to [19], [41] or [45]. After the basic elements of
ΨDOs have been described, we offer a proof for Proposition 3.1.

A.1. Overview of Pseudo-differential operators (ΨDO) on Mani-
folds. Let p(x, ξ) ∈ C∞(T ∗Rn). We call p(x, ξ) a standard symbol of order
m if for all m ∈ R, the following estimate holds uniformly

|Dα
xD

β
ξ p(x, ξ)| ≲ ⟨ξ⟩m−|β|

for every multi-index α, β ∈ Nn. Should p(x, ξ) be an order m standard
symbol, we say that p(x, ξ) ∈ Sm

1,0(T
∗Rn).

Remark A.1. We use Dξ := −i∂ξ, Dx := −i∂x and ⟨ξ⟩ := (1 + |ξ|2)1/2.

Of particular interest is a subspace of Sm
1,0(T

∗Rn) known as the classical

symbols of order m denoted by Sm
cl (T

∗Rn). Such symbols are defined via a
homogeneity requirement on the asymptotic expansion of p(x, ξ)

p(x, ξ) ∼
∞∑
j=0

pm−j(x, ξ), (A.1)

where pm−j(x, ξ) are homogeneous of order m− j in the fiber for all x ∈ Rn,
i.e.,

pm−j(x, λξ) = λm−jpm−j(x, ξ) for λ, |ξ| ≥ 1.

The above expansion (A.1) is an asymptotic expansion in the sense that

p(x, ξ)−
N∑
j=0

pm−j(x, ξ) ∈ Sm−N−1
1,0 (T ∗Rn).



The narrow capture problem 901

If p(x, ξ) ∈ Sm
1,0(T

∗Rn), we can define an operator p(x,D) : C∞
c (Rn) →

D′(Rn) which is given locally by the following expression

p(x,D)v :=

∫
Rn

eiξ·xp(x, ξ)v̂(ξ)dξ. (A.2)

Such an operator is called an m-th order pseudo-differential operator and
we say that p(x,D) ∈ Ψm

1,0(Rn). We can also define Ψm
cl (Rn) by requiring

p(x, ξ) ∈ Sm
cl (T

∗Rn) in (A.2). Furthermore, we can uniquely extend p(x,D)
to a bounded linear operator

p(x,D) : Hk(Rn) → Hk−m(Rn) for k ∈ R.

We also define the space of smoothing operators, pseudo-differential operators
with smooth, compactly supported kernels along the diagonal as

Ψ−∞(Rn) :=
⋃
m∈R

Ψm(Rn).

Smoothing operators arise as pseudo-differential operators of symbols be-
longing to the space defined by

S−∞(T ∗Rn) =
⋃
m∈R

Sm(T ∗Rn).

We also have that if p(x,D) ∈ Ψm(Rn), q(x,D) ∈ Ψl(Rn), then one has that

p(x,D)q(x,D) ∈ Ψm+l(Rn).

The way such composition is defined is via a symbol calculus. The symbol
for p(x,D)q(x,D), denoted by (p#q)(x, ξ) is given by

(p#q)(x, ξ) ∼
∑
µ

i|µ|

µ!
Dµ

ξ p(x, ξ)D
µ
xq(x, ξ), (A.3)

where µ ∈ Nn denotes a multi-index. The derivation for this formula can be
found in [41], Chapter 7, Section 3. Another important aspect of pseudo-
differential operators, which will largely be used in the proof of proposition
3.1 is the notion of elliptic parametrices. First, if p(x,D) ∈ Ψm(Rn), we
say that p(x,D) is elliptic if the following lower bound estimate holds for
constants C,R > 0

|p(x, ξ)| ≥ C(1 + |ξ|)m, for|ξ| ≥ R.

If p(x,D) is elliptic, then the following theorem holds.
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Theorem A.2. If p(x,D) ∈ Ψm(Rn) is elliptic, then there are left and right
parametrices, denoted by q(x,D), q̃(x,D) ∈ Ψ−m(Rn) such that

p(x,D)q(x,D) = I +Ψ−∞(Rn),

q̃(x,D)p(x,D) = I +Ψ−∞(Rn).

The proof for the above theorem can be found in [41], Chapter 7, Section 4.
The operators q(x,D) and q̃(x,D) are known as right and left parametrices
of p(x,D) respectively. Furthermore, it is a straightforward corollary that

q(x,D) = q̃(x,D) + Ψ−∞(Rn).

In lieu of the pseudo-differential theory on Rn, there is a natural extension
to C∞-manifolds. Let M be a closed manifold. An operator A : C∞(M) →
D′(M) is said to belong to Ψm

1,0(M) if there is an atlas (Uj , φj) covering M ,

with φj : Uj → Vj ⊂ Rn and a partition of unity {χj} subordinate to the
atlas covering such that the following operator

u 7→ (χkAχjφ
∗
ju) ◦ φ−1

k ,

belongs to Ψm
1,0(Rn). Similarly, if a ∈ C∞(T ∗M), we say that a ∈ Sm

1,0(T
∗M)

if

χj ◦ φ−1
j a(φ−1

j (·), φ∗
j ·) ∈ Sm

1,0(T
∗Rn).

The classical pseudo-differential operators and symbols on M are defined in
the same way.

A.2. Proof of Proposition 3.1. Since ∆g ∈ Ψ2
cl(M) elliptic, we have that

as a result of Theorem A.2, there is a parametrix P ∈ Ψ−2
cl (M) satisfying

the following equation

∆gP = I +Ψ−∞(M).

Furthermore, as a corollary of Borel’s lemma ,[45], we can express the
Schwartz kernel of P as

P (x, y) =

∞∑
j=0

P−2−j(x, y),

where P−2−j ∈ Ψ−2−j
cl (M). A standard first order parametrix construction

indicates that we can choose for x near y

P−2(x, y) = − 1

2π
log dg(x, y).
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So, our claim is that P−3 = 0. This problem, reduces to showing that

P − P−2 ∈ Ψ−4
cl (M). (A.4)

Left composition of ∆g with (A.4) results in the following equivalent formu-
lation

∆gP−2 − I ∈ Ψ−2
cl (M). (A.5)

Self-adjointness of P−2 and ∆gimply that (A.5) is equivalent to

P−2∆g − I ∈ Ψ−2
cl (M). (A.6)

Should (A.6) be true, then we would infer that the expansion for P−2∆g

consists of no −1 order pseudo-differential operator. This is equivalent to
requiring the principle symbol, which is homogeneous of degree −1 satisfy
the following

σ−1(P−2∆g − I)(y, η) = 0, for all (y, η) ∈ T ∗M.

In order to attain the above requirement, we show that σ−1(P−2∆g − I) can
be bounded from above in the following manner

|σ−1(P−2∆g − I)(y0, τη0)| ≲ τ−2, (A.7)

for τ → ∞ and fixed (y0, η0) ∈ S∗M . Since the decay is radially symmetric
and is independent of the choice of y0, (A.7) implies that σ−1(P−2∆g − I)
vanishes on T ∗M . Now, we let Φ : V → U be a Riemann normal co-ordinate
chart, centered at y0 for which Φ(0) = y0 ∈ U ⊂ M . Let

A : C∞
c (R2) → D′(R2) and B : C∞

c (R2) → D′(R2)

denote the pull-back operators for P−2 and ∆g by Φ respectively. Then, by
the invariance of principle symbols under symplectomorphism, we have that

σ−1(P−2∆g − I)(y0, η0) = σ−1(AB − I)(0, ξ).

If a(t, ξ) and b(t, ξ) denote the symbols of A and B, then by (A.3), we have
that

(a#b)(t, ξ) = a(t, ξ)b(t, ξ)− i
∑
|µ|=1

Dµ
ξ a(t, ξ)D

µ
t b(t, ξ) + S−2

cl (T ∗R2).

Furthermore, if we restrict t = 0, since we are working in Riemannian normal
co-ordinates, we have that Dµ

t b(t, ξ)|t=0 = 0, which is shown in [25], and thus

(a#b)(0, ξ) = a(0, ξ)b(0, ξ) + S−2
cl (T ∗R2).
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Since the symbol a(0, ξ) is given by the Schwartz kernel of A, where

a(0, ξ) = − 1

2π

∫
R2

e−iξ·t log |t|dt = |ξ|−2,

we have that

(a#b)(0, ξ) = 1 + S−2
cl (T ∗R2).

This implies that

|(a#b)(0, ξ)− 1| ≲ ⟨ξ⟩−2 =⇒ σ−1(AB − I)(0, ξ) = 0.

The last equality thus implies that

σ−1(P−2∆g − I)(y, η) = 0 for all (y, η) ∈ T ∗M .
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[19] L. Hörmander, “The Analysis of Linear Partial Differential Operators,” III, Classics
in Mathematics, Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the
1994 edition.

[20] S. Iyaniwura and M.J. Ward, Asymptotic analysis for the mean first passage time in
finite or spatially periodic 2D domains with a cluster of small traps, The ANZIAM
J., 63 (2021), 1–22.

[21] S. Iyaniwura, T. Wong, M.J. Ward, and C.B. Macdonald, Simulation and optimization
of mean first passage time problems in 2-D using numerical embedded methods and
perturbation theory, Multiscale Modeling & Simulation, 19 (2021), 1367–1393.

[22] Sa.A. Iyaniwura, T. Wong, C.B. Macdonald, and M.J. Ward, Optimization of the
Mean First Passage Time in Near-Disk and Elliptical Domains in 2-D with Small
Absorbing Traps, SIAM Rev., 63 (2021), 525–555.

[23] T. Kolokolnikov, M.S. Titcombe, and M.J. Ward, Optimizing the fundamental neu-
mann eigenvalue for the Laplacian in a domain with small traps, European J. Applied
Math., 16 (2005), 161–200.

[24] Ve. Kurella, J.C. Tzou, D. Coombs, and M.J. Ward, Asymptotic analysis of first
passage time problems inspired by ecology, Bull. Math. Biol., 77 (2015), 83–125.

[25] J.M. Lee, “Introduction to Riemannian Manifolds,” volume 176 of Graduate Texts in
Mathematics, Springer, Cham, 2018. Second edition.

[26] T. Lefeuvre, “Tensor Tomography for Surfaces,” 2018, PhD thesis, Master thesis.
[27] D.A. Lauffenburger and J.J. Linderman, Analysis of intracellular receptor/ligand sort-

ing. calculation of mean surface and bulk diffusion times within a sphere, Biophys J.,
50 (1986), 295–305.

[28] A.E. Lindsay, A.J. Bernoff, and M.J. Ward, First passage statistics for the capture
of a Brownian particle by a structured spherical target with multiple surface traps,
Multiscale Model. Simul., 15 (2017), 74–109.



906 Medet Nursultanov, William Trad, Justin Tzou, and Leo Tzou

[29] A.E Lindsay, R.T. Spoonmore, and J.C. Tzou, Hybrid asymptotic-numerical approach
for estimating first-passage-time densities of the two-dimensional narrow capture prob-
lem, Physical Review E, 94 (2016), 042418.

[30] A.E. Lindsay, J.C. Tzou, and T. Kolokolnikov, Optimization of first passage times
by multiple cooperating mobile traps, Multiscale Modeling & Simulation, 15 (2017),
920–947.

[31] J.B. Madrid and S.D. Lawley, Competition between slow and fast regimes for extreme
first passage times of diffusion, Journal of Physics A: Mathematical and Theoretical,
53 (2020), 335002.

[32] M. Nursultanov, W. Trad, and L. Tzou, Narrow escape problem in the presence of the
force field, Mathematical Methods in the Applied Sciences, 45 (2022), 10027–10051.

[33] M. Nursultanov, J.C. Tzou, and L. Tzou, On the mean first arrival time of Brownian
particles on Riemannian manifolds, J. Math. Pures Appl., 150 (2021), 202–240.

[34] S. Pillay, M.J. Ward, A. Peirce, and T. Kolokolnikov, An asymptotic analysis of
the mean first passage time for narrow escape problems: Part I: Two-dimensional
domains, Multiscale Modeling & Simulation, 8 (2010), 803–835.

[35] W. J. M. Ridgway and A.F. Cheviakov, Locally and globally optimal configurations of
n particles on the sphere with applications in the narrow escape and narrow capture
problems, Phys. Rev. E, 100:042413, Oct 2019.

[36] Z. Schuss, A. Singer, and D. Holcman, The narrow escape problem for diffusion in
cellular microdomains, Proceedings of the National Academy of Sciences, 104 (2007),
16098–16103.

[37] A. Singer, Z. Schuss, and D. Holcman, Narrow escape, part iii: Non-smooth domains
and riemann surfaces, Journal of Statistical Physics, 122 (2006), 491–509.

[38] A. Singer, Z. Schuss, and D. Holcman, Narrow escape and leakage of Brownian par-
ticles, Physical Review E, 78 (2008), 051111.

[39] A. Singer, Z. Schuss, D. Holcman, and R.S. Eisenberg, Narrow escape, part i, Journal
of Statistical Physics, 122 (2006), 437–463.

[40] R. Straube, M.J. Ward, and M. Falcke, Reaction rate of small diffusing molecules on
a cylindrical membrane, J. Stat. Phys., 129 (2007), 377–405.

[41] M.E. Taylor, “Partial Differential Equations II, Qualitative Studies of Linear Equa-
tions,” volume 116 of Applied Mathematical Sciences, Springer, New York, second
edition, 2011.

[42] M.S. Titcombe and M.J. Ward, An asymptotic study of oxygen transport from multiple
capillaries to skeletal muscle tissue, SIAM J. Appl. Math., 60 (2000), 1767–1788.

[43] J.C. Tzou and T. Kolokolnikov, Mean first passage time for a small rotating trap
inside a reflective disk, Multiscale Modeling & Simulation, 13 (2015), 231–255.

[44] M.J. Ward and J.B. Keller, Strong localized perturbations of eigenvalue problems,
SIAM Journal on Applied Mathematics, 53 (1993), 770–798.

[45] M.W. Wong, “An Introduction to Pseudo-Differential Operators,” WORLD SCIEN-
TIFIC, 2nd edition, 1999.


